Calculo 1, Solucionario (solo Pares) - Ron Larson - 9na Edición

1,068 Pages • 400,302 Words • PDF • 10.9 MB
Uploaded at 2021-09-24 15:12

This document was submitted by our user and they confirm that they have the consent to share it. Assuming that you are writer or own the copyright of this document, report to us by using this DMCA report button.


C H A P T E R 1 Limits and Their Properties Section 1.1

A Preview of Calculus . . . . . . . . . . . . . . . . . . . 305

Section 1.2

Finding Limits Graphically and Numerically . . . . . . . 305

Section 1.3

Evaluating Limits Analytically . . . . . . . . . . . . . . . 309

Section 1.4

Continuity and One-Sided Limits

Section 1.5

Infinite Limits

Review Exercises

. . . . . . . . . . . . . 315

. . . . . . . . . . . . . . . . . . . . . . . 320

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

C H A P T E R 1 Limits and Their Properties Section 1.1

A Preview of Calculus

Solutions to Even-Numbered Exercises 4. Precalculus: rate of change  slope  0.08

2. Calculus: velocity is not constant Distance  20 ftsec15 seconds  300 feet 6. Precalculus: Area   2

8. Precalculus: Volume   326  54

2

 2 5 5 5    10.417 2 3 4 5 5 5 5 5 5 5 1        9.145 Area  5  2 1.5 2 2.5 3 3.5 4 4.5

10. (a) Area  5 





(b) You could improve the approximation by using more rectangles.

Section 1.2 2.

x

1.9

1.99

1.999

2.001

2.01

2.1

f x

0.2564

0.2506

0.2501

0.2499

0.2494

0.2439

lim

x→2

4.

x2  0.25 x2  4  3.1

 3.01

 3.001

 2.999

 2.99

 2.9

f x

0.2485

0.2498

0.2500

0.2500

0.2502

0.2516

lim

1  x  2

x3

 Actual limit is  14 .

 0.25

x

3.9

3.99

3.999

4.001

4.01

4.1

f x

0.0408

0.0401

0.0400

0.0400

0.0399

0.0392

lim

x→4

8.

 Actual limit is 14 .

x

x→3

6.

Finding Limits Graphically and Numerically

xx  1  45  0.04 x4  0.1

x f x lim

x→0

0.0500

 0.01 0.0050

cos x  1  0.0000 x

 Actual limit is 251 .

 0.001 0.0005

0.001

0.01

 0.0005

 0.0050

0.1  0.0500

(Actual limit is 0.) (Make sure you use radian mode.)

305

306

Chapter 1

Limits and Their Properties

10. lim x2  2  3

12. lim f x  lim x2  2  3

x→1

x→1

1 does not exist since the x3 function increases and decreases without bound as x approaches 3.

x→1

16. lim sec x  1

14. lim

x→3

18. lim sinx  0

x→0

x→1

20. Ct  0.35  0.12  t  1 (a)

1

0

5 0

(b)

t Ct

3

3.3

3.4

3.5

3.6

3.7

4

0.59

0.71

0.71

0.71

0.71

0.71

0.71

lim Ct  0.71

t→3.5

(c)

3

2.5

2.9

3

3.1

3.5

4

0.47

0.59

0.59

0.59

0.71

0.71

0.71

t Ct

lim Ct does not exist. The values of C jump from 0.59 to 0.71 at t  3.

t→3.5



22. You need to find  such that 0 < x  2 <  implies f x  3  x2  1  3  x2  4 < 0.2. That is,





0.2 4  0.2 3.8 3.8 3.8  2



< x2  4 < x2 < x2 < x < x2

< < < < <

0.2 4  0.2 4.2 4.2 4.2  2

So take   4.2  2  0.0494.



Then 0 < x  2 <  implies  4.2  2 < x  2 < 4.2  2 3.8  2 < x  2 < 4.2  2.

Using the first series of equivalent inequalities, you obtain

f x  3  x2  4 <   0.2.



24. lim 4  x→4





x 2 2





4



x  2 < 0.01 2 2

x < 0.01 2

1  x  4 < 0.01 2



Hence, if 0 < x  4 <   0.02, you have 0 < x  4 < 0.02  





 

1  x  4 < 0.01 2 2

4

x < 0.01 2

x  2 < 0.01 2

f x  L < 0.01

Section 1.2 26. lim x2  4  29

28. lim 2x  5  1

x→5 2

x→3

x  4  29 < 0.01

Finding Limits Graphically and Numerically

Given  > 0:

x2  25 < 0.01

2x  5  1 < 

2x  6 <  2 x  3 < 

x  5x  5 < 0.01 0.01

x  5 < x  5

x  3

If we assume 4 < x < 6, then   0.0111  0.0009.

0.01 , you have 11

x5 <

0.01 1 < 0.01 11 x5

Hence, if 0 < x  5 <  





x  5

x  5 < 0.01

x2  25 < 0.01

x2  4  29 < 0.01

f x  L < 0.01

 Hence, if 0 < x  3 <   , you have 2





 9 

2 3

x  1

2 3x

29 3



2 3



2x  6 < 

2x  5  1 < 

f x  L <  32. lim 1  1 x→2

Given  > 0:

0, you have

< 

1  1 < 

f x  L < 

< 32 

Hence, let   32.



x  3 < 2

x→1

2 3x

  2

Hence, let   2.

2 2 29 30. lim  3 x  9  3 1  9  3

Given  > 0:

<

3 Hence, if 0 < x  1 <   2, you have





2 3x



x  1 < 32

2 3x



 9 

2 3

29 3



<  < 

f x  L < 

34. lim x  4  2 x→4

Given  > 0:

x  2 

x  2 < 

x  4 < 

x→3

x  2 <  





x  2

x  3  0

x  3





0 < x  4 <   3 ⇒ x  4 <  x  2



Given  > 0:

x  2

Assuming 1 < x < 9, you can choose   3. Then,



36. lim x  3  0

⇒ x  2 < .

<  < 

Hence, let   .



Hence for 0 < x  3 <   , you have

x  3 < 

x  3  0 < 

f x  L < 

307

308

Chapter 1

Limits and Their Properties

40. f x 

38. lim x2  3x  0 x→3

Given  > 0:

x2  3x  0

xx  3

x2

x3  4x  3 −3

1 2

lim f x 

< 

4

x→3

5

−4

< 



The domain is all x  1, 3. The graphing utility does not show the hole at  3, 12 .

x  3 < x If we assume 4 < x < 2, then   4.

 Hence for 0 < x  3 <   , you have 4



1

1

x  3 < 4 < x 

xx  3 < 

x  3x  0 < 

f x  L <  2

42. f x 

x3 x2  9

lim f x 

x→3

1 6

44. (a) No. The fact that f 2  4 has no bearing on the existence of the limit of f x as x approaches 2.

3

−9

(b) No. The fact that lim f x  4 has no bearing on the x→2 value of f at 2.

3

−3

The domain is all x  ± 3. The graphing utility does not show the hole at  3, 16 . 46. Let px be the atmospheric pressure in a plane at altitude x (in feet).

48.

0.002

(1.999, 0.001) (2.001, 0.001)

lim px  14.7 lbin2

x→0

1.998 0

2.002

Using the zoom and trace feature,   0.001. That is, for



0 < x  2 < 0.001,

50. True



x2  4  4 < 0.001. x2

52. False; let f x 

x10, 4x, 2

x4 x4

.

lim f x  lim x2  4x  0 and f 4  10  0

x→4

x2  x  12 7 x→4 x4

54. lim

n

4  0.1 n

f 4  0.1 n

n

4  0.1 n

x→4

f 4  0.1 n

1

4.1

7.1

1

3.9

6.9

2

4.01

7.01

2

3.99

6.99

3

4.001

7.001

3

3.999

6.999

4

4.0001

7.0001

4

3.9999

6.9999

Section 1.3

56. f x  mx  b, m  0. Let  > 0 be given. Take  





If 0 < x  c <  

 . m

 

xc







 , then m

 

That is,  12L < gx  L < 12L 1 2L

gx

<

3

< 2L

Hence for x in the interval c  , c  , x  c, 1 gx > 2L > 0.

x→c

Evaluating Limits Analytically (a) lim gx  2.4

10

x→4

(b) lim gx  4 x→0

0

4.

(a) lim f t  0

10

t→4

(b) lim f t  5

−5

t→1

10

10

−5

− 10

gx 

12 x  3 x9



8. lim 3x  2  33  2  7 x→3

x→2

10. lim x2  1   12  1  0 x→1

14. lim

x→3

18. lim

x→3

2 2   2 x  2 3  2

x  1

x4



3  1

34



f t  t t  4

6. lim x3  23  8

 2

22. lim 2x  13  20  13  1 x→0

12. lim 3x3  2x2  4  313  212  4  5 x→1

16. lim

x→3

2x  3 23  3 3   x5 35 8

3 3 x  4  442 20. lim  x→4

24. (a) lim f x  3  7  4 x→3

(b) lim gx  42  16 x→4

(c) lim g f x  g4  16 x→3

26. (a) lim f x  242  34  1  21 x→4

3 21  6  3 (b) lim gx  

28. lim tan x  tan   0 x→ 

x→21

(c) lim g f x  g21  3 x→4

30. lim sin x→1

34.



1 such that 0 < x  0 <  implies gx  L <   2L.

which shows that lim mx  b  mc  b.

2.

x   sin  1 2 2

lim cos x  cos

x→53

5 1  3 2

309

1 58. lim gx  L, L > 0. Let   2L. There exists  > 0

mx  c <  mx  mc <  mx  b  mc  b < 

Section 1.3

Evaluating Limits Analytically

32. lim cos 3x  cos 3  1 x→ 

36. lim sec x→7

6x  sec 76  23

3

310

Chapter 1

Limits and Their Properties

38. (a) lim 4f x  4 lim f x  4 x→c

x→c

32  6

3 3 3 lim f x  27  3 f x   40. (a) lim  x→c

(b) lim  f x  gx  lim f x  lim gx  x→c

x→c

x→c

(c) lim  f xgx   lim f x lim gx  x→c

x→c

x→c

x→c

lim f x x→c f x 27 3    (b) lim x→c 18 lim 18 18 2

3 1  2 2 2

x→c

(c) lim  f x  lim f x2  272  729

32 12  43

2

x→c

lim f x 32 f x x→c   3 x→c gx lim gx 12

x→c

(d) lim  f x23  lim f x23  2723  9

(d) lim

x→c

x→c

x→c

42. f x  x  3 and hx 

x2  3x agree except at x  0. x

44. gx 

1 x and f x  2 agree except at x  0. x1 x x

(a) lim hx  lim f x  5

(a) lim f x does not exist.

(b) lim hx  lim f x  3

(b) lim f x  1

x→2

x→1

x→2

x→0

x→0

x→0

2x2  x  3 and gx  2x  3 agree except at x1 x  1.

x3  1 and gx  x2  x  1 agree except at x1 x  1.

46. f x 

48. f x 

lim f x  lim gx  5

x→1

lim f x  lim gx  3

x→1

x→1

x→1

7

4

−8

4

−4

50. lim

x→2

2x  x  2  lim x2  4 x→2 x  2x  2  lim

x→2

54. lim

x

 lim

x→0

x  1  2

x→3

x3

x→4

x2  5x  4 x  4x  1  lim x2  2x  8 x→4 x  4x  2

 lim

x→3

 lim

x→4

2  x  2

x

x→0

 lim

56. lim

52. lim

1 1  x2 4

2  x  2

x→0

4 −1

−8

2x2



2  x  2 2  x  2

 2  x  2 x

x  1  2

x3



x  1 3 1   x  2 6 2

 lim

x→0

1 2  x  2

x  1  2 x  1  2

 lim

x→3



2 1  4 22

x3 1 1  lim  x  3x  1  2 x→3 x  1  2 4

1 1 4  x  4  x4 4 4x  4 1 1  lim  lim  58. lim x→0 x→0 x→0 4x  4 x x 16

60. lim

x→0

x  x2  x2 x2  2x x   x2  x2

x2x  x  lim  lim  lim 2x  x  2x

x→0

x→0

x→0

x

x

x

Section 1.3

62. lim

x→0

Evaluating Limits Analytically

311

x  x3  x3 x3  3x2 x  3x x2   x3  x3  lim

x→0

x

x  lim

x→0

64. f x 

x3x2  3x x   x2  lim 3x2  3x x   x2  3x2

x→0

x

4  x x  16

1

0

x

15.9

15.99

15.999

16

16.001

16.01

16.1

f x

 .1252

 .125

 .125

?

 .125

 .125

 .1248

20

−1

It appears that the limit is 0.125.

4  x  4  x  lim x→16 x  16 x→16  x  4 x  4

Analytically, lim

 lim

x→16

1 x  4

1  . 8

x5  32  80 x→2 x  2

100

66. lim

x f x

1.9

1.99

72.39

79.20

1.999 79.92

1.9999

2.0

79.99

?

2.0001 80.01

2.001 80.08

2.01

2.1

80.80

88.41

x5  32 x  2x4  2x3  4x2  8x  16  lim x→2 x  2 x→2 x2

Analytically, lim

 lim x4  2x3  4x2  8x  16  80. x→2

(Hint: Use long division to factor x5  32.)

68. lim

x→0

31  cos x 1  cos x  lim 3 x→0 x x





 30  0

sin x tan2 x sin2 x  lim  lim 2 x→0 x→0 x cos x x→0 x x

72. lim

cos2 x sin x

 10  0

76. lim

x→ 4

1  tan x cos x  sin x  lim sin x  cos x x→4 sin x cos x  cos2 x  sin x  cos x  lim x→ 4 cos xsin x  cos x 1  lim x→ 4 cos x  lim sec x x→ 4

  2

78. lim

x→0



sin 2x sin 2x  lim 2 sin 3x x→0 2x

13 sin3x3x  21 13 1  32

70. lim

→0

cos tan sin  lim 1 →0

74. lim sec  1    →

−4

3 −25

312

Chapter 1

Limits and Their Properties

80. f h  1  cos 2h  0.1

h f h

4

 0.01

1.98

 0.001

1.9998

2

0

0.001

0.01

0.1

?

2

1.9998

1.98

−5

5

−4

Analytically, lim 1  cos 2h  1  cos0  1  1  2.

The limit appear to equal 2.

h→0

82. f x 

sin x 3 x 

2

−3

 0.1

x f x

 0.01

0.215

0.0464

 0.001

0

0.001

0.01

0.1

0.01

?

0.01

0.0464

0.215



−2

The limit appear to equal 0.



sin x 3 2 sin x  lim  x  01  0. 3 x→0  x→0 x x

Analytically, lim

84. lim

h→0

x  h  x x  h  x f x  h  f x  lim  lim h→0 h→0 h h h

 lim

h→0

3



x  h  x x  h  x

xhx 1 1  lim  h→0 h x  h  x 2x x  h  x

f x  h  f x x2  2xh  h2  4x  4h  x2  4x x  h2  4x  h  x2  4x  lim  lim h→0 h→0 h→0 h h h

86. lim

 lim

h→0





h2x  h  4  lim 2x  h  4  2x  4 h→0 h





88. lim b  x  a  ≤ lim f x ≤ lim b  x  a  x→a

x→a

x→a





90. f x  x sin x 6

b ≤ lim f x ≤ b x→a

Therefore, lim f x  b. x→a

− 2

2 −2





lim x sin x  0

x→0



92. f x  x cos x

94. hx  x cos

6

− 2

0.5

2

− 0.5

0.5

−6

− 0.5



lim x cos x  0

x→0

1 x



lim x cos

x→0



1 0 x

Section 1.3 x2  1 and gx  x  1 agree at all points x1 except x  1.

96. f x 

Evaluating Limits Analytically

98. If a function f is squeezed between two functions h and g, hx ≤ f x ≤ gx, and h and g have the same limit L as x → c, then lim f x exists and equals L. x→c

100. f x  x, gx  sin2 x, hx 

sin2 x x When you are “close to” 0 the magnitude of g is “smaller” than the magnitude of f and the magnitude of g is approaching zero “faster” than the magnitude of f. Thus, g  f 0 when x is “close to” 0

2

g −3



3

h f −2

102. st  16t2  1000  0 when t  s lim

t→5102

5 210  st

5 10  seconds 1000 16 2 



510 2

t







104. 4.9t2  150  0 when t 

lim

t→5102

0  16t2  1000 510 t 2



16 t2  lim

t→5102

lim

t→5102

125 2



510  t 2



16 t 





t  5 210

  t  5 10

2

16 t  lim

t→5102

510 2





510  8010 ftsec 253 ftsec 2

1500 

5.53 seconds. 150 4.9 49

The velocity at time t  a is sa  st 4.9a2  150  4.9t2  150 4.9a  ta  t  lim  lim t→a t→a t→a at at at

lim

 lim 4.9a  t  2a4.9  9.8a msec. t→a

Hence, if a  150049, the velocity is 9.8150049 54.2 msec. 106. Suppose, on the contrary, that lim gx exists. Then, since lim f x exists, so would lim  f x  gx, which is a x→c

x→c

contradiction. Hence, lim gx does not exist.

x→c

x→c

108. Given f x  x n, n is a positive integer, then lim x n  lim x x n1  lim xlim x n1

x→c

x→c

x→c

x→c

 c lim x x n2  clim xlim x n2 x→c

x→c

 cclim  x→c

x→c

  . . .  c n.

x x n3

110. Given lim f x  0: x→c









For every  > 0, there exists  > 0 such that f x  0 <  whenever 0 < x  c < .



 

 

Now f x  0  f x 





313









f x  0 <  for x  c < . Therefore, lim f x  0. x→c

314

Chapter 1



Limits and Their Properties



    f x ≤ f x ≤  f x lim   f x ≤ lim f x ≤ lim  f x x→c x→c x→c

112. (a) If lim f x  0, then lim  f x   0. x→c

x→c

0 ≤ lim f x ≤ 0 x→c

Therefore, lim f x  0. x→c

(b) Given lim f x  L: x→c





  



For every  > 0, there exists  > 0 such that f x  L <  whenever 0 < x  c < . Since f x  L ≤ f x  L <  for x  c < , then lim f x  L .



   







 x→c

116. False. Let f x 

114. True. lim x3  03  0 x→0

3x xx  11

,c1

Then lim f x  1 but f 1  1. x→1

1 118. False. Let f x  2 x2 and gx  x2. Then f x < gx for all x  0. But lim f x  lim gx  0. x→0

120. lim

x→0

1  cos x 1  cos x  lim x→0 x x

x→0

1  cos x

1  cos x

1  cos2 x sin2 x  lim x→0 x1  cos x x →0 x1  cos x

 lim  lim

x→0



sin x x

 lim

x→0

sin x

1  cos x

sin x x

lim 1 sincosx x x→0

 10  0

122. f x 

sec x  1 x2

(a) The domain of f is all x  0, 2  n. (b)

x→0

2

(d) − 3 2

3 2

1 2

(c) lim f x 

sec x  1 sec x  1  x2 x2 

−2

The domain is not obvious. The hole at x  0 is not apparent.

Hence, lim

x→0

sec x  1





1 sin2 x 1 tan2 x  x2sec x  1 cos2 x x2 sec x  1

sec x  1 1 sin2 x 1  lim 2 x→0 x cos2 x x2 sec x  1



 11

124. The calculator was set in degree mode, instead of radian mode.

sec2 x  1

sec x  1  x2sec x  1

12  21.



Section 1.4

Section 1.4 2. (a) (b)

Continuity and One-Sided Limits

315

Continuity and One-Sided Limits

lim f x  2

4. (a)

lim f x  2

(b)

x→2

x→2

lim f x  2

6. (a)

lim f x  2

(b)

x→2

x→2

lim f x  0

x→1

lim f x  2

x→1

(c) lim f x  2

(c) lim f x  2

(c) lim f x does not exist.

The function is continuous at x  2.

The function is NOT continuous at x  2.

The function is NOT continuous at x  1.

x→2

8. lim x→2

x→2

2x 1 1  lim   x2  4 x→2 x  2 4

x→1

10. lim x→4

x  2

x4

 lim x→4

 lim x→4

 lim x→4

12. lim x→2

x  2 

14. lim  x→0

x2

lim

x→2

x  2

x4



x  2 x  2

x4 x  4 x  2 1 x  2



1 4

x2 1 x2

x  x2  x  x  x2  x x2  2xx  x2  x  x  x2  x  lim  x→0 x x  lim  x→0

2xx  x2  x x

 lim  2x  x  1 x→0

 2x  0  1  2x  1 16. lim f x  lim x2  4x  2  2 x→2

x→2

lim f x  lim 

x→2

x→2

x2

18. lim f x  lim 1  x  0 x→1

x→1

 4x  6  2

lim f x  2

x→2

20. lim sec x does not exist since x→ 2

lim

x→ 2

sec x and

lim

x→ 2

24. lim 1   x→1

x→2

sec x do not exist.

2x  1  1  2



22. lim 2x  x  22  2  2

26. f x 

x2  1 x1

has a discontinuity at x  1 since f 1 is not defined.

x, 28. f x  2, 2x  1,

x < 1 x  1 has discontinuity at x  1 since f 1  2  lim f x  1. x→1 x > 1

30. f t  3  9  t2 is continuous on 3, 3.

32. g2 is not defined. g is continuous on 1, 2.

316

Chapter 1

Limits and Their Properties

x is continuous for all real x. 2

34. f x 

1 is continuous for all real x. x2  1

38. f x 

x has nonremovable discontinuities at x  1 and x  1 since lim f x and lim f x do not exist. x→1 x→1 x2  1

36. f x  cos

x3 has a nonremovable discontinuity at x  3 since lim f x does not exist, and has a removable discontinuity x→3 x2  9 at x  3 since

40. f x 

lim f x  lim

x→3

42. f x 

x→3

1 1  . x3 6

x1 x  2x  1

44. f x 

has a nonremovable discontinuity at x  2 since lim f x does not exist, and has a removable discontinux→2 ity at x  1 since lim f x  lim

x→1

46. f x 

x→1

x  3

x3 has a nonremovable discontinuity at x  3 since lim f x x→3 does not exist.

1 1  . x2 3

 3,

2x x,

x < 1 x ≥ 1

2

has a possible discontinuity at x  1. 1. f 1  12  1 2.

lim f x  lim 2x  3  1

x→1

x→1

x→1

 lim f x  1 x→1

lim f x  lim x2  1 x→1

3. f 1  lim f x x→1

f is continuous at x  1, therefore, f is continuous for all real x.

48. f x 

2x, x  4x  1, 2

x ≤ 2 has a possible discontinuity at x  2. x > 2

1. f 2  22  4 2.

lim f x  lim 2x  4

x→2

x→2

x→2

x→2

 lim f x does not exist. x→2

lim f x  lim  x2  4x  1  3

Therefore, f has a nonremovable discontinuity at x  2.

50. f x 

csc x , 6 2,

1. f 1  csc

 2 6

2. lim f x  2 x→1

3. f 1  lim f x x→1

x  3 x  3

≤ 2 > 2



csc x , 6 2,

f 5  csc

1 ≤ x ≤ 5 x < 1 or x > 5

has possible discontinuities at x  1, x  5.

5 2 6

lim f x  2

x→5

f 5  lim f x x→5

f is continuous at x  1 and x  5, therefore, f is continuous for all real x.

Section 1.4

x has nonremovable discontinuities at each 2 2k  1, k is an integer.

58. lim g(x  lim

20

x→0

x→0

lim fx  0

x→0

4 sin x 4 x

lim gx  lim a  2x  a

x→0

f is not continuous at x  4

x→0

−8

x→0

8

Let a  4. −10

x2  a2 x→a x  a

60. lim gx  lim x→a

 lim x  a  2a x→a

Find a such that 2a  8 ⇒ a  4.

62. f gx 

1 x  1

Nonremovable discontinuity at x  1. Continuous for all x > 1. Because f g is not defined for x < 1, it is better to say that f g is discontinuous from the right at x  1. 66. hx 

64. f gx  sin x2 Continuous for all real x

1 x  1x  2

Nonremovable discontinuity at x  1 and x  2. 2

−3

4

−2

68. f x 

cos x  1 , x < 0

5x, x

lim f x  lim

x→0

x→0

3

x ≥ 0 −7

f 0  50  0

cos x  1 0 x

2

−3

lim f x  lim 5x  0

x→0

x→0

Therefore, lim f x  0  f 0 and f is continuous on the entire real line. (x  0 was the only possible discontinuity.) x→0

70. f x  xx  3 Continuous on 3, 

317

54. f x  3  x has nonremovable discontinuities at each integer k.

52. f x  tan

56. lim f x  0

Continuity and One-Sided Limits

72. f x 

x1 x

Continuous on 0, 

318

Chapter 1

74. f x 

Limits and Their Properties

x3  8 x2

76. f x  x3  3x  2 is continuous on 0, 1. f 0  2 and f 1  2

14

By the Intermediate Value Theorem, f x  0 for at least one value of c between 0 and 1. −4

4 0

The graph appears to be continuous on the interval 4, 4. Since f 2 is not defined, we know that f has a discontinuity at x  2. This discontinuity is removable so it does not show up on the graph.

78. f x 

4 x  tan is continuous on 1, 3. x 8

f 1  4  tan

3  4 < 0 and f 3    tan > 0. 8 3 8

By the Intermediate Value Theorem, f 1  0 for at least one value of c between 1 and 3.

82. h   1   3 tan

80. f x  x3  3x  2 f x is continuous on 0, 1. f 0  2 and f 1  2 By the Intermediate Value Theorem, f x  0 for at least one value of c between 0 and 1. Using a graphing utility, we find that x  0.5961. 84. f x  x2  6x  8

h is continuous on 0, 1.

f is continuous on 0, 3.

h0  1 > 0 and h1  2.67 < 0.

f 0  8 and f 3  1

By the Intermediate Value Theorem, h   0 for at least one value between 0 and 1. Using a graphing utility, we find that  0.4503.

1 < 0 < 8 The Intermediate Value Theorem applies. x2  6x  8  0

x  2x  4  0 x  2 or x  4 c  2 (x  4 is not in the interval.) Thus, f 2  0.

86. f x 

x2  x x1

The Intermediate Value Theorem applies.

f is continuous on 2 , 4. The nonremovable discontinuity, x  1, lies outside the interval. 5

f



5 35 20  and f 4  2 6 3

20 35 < 6 < 6 3

x2  x 6 x1 x2  x  6x  6 x2  5x  6  0

x  2x  3  0 x  2 or x  3 c  3 (x  2 is not in the interval.) Thus, f 3  6.

Section 1.4 88. A discontinuity at x  c is removable if you can define (or redefine) the function at x  c in such a way that the new function is continuous at x  c. Answers will vary. (a) f x 

x  2

Continuity and One-Sided Limits

1, 0, (c) f x  1, 0,

x2 sinx  2 (b) f x  x2

319

if x ≥ 2 if 2 < x < 2 if x  2 if x < 2

y 3 2 1 −3

−2

−1

x −1

1

2

3

−2 −3

90. If f and g are continuous for all real x, then so is f  g (Theorem 1.11, part 2). However, fg might not be continuous if gx  0. For example, let f x  x and gx  x2  1. Then f and g are continuous for all real x, but fg is not continuous at x  ± 1.

1.04, 92. C  1.04  0.36t  1, 1.04  0.36t  2,

0 < t ≤ 2 t > 2, t is not an integer t > 2, t is an integer

You can also write C as C

Nonremovable discontinuity at each integer greater than 2.

1.04, 1.04  0.362  t,

0 < t ≤ 2 . t > 2

C 4 3 2 1 t 1

2

3

4

94. Let st be the position function for the run up to the campsite. s0  0 (t  0 corresponds to 8:00 A.M., s20  k (distance to campsite)). Let rt be the position function for the run back down the mountain: r0  k, r10  0. Let f t  st  rt. When t  0 (8:00 A.M.),

f 0  s0  r0  0  k < 0.

When t  10 (8:10 A.M.), f 10  s10  r10 > 0. Since f 0 < 0 and f 10 > 0, then there must be a value t in the interval 0, 10 such that f t  0. If f t  0, then st  rt  0, which gives us st  rt. Therefore, at some time t, where 0 ≤ t ≤ 10, the position functions for the run up and the run down are equal. 96. Suppose there exists x1 in a, b such that f x1 > 0 and there exists x2 in a, b such that f x2 < 0. Then by the Intermediate Value Theorem, f x must equal zero for some value of x in x1, x2 (or x2, x1 if x2 < x1). Thus, f would have a zero in a, b, which is a contradiction. Therefore, f x > 0 for all x in a, b or f x < 0 for all x in a, b. 98. If x  0, then f 0  0 and lim f x  0. Hence, f is x→0 continuous at x  0. If x  0, then lim f t  0 for x rational, whereas t→x

lim f t  lim kt  kx  0 for x irrational. Hence, f is not

t →x

t →x

continuous for all x  0.

100. True 1. f c  L is defined. 2. lim f x  L exists. x→c

3. f c  lim f x x→c

All of the conditions for continuity are met.

320

Chapter 1

Limits and Their Properties

102. False; a rational function can be written as PxQx where P and Q are polynomials of degree m and n, respectively. It can have, at most, n discontinuities.

104. (a)

S 60 50 40 30 20 10 t 5

10

15 20 25 30

(b) There appears to be a limiting speed and a possible cause is air resistance. 106. Let y be a real number. If y  0, then x  0. If y > 0, then let 0 < x0 < 2 such that M  tan x0 > y (this is possible since the tangent function increases without bound on 0, 2). By the Intermediate Value Theorem, f x  tan x is continuous on 0, x0 and 0 < y < M, which implies that there exists x between 0 and x0 such that tan x  y. The argument is similar if y < 0. 108. 1. f c is defined. 2. lim f x  lim f c   x  f c exists. x→0

x→c

Let x  c   x. As x → c,  x → 0 3. lim f x  f c. x→c

Therefore, f is continuous at x  c. 110. Define f x  f2x  f1x. Since f1 and f2 are continuous on a, b, so is f. f a  f2a  f1a > 0 and

f b  f2b  f1b < 0.

By the Intermediate Value Theorem, there exists c in a, b such that f c  0. f c  f2c  f1c  0 ⇒ f1c  f2c

Section 1.5 2.

Infinite Limits

1  x2  1   lim x→2 x  2 lim

4.

x→2

6. f x  x

x  4

lim sec

x   4

x→2

x x2  9 3.5

f x 1.077

3.1

3.01

3.001

2.999

2.99

2.9

2.5

5.082 50.08

500.1

499.9

49.92

4.915

0.9091

lim f x   

x→3

lim f x  

x→3

lim sec

x→2

Section 1.5

8. f x  sec

321

x 6

3.5

x

Infinite Limits

f x 3.864

3.1

3.01

19.11

191.0

3.001 2.999 2.99 2.9

2.5

1910

3.864

1910

191.0

19.11

lim f x   

x→3

lim f x  

x→3

10. lim x→2

lim

x→2

4  x  23 

12. lim x→0

2x 2x  lim 2  x→0 x 1  x x 1  x 2

Therefore, x  0 is a vertical asymptote.

4   x  23

lim

2x  x21  x 

lim

2x   x21  x

x→1

Therefore, x  2 is a vertical asymptote.

x→1

Therefore, x  1 is a vertical asymptote.

14. No vertical asymptote since the denominator is never zero.

16.

lim hs    and lim  hs  .

s→5

s→5

Therefore, s  5 is a vertical asymptote. lim hs    and lim hs  .

s→5

s→5

Therefore, s  5 is a vertical asymptote.

18. f x  sec x  x

1 has vertical asymptotes at cos x

2n  1 , n any integer. 2

20. gx 

12x3  x2  4x 1 xx2  2x  8  3x2  6x  24 6 x2  2x  8

1  x, 6 x  2, 4 No vertical asymptotes. The graph has holes at x  2 and x  4.

22. f x 

x

x3

4x2  x  6 4x  3x  2 4   , x  3, 2  2x2  9x  18 xx  2x2  9 xx  3

Vertical asymptotes at x  0 and x  3. The graph has holes at x  3 and x  2.

24. hx 

x  2x  2 x2  4  x3  2x2  x  2 x  2x2  1

has no vertical asymptote since lim hx  lim

x→2

x→2

4 x2  . x2  1 5

26. ht 

tt  2 t  ,t2 t  2t  2t 2  4 t  2t 2  4

Vertical asymptote at t  2. The graph has a hole at t  2.

322

Chapter 1

28. g  

Limits and Their Properties

tan sin has vertical asymptotes at  cos



x2  6x  7  lim x  7  8 x→1 x→1 x1

30. lim

2n  1    n, n any integer. 2 2

2 −3

3

There is no vertical asymptote at  0 since lim

→0

tan  1.

−12

Removable discontinuity at x  1

sinx  1 1 x1

32. lim

x→1

2

34. lim x→1

Removable discontinuity at x  1

−3

2x   1x

3

−2

36. lim x→4

40. lim

x→3

44.

48.

x2

x2 1   16 2

38.

x2 1  x2 9

lim

x→ 2

lim

x→ 12



lim

x→12



6x2  x  1 3x  1 5  lim  4x2  4x  3 x→12 2x  3 8



42. lim x2  x→0

2  cos x 

46. lim

x→0

x2 tan  x   and

lim

x→ 12



x2 tan  x   .

Therefore, lim x2 tan  x does not exist. x→ 12



1  x

x  2  lim x  2tan x  0 x→0 cot x

50. f x 

x2

x3  1 x1

lim f x  lim x  1  0

x→1

x→1

4

−8

8

−4

52. f x  sec

x 6

54. The line x  c is a vertical asymptote if the graph of f approaches ±  as x approaches c.

lim f x   

x→3

6

−9

9

−6

56. No. For example, f x 

1 has no x2  1

58. P 

vertical asymptote. lim

V→0

k V k  k   (In this case we know that k > 0.) V

Section 1.5

 200  ftsec 6 3  (b) r  50 sec2  200 ftsec 3

60. (a) r  50 sec2

(c)

lim

→ 2

62. m 

Total distance Total time

50 

2d dx  dy

50 

2xy yx

m0

lim m  lim

v→c

(b)

v→c

m0 1  v2c2



x

30

40

50

60

y

150

66.667

50

42.857

(c) lim x→25

25x  x  25 

As x gets close to 25 mph, y becomes larger and larger.

50y  50x  2xy 50x  2xy  50y 50x  2yx  25 25x y x  25 Domain: x > 25 1 1 1 1 66. (a) A  bh  r2  1010 tan   102 2 2 2 2

(b)

(c)

f  

 50 tan  50 Domain:

0.3

0.6

0.9

1.2

1.5

0.47

4.21

18.0

68.6

630.1

0, 2  (d)

100

0

lim A  

→ 2

1.5 0

68. False; for instance, let f x 

70. True

x2  1 . x1

The graph of f has a hole at 1, 2, not a vertical asymptote.

72. Let f x 

1 1 and gx  4, and c  0. x2 x

1 1 2   and lim 4  , but x→0 x x→0 x lim

x1  x1   lim x x 1     0. 2

lim

x→0

2

4

x→0

4

323

1  v2c2

50 sec2   

64. (a) Average speed 

Infinite Limits

74. Given lim f x  , let g x  1. then lim x →c

by Theorem 1.15.

x →c

gx 0 fx

324

Chapter 1

Limits and Their Properties

Review Exercises for Chapter 1 2. Precalculus. L  9  12  3  12  8.25 4.

 0.1

x f x

 0.01

0.358

0.5

 0.001

0.001

0.01

0.1

0.354

0.354

0.353

0.349

0.354

−1

1

lim f x  0.2

x→0

6. gx 

−0.5

3x x2

(b) lim gx  0

(a) lim gx does not exist.

x→0

x→2

Assuming 4 < x < 16, you can choose   5.

8. lim x  9  3. x→9

Let  > 0 be given. We need









x→5





   x  9 <  x  3









x  9 < 5 < x  3 

x  3 <  ⇒ x  3 x  3 <  x  3

10. lim 9  9. Let  > 0 be given.  can be any positive



Hence, for 0 < x  9 <   5, you have

x  3 < 

 f x  L <  







12. lim 3 y  1  3 4  1  9 y→4



number. Hence, for 0 < x  5 < , you have

9  9 <   f x  L <  14. lim t→3

t2  9  lim t  3  6 t→3 t3

16. lim

4  x  2

x→0

x

 lim  lim

x→0

18. lim

s→0

x 1 4  x  2

 11  s   1  lim  11  s   1  11  s   1  s→0

s s  11  s  1  lim

s→0

20. lim

4  x  2

x→0

x→2

11  s  1 1 1  lim s 11  s   1 s→0 1  s 11  s   1   2

x2  4 x  2x  2  lim x3  8 x→2 x  2x2  2x  4  lim

x→2



x2 x2  2x  4

4 1  12 3

22.

lim

x→ 4

4x 44   tan x 1



4  x  2 4  x  2



1 4

Review Exercises for Chapter 1

24. lim

x→0

cos  x  1 cos  cos x  sin  sin x  1  lim x→0 x x  lim

x→0

 cos x x  1 



lim sin 

x→0

sin x x



 0  01  0 3 2 7 26. lim  f x  2gx   4  23   12 x→c

28. f x  (a)

3 x 1  x1

x f x

lim

x→1

(c) lim x→1

1.1

1.01

1.001

0.3228

0.3322

0.3332

3 x 1   0.333 x1

0.3333

3

−3

3 x   1  3 x 3 3 x 2 1  x   

1x 3 3 x  11   x   x2

 lim

1 3 x   3 x2 1 



−3

2



 lim

x→1

2

 Actual limit is  13 .

3 x 3 x 1  1   lim x→1 x1 x1

x→1

(b)

1.0001

1 3

30. st  0 ⇒ 4.9t2  200  0 ⇒ t2  40.816 ⇒ t  6.39 sec When t  6.39, the velocity is approximately lim t→a

sa  st  lim 4.9a  t t→a at  lim 4.96.39  6.39  62.6 msec. t→6.39

32. lim x  1 does not exist. The graph jumps from 2 to 3 x→4

34. lim gx  1  1  2. x→1

at x  4.

36. lim f s  2 s→2

38. f x 

3x2  x  2 , x1 0,



lim f x  lim

x→1

x→1

x 1 x1

3x  x  2 x1 2

 lim 3x  2  5 0 x→1

Removable discontinuity at x  1 Continuous on  , 1  1, 

325

326

Chapter 1

52xx,3,

40. f x 

Limits and Their Properties

x x 1  1  1x 1 lim 1  

x

x ≤ 2 x > 2

42. f x 

lim 5  x  3

x→2

x→0

lim 2x  3  1

Domain:  , 1 , 0, 

x→2

Nonremovable discontinuity at x  2 Continuous on  , 2  2, 

Nonremovable discontinuity at x  0 Continuous on  , 1  0, 

x1 2x  2

44. f x 

46. f x  tan 2x Nonremovable discontinuities when

x1 1  x→1 2x  1 2 lim

x

Removable discontinuity at x  1 Continuous on  , 1  1, 

2n  1 4

Continuous on

2n 4 1, 2n 4 1 for all integers n. 48. lim x  1  2 x→1

lim x  1  4

x→3

Find b and c so that lim x2  bx  c  2 and lim x2  bx  c  4. x→1

x→3

1bc2

Consequently we get Solving simultaneously,

b

and 9  3b  c  4.

 3 and

50. C  9.80  2.50 x  1 , x > 0

c  4. 52. f x  x  1x (a) Domain:  , 0  1, 

 9.80  2.50 x  1

(b) lim f x  0

C has a nonremovable discontinuity at each integer.

x→0

30

(c) lim f x  0 x→1

0

5 0

54. hx 

4x 4  x2

56. f x  csc  x Vertical asymptote at every integer k

Vertical asymptotes at x  2 and x  2

58.

62.

lim

x→ 12

lim 

x→1

66. lim x→0

x  2x  1

x2  2x  1 

x1

sec x 

x

60.

lim

x→1

64. lim x→2

68. lim x→0

x1 1 1   lim x4  1 x→1 x2  1x  1 4 1

3 2  x 4

 

cos2 x  

x

Problem Solving for Chapter 1 tan 2x x

70. f x  (a)

327

 0.1

x f x lim

x→0

 0.01

2.0271

 0.001

2.0003

2.0000

0.001

0.01

0.1

2.0000

2.0003

2.0271

tan 2x 2 x

(b) Yes, define f x 

2, x

tan 2x ,

x0 x0

.

Now f x is continuous at x  0.

Problem Solving for Chapter 1 1 1 x 2. (a) Area PAO  bh  1x  2 2 2

4. (a) Slope 

1 1 y x2 Area PBO  bh  1y   2 2 2 2 (b) ax 

40 4  30 3

(b) Slope  

3 Tangent line: y  4   x  3 4

3 4

x22 Area PBO  x Area PAO x2

3 25 y x 4 4

x

4

2

1

0.1

0.01

Area PAO

2

1

12

120

1200

Area PBO

8

2

12

1200

120,000

ax

4

2

1

110

(c) Let Q  x, y  x, 25  x2 mx 

x3

(d) lim mx  lim x→3

1100

x→3

25  x2  4

x3



25  x2  4 25  x2  4

25  x2  16 x→3 x  3 25  x2  4 

 lim

(c) lim ax  lim x  0 x→0

25  x2  4

x→0

 lim

x→3

 lim

x→3

3  x3  x x  325  x2  4  3  x 25  x2  4



3 6  44 4

This is the slope of the tangent line at P.

6.

a  bx  3

x

 

a  bx  3

x



a  bx  3 a  bx  3

x

x→0

Setting

b 3  3

b 3  bx  3

 3, you obtain b  6.

Thus, a  3 and b  6.



ax tan x  a because lim 1 x→0 tan x x

a2  2  a

bx  lim x→0 x 3  bx  3   lim

x→0

Thus,

Thus, lim

x→0

x→0

Letting a  3 simplifies the numerator.

x→0

x→0

lim f x  lim

a  bx  3 xa  bx  3

3  bx  3

8. lim f x  lim a2  2  a2  2

.

a2  a  2  0

a  2a  1  0 a  1, 2



328

Chapter 1

Limits and Their Properties 1 (a) f 4   4  4

y

10.

f 3 

1 3

3 2

0

f 1  1  1

1 x

−1

1

−1

(b) lim f x  1

(c) f is continuous for all real numbers except

x→1

lim f x  0

x→1

x  0, ± 1, ± 12, ± 13, . . .

lim f x   

x→0

lim f x  

x→0

−2

v2 

12. (a)

192,000  v02  48 r

192,000  v2  v02  48 r r lim r 

v→0

192,000 v  v02  48 192,000 48  v02

Let v0  48  43 feetsec. (b)

v2 

1920  v02  2.17 r

1920  v2  v02  2.17 r r lim r 

v→0

1920 v2  v02  2.17 1920 2.17  v02

Let v0  2.17 misec  1.47 misec. r

(c)

lim r 

v→0

10,600 v2  v02  6.99 10,600 6.99  v02

Let v0  6.99 2.64 misec. Since this is smaller than the escape velocity for earth, the mass is less.

14. Let a  0 and let > 0 be given. There exists 1 > 0 such that if 0 < x  0 < , then f x  L < . Let  1 a . Then for 0 < x  0 <  1 a , you have

















x < a1

ax < 1 f ax  L < .

As a counterexample, let f x  Then lim f x  1  L, x→0

but lim f ax  lim f 0  2. x→0

x→0

12

x0 . x0



C H A P T E R 1 Limits and Their Properties Section 1.1

A Preview of Calculus . . . . . . . . . . . . . . . . . . . . 27

Section 1.2

Finding Limits Graphically and Numerically . . . . . . . . 27

Section 1.3

Evaluating Limits Analytically

Section 1.4

Continuity and One-Sided Limits . . . . . . . . . . . . . . 37

Section 1.5

Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . 42

. . . . . . . . . . . . . . . 31

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

C H A P T E R 1 Limits and Their Properties Section 1.1

A Preview of Calculus

Solutions to Odd-Numbered Exercises 1. Precalculus: 20 ftsec15 seconds  300 feet

3. Calculus required: slope of tangent line at x  2 is rate of change, and equals about 0.16.

5. Precalculus: Area  12 bh  12 53  15 2 sq. units

7. Precalculus: Volume  243  24 cubic units

9. (a)

6

(1, 3) −4

8 −2

(b) The graphs of y2 are approximations to the tangent line to y1 at x  1. (c) The slope is approximately 2. For a better approximation make the list numbers smaller:

0.2, 0.1, 0.01, 0.001 11. (a) D1  5  12  1  52  16  16  5.66 5 5 5 5 5 5 (b) D2  1   2   1   2  3   1   3  4   1   4  1 2

2

2

2

 2.693  1.302  1.083  1.031  6.11 (c) Increase the number of line segments.

Section 1.2 1.

x

1.9

1.99

1.999

2.001

2.01

2.1

f x

0.3448

0.3344

0.3334

0.3332

0.3322

0.3226

lim

x→2

3.

Finding Limits Graphically and Numerically

x2  0.3333 x2  x  2

 0.1

x f x lim

x→0

 0.01

0.2911

 0.001

0.2889

x  3  3

x

 Actual limit is 13 .

 0.2887

0.2887

0.001

0.01

0.1

0.2887

0.2884

0.2863

 Actual limit is 1 23.

27

28

Chapter 1

5.

x

2.9

f x

0.0641

lim

x→3

7.

Limits and Their Properties

2.999

3.001

3.01

3.1

0.0627

0.0625

0.0625

0.0623

0.0610

1x  1  14  0.0625 x3

 0.1

x

2.99

f x

 0.01

0.9983

lim

x→0

 0.001

0.99998

sin x  1.0000 x

 Actual limit is  161 .

1.0000

0.001

0.01

0.1

1.0000

0.99998

0.9983

(Actual limit is 1.) (Make sure you use radian mode.)

11. lim f x  lim 4  x  2

9. lim 4  x  1

x→2

x→3

13. lim

x→2

x  5 does not exist. For values of x to the left of 5, x  5 x  5 equals 1,

x5 whereas for values of x to the right of 5, x  5 x  5 equals 1. x→5



15. lim tan x does not exist since the function increases and x→ 2

17. lim cos1x does not exist since the function oscillates x→0

between 1 and 1 as x approaches 0.

decreases without bound as x approaches 2. 19. Ct  0.75  0.50  t  1 (a)

(b)

3

t

3

3.3

3.4

3.5

3.6

3.7

4

C 1.75

2.25

2.25

2.25

2.25

2.25

2.25

2.5

2.9

3

3.1

3.5

4

1.75

1.75

1.75

2.25

2.25

2.25

lim Ct  2.25

t→3.5

(c)

5

0 0

t

2

C 1.25

lim Ct does not exist. The values of C jump from 1.75 to 2.25 at t  3. t→3



21. You need to find  such that 0 < x  1 <  implies 1 f x  1   1 < 0.1. That is, x





0.1 <

1  1 < 0.1 x

1  0.1 <

1 x

< 1  0.1

9 < 10

1 x

11 < 10

10 > 9

x

>

10 11

10 10 1 > x 1 > 1 9 11 1 1 > x 1 >  . 9 11

So take  

1 . Then 0 < x  1 <  implies 11



1 1 < x1 < 11 11



1 1 < x1 < . 11 9

Using the first series of equivalent inequalities, you obtain

f x  1 



1  1 <  < 0.1. x

Section 1.2 23. lim 3x  2  8  L x→2

3x  2  8

3x  6 3 x  2

< 0.01 < 0.01 < 0.01

0.01  0.0033   3 0.01 Hence, if 0 < x  2 <   , you have 3



0 < x2 <





3x  6 < 0.01

3x  2  8 < 0.01

f x  L < 0.01 3 x  2 < 0.01

27. lim x  3  5

Finding Limits Graphically and Numerically

25. lim x2  3  1  L x→2

x2  3  1

x2  4

x  2x  2

x  2 x  2

< 0.01 < 0.01

If we assume 1 < x < 3, then   0.015  0.002.



Hence, if 0 < x  2 <   0.002, you have 1

x  2

x  2 < 0.01

x2  4 < 0.01

x2  3  1 < 0.01

f x  L < 0.01

 12 x  1  12 4  1  3



 x  1  3 < 

x  2 < 

< 

1 2

< 

Hence, let   .

1 2

1 2

Hence, if 0 < x  2 <   , you have

x2 < 

x  3  5 < 

f x  L < 

x  4

x  4

<  < 2

Hence, let   2.



Hence, if 0 < x  4 <   2, you have

x  4 < 2

x  2

 x  1  3 1 2

1 2

<  < 

f x  L < 

31. lim 3  3

3 33. lim  x0

x→6

x→0

Given  > 0:





x < 

3 x  0 <  Given  > 0: 

33 < 

3 

x

0 < 

< 3  

Hence, any  > 0 will work.

Hence, let   3.

Hence, for any  > 0, you have

Hence for 0 < x  0 <   3, you have

1

x  2 < 0.002  50.01 < x  2 0.01

Given  > 0:

x  3  5

x  2

< 0.01

0.01

x→4

Given  > 0:

< 0.01

x  2 < x  2

29. lim

x→2

f x  L <  33 < 

29



x <

0:

Given  > 0:

x  2  4

 x  2  4

x  2  x  2  x  2

x2  1  2

x2  1

x  1x  1

< 

x  2 < 0

<  < 

Hence,   .





 x  2 < 

 x  2  4 < 

x  2  4 < 

f x  L < 

If we assume 0 < x < 2, then   3.

 Hence for 0 < x  1 <   , you have 3

1

1

x2  1 < 

x2  1  2 < 

f x  2 <  x9

0.5

41. f x 

x4 1 6



x  1 < 3 < x  1 

(because x  20)

x  5  3

lim f x 

< 



x2 < 

x→4

< 

x  1 < x  1

Hence for 0 < x  2 <   , you have

39. f x 

< 

−6

10

x  3

lim f x  6

6

x→9

−0.1667

0

10 0

The domain is 5, 4  4, . 1 The graphing utility does not show the hole at  4, 6 .

The domain is all x ≥ 0 except x  9. The graphing utility does not show the hole at 9, 6.

43. lim f x  25 means that the values of f approach 25 as x gets closer and closer to 8. x→8

45. (i) The values of f approach different numbers as x approaches c from different sides of c:

(ii) The values of f increase without bound as x approaches c:

(iii) The values of f oscillate between two fixed numbers as x approaches c:

y

y

y

6

4

5

3

4

2

3

4 3

2

1

1

x

−4 −3 −2 −1 −1

1

2

3

4

−3 −2 −1 −1

3

4

−3

−4

−4

47. f x  1  x1x lim 1  x1x  e  2.71828

x→0

y 7

3

(0, 2.7183)

2 1 −3 −2 −1 −1

x 1

2

2

5

−2

−3

x

−4 −3 −2

x 2

3

4

5

x

f x

x

f x

0.1

2.867972

0.1

2.593742

0.01

2.731999

0.01

2.704814

0.001

2.719642

0.001

2.716942

0.0001

2.718418

0.0001

2.718146

0.00001

2.718295

0.00001

2.718268

0.000001

2.718283

0.000001

2.718280

3

4

Section 1.3 49. False; f x  sin xx is undefined when x  0. From Exercise 7, we have lim

x→0

51. False; let f x 

sin x  1. x

Evaluating Limits Analytically

31

53. Answers will vary.

x10, 4x, 2

x4 . x4

f 4  10 lim f x  lim x2  4x  0  10

x→4

x→4









55. If lim f x  L1 and lim f x  L2, then for every  > 0, there exists 1 > 0 and 2 > 0 such that x  c < 1 ⇒ f x  L1 <  and x→c

x→c

x  c < 2 ⇒  f x  L2 < . Let  equal the smaller of 1 and 2. Then for x  c L1  L2  L1  f x  f x  L2 ≤ L1  f x   f x  L2 <   . Therefore, L1  L2 < 2. Since  > 0 is arbitrary, it follows that L1  L2.

< , we have

57. lim  f x  L  0 means that for every  > 0 there exists  > 0 such that if x→c





0 < x  c < , then

 f x  L  0

< .





This means the same as f x  L <  when 0 < x  c < .





Thus, lim f x  L. x→c

Section 1.3 1.

Evaluating Limits Analytically (a) lim hx  0

7

x→5

−8

3.

(b) lim hx  6

x→0

π

−π

x→1

13

(a) lim f x  0

4

−7

(b) lim f x 0.524

−4

hx  x2  5x

f x  x cos x 7. lim 2x  1  20  1  1

5. lim x4  24  16 x→2

x→0

9. lim x2  3x  32  33  9  9  0 x→3

11. lim 2x2  4x  1  232  43  1  18  12  1  7 x→3

13. lim

x→2

17. lim

x→7

1 1  x 2 5x x  2

15. lim

x→1



57 7  2



35 9



35 3

x3 13 2 2    x2  4 12  4 5 5

19. lim x  1  3  1  2 x→3

x→ 3

 6

32

Chapter 1

Limits and Their Properties

21. lim x  32  4  32  1

23. (a) lim f x  5  1  4

x→4

x→1

(b) lim gx  43  64 x→4

(c) lim g f x  g f 1  g4  64 x→1

25. (a) lim f x  4  1  3

27. lim sin x  sin x→ 2

x→1

(b) lim gx  3  1  2

 1 2

x→3

(c) lim g f x  g3  2 x→1

29. lim cos x→2

33.

x 2 1  cos  3 3 2

lim sin x  sin

x→56

31. lim sec 2x  sec 0  1 x→0

5 1  6 2

35. lim tan x→3

37. (a) lim 5gx  5 lim gx  53  15 x→c

x→c

(b) lim  f x  gx  lim f x  lim gx  2  3  5 x→c

x→c

x→c

(c) lim  f xgx   lim f x lim gx  23  6 x→c

x→c

x→c

lim f x

f x 2 x→c (d) lim   x→c gx lim gx 3

39. (a) lim  f x3  lim f x3  43  64 x→c

x→c

(b) lim f x  lim f x  4  2 x→c

x→c

(c) lim 3 f x  3 lim f x  34  12 x→c

x→c

(d) lim  f x32  lim f x32  432  8 x→c

x→c

41. f x  2x  1 and gx  x  0.

4x  tan 34  1

2x2  x agree except at x

x→c

43. f x  xx  1 and gx 

x3  x agree except at x  1. x1

(a) lim gx  lim f x  1

(a) lim gx  lim f x  2

(b) lim gx  lim f x  3

(b) lim gx  lim f x  0

x→0

x→1

45. f x 

x→1

x→0

x→1

x→1

x2  1 and gx  x  1 agree except at x  1. x1

lim f x  lim gx  2

x→1

x→1

47. f x  x  2.

x→1

x→1

x3  8 and gx  x2  2x  4 agree except at x2

lim f x  lim gx  12

x→2

3

x→2

12 −3

4

−4

−9

9 0

49. lim

x→5

x5 x5  lim x2  25 x→5 x  5x  5  lim

x→5

1 1  x  5 10

51. lim

x→3

x2  x  6 x  3x  2  lim x→3 x  3x  3 x2  9  lim

x→3

x  2 5 5   x  3 6 6

Section 1.3

53. lim

x  5  5

 lim

x

x→0

 lim

x→0

55. lim

x  5  3

x4

x→4

x  5  5

 lim

x→4

x  5  5 x  5  5

5 x  5  5 1 1  lim   x x  5  5 x→0 x  5  5 2 5 10

x  5  3

x4

x→4

 lim



x

x→0

Evaluating Limits Analytically



x  5  3 x  5  3

1 x  5  9 1 1   lim  x  4 x  5  3 x→4 x  5  3 9  3 6

1 1 2  2  x  1 1 2x 2 22  x 57. lim  lim  lim  x→0 x→0 x→0 22  x x x 4

59. lim

x→0

2x  x  2x 2x  2 x  2x  lim  lim 2  2

x→0

x→0

x

x

x  x2  2x  x  1  x2  2x  1 x2  2x x   x2  2x  2 x  1  x2  2x  1  lim

x→0

x→0

x

x

61. lim

 lim 2x  x  2  2x  2

x→0

63. lim

x  2  2

x→0

x

x

 0.1

f x

0.354  0.01

0.358

2

 0.001

0

0.001

0.01

0.1

0.345

?

0.354

0.353

0.349

0.354

−3

3

−2

Analytically, lim

x  2  2

x

x→0

 lim

x  2  2

x

x→0

 lim

x→0



x  2  2



x  2  2

x22

x x  2  2



 lim

x→0

1 x  2  2



1 2 2



2

4

1 1  2x 2 1 65. lim  x→0 x 4

0.354

3

−5

x

 0.1

 0.01

 0.001

0

0.001

f x

 0.263

 0.251

 0.250

?

 0.250

1 1  2x 2 2  2  x Analytically, lim  lim x→0 x→0 x 22  x

1

0.01

0.1

 0.249

 0.238

x

1

1

−2

1

1

lim  . x  x→0  lim 22  x x x→0 22  x 4

33

34

Chapter 1

67. lim

x→0

Limits and Their Properties

sin x  lim x→0 5x



sin x x

15   1 15  51

69. lim

x→0

1 sin x1  cos x  lim x→0 2 2x2



sin x x



1  cos x x

1  10  0 2



1  cos h2 1  cos h 1  cos h  lim h→0 h→0 h h

sin2 x sin x  lim sin x  1 sin 0  0 x→0 x→0 x x

71. lim

73. lim



 00  0

75. lim

x→ 2

cos x  lim sin x  1 x→ 2 cot x

79. f t 

f t

t→0



sin 3t sin 3t  lim t→0 2t 3t

4

 0.01

2.96

 0.001

2.9996

3



0

0.001

0.01

0.1

?

3

2.9996

2.96

− 2

2 −1

The limit appear to equal 3.



sin 3t sin 3t  lim 3  31  3. t→0 t→0 t 3t

Analytically, lim

81. f x 

32  1 32  23

sin 3t t  0.1

t

77. lim

sin x2 x

1

− 2

x

0.1

0.01 0.001 0 0.001 0.01 0.1

f x

0.099998 0.01 0.001 ? 0.001 0.01 0.099998



2

−1



sin x2 sin x2  lim x  01  0. x→0 x→0 x x2

Analytically, lim

83. lim

h→0

f x  h  f x 2x  h  3  2x  3 2x  2h  3  2x  3 2h  lim  lim  lim 2 h→0 h→0 h→0 h h h h

4 4  4 4 f x  h  f x 4x  4x  h xh x 85. lim  lim  lim  lim  2 h→0 x  hx h→0 h→0 h→0 h h x  hxh x 87. lim 4  x2 ≤ lim f x ≤ lim 4  x2 x→0

x→0

x→0

89. f x  x cos x 4

4 ≤ lim f x ≤ 4 x→0

Therefore, lim f x  4. x→0

− 3 2

3 2

−4

lim x cos x  0

x→0



Section 1.3



91. f x  x sin x

93. f x  x sin

6

2

1 x

−0.5

0.5

−6

−0.5



lim x sin x  0



lim x sin

x→0

95. We say that two functions f and g agree at all but one point (on an open interval) if f x  gx for all x in the interval except for x  c, where c is in the interval.



1 0 x

97. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as 00. That is, lim

x→c

f x gx

for which lim f x  lim gx  0 x→c

99. f x  x, gx  sin x, hx 

When you are “close to” 0 the magnitude of f is approximately equal to the magnitude of g. Thus, g  f 1 when x is “close to” 0.

f h

−5

x→c

sin x x

3

g



5

−3

101. st  16t2  1000 lim t→5

s5  st 600  16t2  1000 16t  5t  5  lim  lim  lim 16t  5  160 ftsec. t→5 t→5 t→5 5t 5t  t  5

Speed  160 ftsec 103. st  4.9t2  150 s3  st 4.932  150  4.9t2  150 4.99  t2  lim  lim t→3 t→3 t→3 3t 3t 3t

lim

 lim

x→3

4.93  t3  t  lim 4.93  t  29.4 msec x→3 3t

105. Let f x  1x and gx  1x. lim f x and lim gx do not exist. x→0

x→0

  lim 0  0

1 1   lim  f x  gx  lim x→0 x→0 x x

x→0









107. Given f x  b, show that for every  > 0 there exists a  > 0 such that f x  b <  whenever x  c < . Since f x  b  b  b  0 <  for any  > 0, then any value of  > 0 will work.



35

0.5

− 2

x→0

Evaluating Limits Analytically

 



109. If b  0, then the property is true because both sides are equal to 0. If b  0, let  > 0 be given. Since lim f x  L,













x→c



there exists  > 0 such that f x  L <  b whenever 0 < x  c < . Hence, wherever 0 < x  c < , we have

b f x  L

< 

or

bf x  bL

which implies that lim bf x  bL. x→c

< 

36

Chapter 1

Limits and Their Properties









M f x ≤ f xgx ≤ M f x

111.





113. False. As x approaches 0 from the left,





lim M f x  ≤ lim f xgx ≤ lim M f x 

x→c

x→c

x→c

x  1. x

2

M0 ≤ lim f xgx ≤ M0 x→c

−3

0 ≤ lim f xgx ≤ 0

3

x→c

Therefore, lim f xgx  0.

−2

x →c

115. True.

117. False. The limit does not exist. 4

−3

6

−2

119. Let f x 



4,4, 

if x ≥ 0 if x < 0

lim f x  lim 4  4.

x→0

x→0

lim f x does not exist since for x < 0, f x  4 and for x ≥ 0, f x  4.

x→0

rational 0,1, ifif xx isis irrational 0, if x is rational g x   x, if x is irrational

121. f x 

lim f x does not exist.

x→0

No matter how “close to” 0 x is, there are still an infinite number of rational and irrational numbers so that lim f x does not x→0 exist. lim gx  0.

x→0

When x is “close to” 0, both parts of the function are “close to” 0.

123. (a) lim

x→0

1  cos x 1  cos x  lim x→0 x2 x2  lim

x→0

1  cos2 x x 1  cos x 2

sin2 x x→0 x2

 lim  1

1  cos x

1  cos x

1

1  cos x

12  21

(b) Thus,

1  cos x 1 1 ⇒ 1  cos x x2 x2 2 2 1 ⇒ cos x 1  x2 for x 0. 2

1 (c) cos0.1 1  0.12  0.995 2 (d) cos0.1 0.9950, which agrees with part (c).

Section 1.4

Section 1.4

3. (a) lim f x  0

(b) lim f x  1

(b) lim f x  0

x→3

x→4

x→3

The function is continuous at x  3.

x→0

x→4

(c) lim f x does not exist

(c) lim f x  0

x→3

x

lim

x→0 

9.

does not exist because

x x2  9

grows

x

1

1

lim  x  x→0  xx  x x 

x→0



x→3

x x2  9

x  1. x

 lim 

x→3

lim

x→3 

without bound as x → 3  .

1 1  x  x  x x  x x  lim  13. lim  x→0 x→0 x xx  x

15. lim f x  lim

The function is NOT continuous at x  4.

The function is NOT continuous at x  3.

x5 1 1  lim  x2  25 x→5 x  5 10

x 

lim f x  2

x→4 

(b) lim f x  2

x→3

(c) lim f x  1

11. lim

5. (a)

x→3

x→3

x→5

37

Continuity and One-Sided Limits

1. (a) lim f x  1

7. lim

Continuity and One-Sided Limits

1 xx  x

1 1  2 xx  0 x

x2 5  2 2

17. lim f x  lim x  1  2 x→1

x→1

lim f x  lim x3  1  2

x→1

x→1

lim f x  2

x→1

21. lim 3x  5  33  5  4

19. lim cot x does not exist since x→ 

x→4

x  3 for 3 < x < 4

lim cot x and lim cot x do not exist.

x→ 

x→ 

23. lim 2  x does not exist x→3

because lim2  x  2  3  5

x→3

and

25. f x 

1 x2  4

27. f x 

has discontinuities at x  2 and x  2 since f 2 and f 2 are not defined.

x x 2

has discontinuities at each integer k since lim f x  lim f x. x→k

x→k

lim 2  x  2  4  6.

x→3

29. gx  25  x2 is continuous on 5, 5 .

31. lim f x  3  lim f x. x→0

x→0

f is continuous on 1, 4 .

33. f x  x2  2x  1 is continuous for all real x.

38

Chapter 1

Limits and Their Properties

35. f x  3x  cos x is continuous for all real x.

37. f x 

x is not continuous at x  0, 1. Since x2  x

x 1 for x  0, x  0 is a removable  x2  x x  1 discontinuity, whereas x  1 is a nonremovable discontinuity.

39. f x 

x is continuous for all real x. x2  1

41. f x 

x2 x  2x  5

has a nonremovable discontinuity at x  5 since lim f x x→5 does not exist, and has a removable discontinuity at x  2 since lim f x  lim

x→2

43. f x 

x  2 has a nonremovable discontinuity at x  2 since

45. f x 

x,x ,

x2

x→2

1 1  . x5 7

lim f x does not exist.

x→2

x ≤ 1 x > 1

2

has a possible discontinuity at x  1. 1. f 1  1 2.

lim f x  lim x  1

x→1

x→1

x→1

x→1

lim f x  1

lim f x  lim x2  1

x→1

3. f 1  lim f x x→1

f is continuous at x  1, therefore, f is continuous for all real x. x  1, 47. f x  2 3  x,

x ≤ 2



1. f 2 

x > 2

2 12 2

lim f x  lim

x→2

2.

has a possible discontinuity at x  2.

x→2

2x  1  2

lim f x  lim 3  x  1

x→2

x→2



lim f x does not exist.

x→2

Therefore, f has a nonremovable discontinuity at x  2.

49. f x 

x tan 4 , x,



x x

1. f 1  1 2. lim f x  1 x→1

3. f 1  lim f x x→1

x < 1 tan 4 ,  ≥ 1 x,



1 < x < 1 has possible discontinuities at x  1, x  1. x ≤ 1 or x ≥ 1

f 1  1 lim f x  1

x→1

f 1  lim f x x→1

f is continuous at x  ± 1, therefore, f is continuous for all real x.

Section 1.4

Continuity and One-Sided Limits

39

51. f x  csc 2x has nonremovable discontinuities at integer multiples of 2.

53. f x  x  1 has nonremovable discontinuities at each integer k.

55. lim f x  0

57. f 2  8

50

x→0

lim f x  0

Find a so that lim ax2  8 ⇒ a 

x→0

x→2

f is not continuous at x  2.

−8

8  2. 22

8 −10

59. Find a and b such that lim  ax  b  a  b  2 and lim ax  b  3a  b  2. x→1

x→3

a  b  2

 3a  b  2  4

4a

a  1 b



2, f x  x  1, 2,

x ≤ 1 1 < x < 3 x ≥ 3

2  1  1

61. f gx  x  12

63. f gx 

Continuous for all real x.

Nonremovable discontinuities at x  ± 1

67. f x 

65. y  x  x Nonremovable discontinuity at each integer 0.5

1 1  x2  5  6 x2  1

2xx  2x,4, 2

x ≤ 3 x > 3

Nonremovable discontinuity at x  3 5

−3

3

−5

7

−1.5 −5

69. f x 

x x2  1

71. f x  sec

Continuous on  , 

73. f x 

sin x x

Continuous on: . . . , 6, 2, 2, 2, 2, 6, 6, 10, . . . 1 75. f x  16x4  x3  3 is continuous on 1, 2 .

f 1  33 16 and f 2  4. By the Intermediate Value Theorem, f c  0 for at least one value of c between 1 and 2.

3

−4

x 4

4

−2

The graph appears to be continuous on the interval 4, 4 . Since f 0 is not defined, we know that f has a discontinuity at x  0. This discontinuity is removable so it does not show up on the graph.

40

Chapter 1

Limits and Their Properties

77. f x  x2  2  cos x is continuous on 0,  . f 0  3 and f   2  1 > 0. By the Intermediate Value Theorem, f c  0 for the least one value of c between 0 and .

81. gt  2 cos t  3t

79. f x  x3  x  1 f x is continuous on 0, 1 . f 0  1 and f 1  1 By the Intermediate Value Theorem, f x  0 for at least one value of c between 0 and 1. Using a graphing utility, we find that x  0.6823. 83. f x  x2  x  1

g is continuous on 0, 1 .

f is continuous on 0, 5 .

g0  2 > 0 and g1  1.9 < 0.

f 0  1 and f 5  29

By the Intermediate Value Theorem, gt  0 for at least one value c between 0 and 1. Using a graphing utility, we find that t  0.5636.

1 < 11 < 29 The Intermediate Value Theorem applies. x2  x  1  11 x2  x  12  0

x  4x  3  0 x  4 or x  3 c  3 (x  4 is not in the interval.) Thus, f 3  11. 85. f x  x3  x2  x  2

87. (a) The limit does not exist at x  c.

f is continuous on 0, 3 .

(b) The function is not defined at x  c.

f 0  2 and f 3  19

(c) The limit exists at x  c, but it is not equal to the value of the function at x  c.

2 < 4 < 19 The Intermediate Value Theorem applies.

(d) The limit does not exist at x  c.

x3  x2  x  2  4 x3  x2  x  6  0

x  2x2  x  3  0 x2 (x2

 x  3 has no real solution.) c2

Thus, f 2  4. 89.

91. The functions agree for integer values of x:

y 5 4 3 2 1 −2 −1

gx  3  x  3  x  3  x f x  3  x  3  x x 1

3 4 5 6 7

−2 −3

However, for non-integer values of x, the functions differ by 1. f x  3  x  gx  1  2  x.

The function is not continuous at x  3 because lim f x  1  0  lim f x.

x→3

for x an integer

x→3

1 1 For example, f 2   3  0  3, g2   3  1  4.

Section 1.4

t 2 2  t

Continuity and One-Sided Limits

N

93. Nt  25 2 t

0

1

1.8

2

3

3.8

Nt

50

25

5

50

25

5

Number of units

50 40 30 20 10

t 2

Discontinuous at every positive even integer.The company replenishes its inventory every two months.

4

6

8

10 12

Time (in months)

95. Let V  43  r 3 be the volume of a sphere of radius r. V1  43   4.19 V5  3 53  523.6 4

Since 4.19 < 275 < 523.6, the Intermediate Value Theorem implies that there is at least one value r between 1 and 5 such that Vr  275. (In fact, r  4.0341.) 97. Let c be any real number. Then lim f x does not exist since there are both rational and x→c

irrational numbers arbitrarily close to c. Therefore, f is not continuous at c. y



1, if x < 0 0, if x  0 99. sgnx  1, if x > 0

4 3 2 1

(a) lim sgnx  1

−4 −3 −2 −1

x→0

x 1

2

3

4

−2

(b) lim sgnx  1

−3

x→0

−4

(c) lim sgnx does not exist. x→0

101. True; if f x  gx, x  c, then lim f x  lim gx and x→c

x→c

103. False; f 1 is not defined and lim f x does not exist. x→1

at least one of these limits (if they exist) does not equal the corresponding function at x  c.

105. (a) f x 

b

0 ≤ x < b b < x ≤ 2b

0

(b) gx 

y

2b



x 2

0 ≤ x ≤ b

b

x 2

b < x ≤ 2b

y

2b

b

x b

b

2b

NOT continuous at x  b.

x b

2b

Continuous on 0, 2b .

41

42

Chapter 1

107. f x 

Limits and Their Properties

x  c2  c

x

, c > 0

Domain: x  c2 ≥ 0 ⇒ x ≥ c2 and x  0, c2, 0  0,  x  c2  c

lim

x

x→0

 lim

x  c2  c

x→0

x



x  c2  c x  c2  c

x  c2  c2 1 1  lim  x→0 xx  c2  c x→0 x  c2  c 2c

 lim

Define f 0  12c to make f continuous at x  0. 109. hx  xx

15

h has nonremovable discontinuities at x  ± 1, ± 2, ± 3, . . . . −3

3 −3

Section 1.5 1.

Infinite Limits





lim 2

x  x2  4

lim 2

x  x2  4

x→2

x→2

3.

lim tan

x   4

lim tan

x  4

x→2

x→2

5. f x 

1 x2  9

x

3.5

3.1

3.01

3.001

2.999

2.99

2.9

2.5

f x

0.308

1.639

16.64

166.6

166.7

16.69

1.695

0.364

lim f x  

x→3

lim f x   

x→3

7. f x 

x2 x2  9

x

3.5

3.1

3.01

3.001

2.999

2.99

2.9

2.5

f x

3.769

15.75

150.8

1501

1499

149.3

14.25

2.273

lim f x  

x→3

lim f x   

x→3

Section 1.5

9. lim x→0

1 1   lim x2  x→0 x2

Therefore, x  0 is a vertical asymptote.

Infinite Limits

43

x2  2  x  2x  1 

11. lim x→2

x2  2   x  2x  1

lim

x→2

Therefore, x  2 is a vertical asymptote. lim 

x2  2  x  2x  1 

lim 

x2  2   x  2x  1

x→1

x→1

Therefore, x  1 is a vertical asymptote.

13.

lim 

x→2

x2

x2 x2   and lim  2   x→2 x  4 4

15. No vertical asymptote since the denominator is never zero.

Therefore, x  2 is a vertical asymptote. lim

x→2

x2 x2    and lim 2  x→2 x  4 x2  4

Therefore, x  2 is a vertical asymptote.

17. f x  tan 2x  x

21.

lim

x→2

lim

x→2

sin 2x has vertical asymptotes at cos 2x

2n  1  n   , n any integer. 4 4 2 x

x  2x  1



x   x  2x  1

Therefore, x  2 is a vertical asymptote. lim

x  x  2x  1 

lim

x   x  2x  1

x→1

x→1



19. lim 1  t→0





4 4     lim 1  2 t→0 t2 t



Therefore, t  0 is a vertical asymptote.

x3  1 x  1x2  x  1  x1 x1

23. f x 

has no vertical asymptote since lim f x  lim x2  x  1  3

x→1

x→1

Therefore, x  1 is a vertical asymptote.

25. f x 

x  5x  3 x3  ,x5 x  5x2  1 x2  1

No vertical asymptotes. The graph has a hole at x  5.

27. st 

t has vertical asymptotes at t  n, n sin t

a nonzero integer. There is no vertical asymptote at t  0 since lim t→0

t  1. sin t

44

Chapter 1

Limits and Their Properties

x2  1  lim x  1  2 x→1 x  1 x→1

29. lim

31.

lim 

x2  1  x1

lim

x2  1   x1

x→1

2

−3

x→1

3

8

−3

3

Vertical asymptote at x  1

−8

−5

Removable discontinuity at x  1

33. lim x→2

37.

x3   x2

lim

x→3

45. lim

x→ 

x→3

x2  2x  3 x1 4  lim   x→3 x  2 x2  x  6 5



41. lim 1  x→0

35. lim



1   x

x2  x x 1  lim 2  x→1 x  1x  1 x→1 x  1 2

39. lim

43. lim x→0

x  lim x sin x  0 csc x x→

x2  x  3x  3 

47.

2

2  sin x 

lim

x→ 12

x sec x   and

lim

x→ 12

x sec x   .

Therefore, lim x sec x does not exist. x→ 12

49. f x 

x2  x  1 x3  1

lim f x  lim

x→1

x→1

51. f x 

1  x1 

1 x2  25

lim f x   

x→5

0.3

3

−8

−4

8

5

−0.3

−3

53. A limit in which f x increases or decreases without bound as x approaches c is called an infinite limit.  is not a number. Rather, the symbol

55. One answer is f x 

x3 x3  . x  6x  2 x2  4x  12

lim f x  

x→c

says how the limit fails to exist. 57.

k , 0 < r < 1. Assume k  0. 1r k lim S  lim   (or   if k < 0) r→1 r→1 1  r

59. S 

y 3 2 1 −2

x

−1

1 −1 −2

3



Section 1.5

61. C 

528x , 0 ≤ x < 100 100  x

63. (a) r 

(a) C25  $176 million

(b) r 

(b) C50  $528 million (c) C75  $1584 million

x

x→25

f x

1

0.5

0.2

0.1

0.01

0.001

0.0001

0.1585

0.0411

0.0067

0.0017

0

0

0

0.5

lim

x→0 − 1.5

x  sin x 0 x

1.5

− 0.25

(b)

x f x

1

0.5

0.2

0.1

0.01

0.001

0.0001

0.1585

0.0823

0.0333

0.0167

0.0017

0

0

0.001

0.0001

0.1667 0.1667

0.1667

0.25

− 1.5

lim

1.5

x→0

x  sin x 0 x2

− 0.25

(c)

x f x

1

0.5

0.2

0.1

0.1585

0.1646

0.1663

0.1666

0.01

0.25

− 1.5

lim

1.5

x→0

x  sin x  0.1167 16 x3

− 0.25

(d)

x f x

1

0.5

0.2

0.1

0.1585

0.3292

0.8317

1.6658

0.01

0.001

0.0001

16.67

166.7

1667.0

1.5

− 1.5

1.5

− 1.5

For n ≥ 3, lim x→0

x  sin x  . xn

lim

x→0

x  sin x  x4



7 ftsec 12

215 3  ftsec 2 625  225

(c) lim

528   Thus, it is not possible. (d) lim  x→100 100  x 65. (a)

27 625  49

2x 625  x2



Infinite Limits

45

46

Chapter 1

Limits and Their Properties (b) The direction of rotation is reversed.

67. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes 17002  850 revolutions per minute.

(d)

(c) 220 cot   210 cot : straight sections. The angle subtended in each circle is

 2  2  2



(e)

   2 .



0.3

0.6

0.9

1.2

1.5

L

306.2

217.9

195.9

189.6

188.5

450

Thus, the length of the belt around the pulleys is 20  2   10  2   30  2 .

0

Total length  60 cot  30  2 

(f)

0, 2

Domain:

 2

0

lim

→ 2

L  60 188.5

(All the belts are around pulleys.) (g) lim L   →0

71. False; let

69. False; for instance, let f x 

1, f x  x 3,



x2  1 or x1

x0 x  0.

The graph of f has a vertical asymptote at x  0, but f 0  3.

x gx  2 . x 1 73. Given lim f x   and lim gx  L: x→c

x→c

(2) Product:









If L > 0, then for  L2 > 0 there exists 1 > 0 such that gx  L < L2 whenever 0 < x  c < 1. Thus, L2 < gx < 3L2. Since lim f x   then for M > 0, there exists 2 > 0 such that f x > M2L whenever

x  c

x→c





< 2. Let be the smaller of 1 and 2. Then for 0 < x  c < , we have f xgx > M2LL2  M.

Therefore lim f xgx  . The proof is similar for L < 0. x→c

(3) Quotient: Let > 0 be given.









There exists 1 > 0 such that f x > 3L2 whenever 0 < x  c < 1 and there exists 2 > 0 such that gx  L <





L2 whenever 0 < x  c < 2. This inequality gives us L2 < gx < 3L2. Let be the smaller of 1 and 2. Then for 0 <

x  c



gx f x

<

3L2  . 3L2

Therefore, lim

x→c

75. Given lim

x→c

< , we have

gx  0. f x

1  0. f x

Suppose lim f x exists and equals L. Then, x→c

lim 1 1 1  x→c   0. x→c f x lim f x L lim

x→c

This is not possible. Thus, lim f x does not exist. x→c

Review Exercises for Chapter 1

Review Exercises for Chapter 1 1. Calculus required. Using a graphing utility, you can estimate the length to be 8.3. Or, the length is slightly longer than the distance between the two points, 8.25. 3.

x

0.1

0.01 0.001

f x

0.26

0.25

0.250

1

0.001

0.01

0.1

0.2499

0.249

0.24

−1

lim f x  0.25

x→0

5. hx 

1

−1

x2  2x x

7. lim 3  x  3  1  2

(a) lim hx  2

x→1

x→0

Let  > 0 be given. Choose   . Then for

(b) lim hx  3





0 < x  1 <   , you have

x→1

x  1 <  1  x <  3  x  2 <   f x  L <  9. lim x2  3  1 x→2







 









1

 x  2.

Let  > 0 be given. We need x2  3  1 <  ⇒ x2  4  x  2x  2 <  ⇒ x  2 < Assuming, 1 < x < 3, you can choose   5. Hence, for 0 < x  2 <   5 you have



1

x  2 < 5 < x  2

x  2x  2 <  x2  4 <  x2  3  1 <   f x  L < 

11. lim t  2  4  2  6  2.45

13. lim

t→2

t→4

15. lim

x→4

x  2

x4

 lim

x→4

 lim

x→4

x  2

17. lim

x  2x  2 1 x  2



1 4  2

x→0



1 4

x3  125 x  5x2  5x  25  lim x→5 x  5 x→5 x5

19. lim

 lim x2  5x  25 x→5

 75

21. lim

x→0

1 t2 1  lim  t2  4 t→2 t  2 4

1x  1  1 1  x  1  lim x→0 x xx  1 1  1  lim x→0 x  1

1  cos x x  lim x→0 sin x sin x



1  xcos x  10  0

47

48

Chapter 1

23. lim

x→0

Limits and Their Properties

sin 6  x  12 sin 6 cos x  cos 6 sin x  12  lim x→0 x x 1 2

 lim

x→0

0

3 sin x cos x  1  lim  x x→0 2 x



3

2

1 

3

2

25. lim  f x  gx   4 3    2 3

2

1

x→c

27. f x  (a)

2x  1  3

x1

x

1.1

1.01

1.001

1.0001

f x

0.5680

0.5764

0.5773

0.5773

lim

2x  1  3

x1

x→1

(c) lim

2x  1  3

x→1

x1

 Actual limit is 33.

 0.577  lim

2x  1  3

x1

x→1



 lim

2 2x  1  3



2 23



sa  st 4.942  200  4.9t2  200  lim t→a t→4 at 4t t→4

2 0

1 3  3 3

29. lim

 lim

−1

2x  1  3

2x  1  3 x  1 2x  1  3 

x→1

2

2x  1  3

 lim x→1

(b)

31. lim x→3

x  3  x3

lim

x→3 

 x  3  1 x3

4.9t  4t  4 4t

 lim 4.9t  4  39.2 msec t→4

33. lim f x  0 x→2

35. lim ht does not exist because lim ht  1  1  2 and t→1

t→1

lim ht  121  1  1.

t→1

37. f x  x  3 lim x  3  k  3 where k is an integer.

x→k

lim x  3  k  2 where k is an integer.

x→k

Nonremovable discontinuity at each integer k Continuous on k, k  1 for all integers k 41. f x  lim

x→2

1 x  22

1  x  22

Nonremovable discontinuity at x  2 Continuous on  , 2  2, 

39. f x 

3x2  x  2 3x  2x  1  x1 x1

lim f x  lim 3x  2  5

x→1

x→1

Removable discontinuity at x  1 Continuous on  , 1  1,  43. f x 

3 x1

lim f x  

x→1

lim f x 

x→1

Nonremovable discontinuity at x  1 Continuous on  , 1  1, 

Problem Solving for Chapter 1 45. f x  csc

x 2

49

47. f 2  5 Find c so that lim cx  6  5.

Nonremovable discontinuities at each even integer. Continuous on

x→2

c2  6  5

2k, 2k  2

2c  1

for all integers k. c

x2  4 x2  x  2 x2 x2

51. f x 

49. f is continuous on 1, 2. f 1  1 < 0 and f 2  13 > 0. Therefore by the Intermediate Value Theorem, there is at least one value c in 1, 2 such that 2c3  3  0.

1 2









(a) lim f x  4 x→2

(b) lim f x  4 x→2

(c) lim f x does not exist. x→2

53. gx  1 

2 x

55. f x 

Vertical asymptote at x  10

Vertical asymptote at x  0

57.

lim

x→2

2x2  x  1   x2

61. lim

x2  2x  1   x1

65. lim

sin 4x 4 sin 4x  lim x→0 5x 5 4x

69. C 

80,000p , 0 ≤ 0 < 100 100  p

x→1

x→0



8 x  102

59.

lim

x→1



x1 1 1  lim  x3  1 x→1 x2  x  1 3

63. lim x  x→0

  54

67. lim x→0

(a) C15  $14,117.65

(b) C50  $80.000

(c) C90  $720,000

(d)

lim

p→100



1   x3

csc 2x 1  lim  x →0 x sin 2x x

80,000p  100  p 

Problem Solving for Chapter 1 1. (a) Perimeter PAO  x2  y  12  x2  y2  1 

x2



x2

 1 

Perimeter PBO  x  1  2

2

y2



x2

x2





x4

y2

1

1

 x  12  x4  x2  x4  1

(c) lim r x  x→0

101 2  1 101 2

(b) rx 

x2  x2  12  x2  x4  1 x  12  x4  x2  x4  1

x

4

2

1

0.1

0.01

Perimeter PAO

33.02

9.08

3.41

2.10

2.01

Perimeter PBO

33.77

9.60

3.41

2.00

2.00

rx

0.98

0.95

1

1.05

1.005

50

Chapter 1

Limits and Their Properties

3. (a) There are 6 triangles, each with a central angle of 60   3. Hence,

5. (a) Slope  

12bh  6 121 sin 3

Area hexagon  6

(b) Slope of tangent line is

3 3  2.598. 2



y  12  h = sin θ

h = sin 60°

y

1

1

mx  Error:  

3 3  0.5435. 2

12bh  n 121 sin 2n  n sin 22 n.

An

12

2.598

3

24

48

3.106

An 

12  169  x2 12  169  x2

 lim

x2  25 x  512  169  x2

 lim

x  5 12  169  x2

3.139 

Letting x  2 n,



144  169  x2 x  512  169  x2

x→5

(d) As n gets larger and larger, 2 n approaches 0.

12  169  x2 x5

 lim

x→5

96

3.133

x→5

x→5

An  n

6

5 169 x Tangent line 12 12

(d) lim mx  lim

(b) There are n triangles, each with central angle of   2 n. Hence,

n

5 x  5 12

 169  x2  12 x5

x→5

(c)

5 . 12

(c) Q  x, y  x, 169  x2 

θ

60°

12 5

5 10  12  12 12

This is the same slope as part (b).

sin2 n sin2 n sin x    2 n 2 n x

which approaches 1  .

7. (a) 3  x1 3 ≥ 0

(b)

(c)

0.5

x1 3 ≥ 3



x ≥ 27

− 30

Domain: x ≥ 27, x 1 (d) lim f x  lim x→1

12 − 0.1

3  x1 3  2

x1

x→1



3  x1 3  2 3  x1 3  2

3  x1 3  4 x→1 x  1 3  x1 3  2 

 lim  lim



x→1 x1 3

 lim

x→1



 1

x2 3

x1 3  1  x1 3  1 3  x1 3  2

1 x2 3  x1 3  1 3  x1 3  2

1 1  1  1  12  2 12

9. (a) lim f x  3: g1, g4 x→2

(b) f continuous at 2: g1 (c) lim f x  3: g1, g3, g4 x→2

lim f x 

x→27

3  271 3  2

27  1

2 1   0.0714 28 14

Problem Solving for Chapter 1 11.

y

13. (a)

y

4 3

2

2 1 −4 −3 −2 −1

x 1

2

3

4

1

−2 −3

x a

−4

(a)

f 1  1  1  1  1  0

(b) (i) lim Pa, bx  1 x→a

f 0  0

(ii) lim Pa, bx  0

f 12   0  1  1

(iii) lim Pa, bx  0

f 2.7  3  2  1 (b)

b

lim f x  1

x→1

lim f x  1

x→1

lim f x  1

x→1 2

(c) f is continuous for all real numbers except x  0, ± 1, ± 2, ± 3, . . .

x→a

x→b

(iv) lim Pa, bx  1 x→b

(c) Pa, b is continuous for all positive real numbers except x  a, b. (d) The area under the graph of u, and above the x-axis, is 1.

51

C H A P T E R 2 Differentiation Section 2.1

The Derivative and the Tangent Line Problem . . . 53

Section 2.2

Basic Differentiation Rules and Rates of Change . 60

Section 2.3

The Product and Quotient Rules and Higher-Order Derivatives . . . . . . . . . . . . . . 67

Section 2.4

The Chain Rule . . . . . . . . . . . . . . . . . . . 73

Section 2.5

Implicit Differentiation . . . . . . . . . . . . . . . 79

Section 2.6

Related Rates . . . . . . . . . . . . . . . . . . . . 85

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . 92

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C H A P T E R Differentiation Section 2.1

2

The Derivative and the Tangent Line Problem

Solutions to Odd-Numbered Exercises

1. (a) m  0

(c) y 

3. (a), (b)

(b) m  3 y

f )4) 4

f )1) )x 1

f )1)

1)

x



1

y

f 4  f 1 x  1  f 1) 41 3 x  1  2 3

 1x  1  2

6

f )4)

5

x1

5 )4, 5)

4

f )4)

f )1)

3

3 2

f )1) )1, 2)

2

1

x 1

5. f x  3  2x is a line. Slope  2

2

3

4

5

6

7. Slope at 1, 3  lim

x→0

g1  x  g1 x

1  x2  4  3 x→0 x

 lim

 lim

x→0

1  2x  x2  1 x

 lim 2  2x  2 x→0

9. Slope at 0, 0  lim

t→0

f 0  t  f 0 t

3t  t2  0 t→0 t

 lim

 lim 3  t  3 t→0

11. f x  3 f x  lim

x→0

 lim

x→0

f x  x  f x x 33 x

 lim 0  0 x→0

13. f x  5x fx  lim

x→0

 lim

x→0

15. hs  3  f x  x  f x x 5x  x  5x x

 lim 5  5 x→0

hs  lim

2 s 3

s→0

hs  s  hs s



2 2 3  s  s  3  s 3 3  lim s→0 s



2 s 3 2   lim s→0 s 3

53

54

Chapter 2

Differentiation

17. f x  2x2  x  1 f x  x  f x x

fx  lim

x→0

 lim

x→0

2x  x2  x  x  1  2x2  x  1 x

2x2  4xx  2x2  x  x  1  2x2  x  1 x→0 x

 lim

4xx  2x2  x  lim 4x  2x  1  4x  1 x→0 x→0 x

 lim

19. f x  x3  12x f x  x  f x x

fx  lim

x→0

 lim

x→0

x  x3  12x  x  x3  12x x

x3  3x2x  3xx2  x3  12x  12x  x3  12x x→0 x

 lim

3x2x  3xx2  x3  12x x→0 x

 lim

 lim 3x2  3xx  x2  12  3x2  12 x→0

21. f x 

1 x1

fx  lim

x→0

f x  x  f x x

1 1  x  x  1 x  1  lim x→0 x  lim

x  1  x  x  1 xx  x  1x  1

 lim

x xx  x  1x  1

 lim

1 x  x  1x  1

x→0

x→0

x→0



1 x  12

23. f x  x  1 fx  lim

x→0

 lim

x→0

 lim

x→0

 lim

x→0



f x  x  f x x x  x  1 

x

x  1



x  x  1  x  1

xx  x  1  x  1 1 x  x  1  x  1

1 1  x  1  x  1 2x  1

x  x  1  x  1 x  x  1  x  1



Section 2.1

25. (a) f x  x2  1 fx  lim

x→0

The Derivative and the Tangent Line Problem

17. (b)

8

f x  x  f x x

(2, 5) −5

x  x2  1  x2  1  lim x→0 x

5 −2

2xx  x2 x→0 x

 lim

 lim 2x  x  2x x→0

At 2, 5, the slope of the tangent line is m  22  4. The equation of the tangent line is y  5  4x  2 y  5  4x  8 y  4x  3. 27. (a) f x  x3 fx  lim

x→0

18. (b)

10

(2, 8)

f x  x  f x x

−5

5

x  x3  x3  lim x→0 x

−4

3x2x  3xx2  x3 x→0 x

 lim

 lim 3x2  3xx  x2  3x2 x→0

At 2, 8, the slope of the tangent is m  322  12. The equation of the tangent line is y  8  12x  2 y  12x  16. 29. (a) f x  x fx  lim

x→0

 lim

18. (b) f x  x  f x x x  x  x

x

x→0

 lim

x→0

 lim

x→0



(1, 1)

x  x  x x  x  x

x  x  x x x  x  x 1 x  x  x



1 2x

At 1, 1, the slope of the tangent line is m

1 1  . 21 2

The equation of the tangent line is y1 y

1 x  1 2 1 1 x . 2 2

3

−1

5 −1

55

56

Chapter 2

31. (a) f x 

Differentiation

(b)

4 x

(4, 5)

f x  x  f x fx  lim x→0 x

 lim

x  x 

x→0

− 12



4 4  x x  x x x

xx  xx  x  4x  x 2x  x  4x  x xxx  x

 lim

x3  2x 2x  xx2  x3  x 2x  4x xxx  x

x→0

12

−6



 lim

x→0

10

x2x  xx2  4x x→0 xxx  x

 lim

x2  xx 4 x→0 xx  x

 lim 

x2  4 4 1 2 x2 x

At 4, 5, the slope of the tangent line is m1

4 3  16 4

The equation of the tangent line is 3 y  5  x  4 4 3 y x2 4 33. From Exercise 27 we know that fx  3x2. Since the slope of the given line is 3, we have

fx 

3x2  3 x  ± 1.

1 . 2xx

Since the slope of the given line is  12 , we have

Therefore, at the points 1, 1 and 1, 1 the tangent lines are parallel to 3x  y  1  0. These lines have equations y  1  3x  1

35. Using the limit definition of derivative,

and

y  3x  2

y  1  3x  1 y  3x  2.



1 1  2xx 2 x  1.

Therefore, at the point 1, 1 the tangent line is parallel to x  2y  6  0. The equation of this line is 1 y  1   x  1 2 1 1 y1 x 2 2 1 3 y x . 2 2

37. g5  2 because the tangent line passes through 5, 2 g5 

20 2 1   5  9 4 2

39. f x  x ⇒ fx  1

b

Section 2.1

The Derivative and the Tangent Line Problem

43.

41. f x  x ⇒ fx matches (a)

57

y 4

decreasing slope as x → 

3 2 1 −4 −3 −2 −1 −1

x 1

2

3

4

−2 −3 −4

Answers will vary. Sample answer: y  x 45. (a) If fc  3 and f is odd, then fc  fc  3 (b) If fc  3 and f is even, then fc  f c  3 47. Let x0, y0 be a point of tangency on the graph of f. By the limit definition for the derivative, fx  4  2x. The slope of the y line through 2, 5 and x0, y0 equals the derivative of f at x0: 7

5  y0  4  2x0 2  x0

6

(2, 5)

5 4

5  y0  2  x04  2x0

3 2

5  4x0  x02  8  8x0  2x02

(3, 3) (1, 3)

1 x

−2

0  x0  4x0  3 2

1

2

3

6

0  x0  1x0  3 ⇒ x0  1, 3 Therefore, the points of tangency are 1, 3 and 3, 3, and the corresponding slopes are 2 and 2. The equations of the tangent lines are y  5  2x  2

y  5  2x  2

y  2x  1

y  2x  9

49. (a) g0  3 (b) g3  0 (c) Because g1   3 , g is decreasing (falling) at x  1. 8

(d) Because g4  3 , g is increasing (rising) at x  4. 7

(e) Because g4 and g6 are both positive, g6 is greater than g4, and g6  g4 > 0. (f) No, it is not possible. All you can say is that g is decreasing (falling) at x  2. 1 51. f x  4 x3

2

By the limit definition of the derivative we have fx 

3 2 4x . −2

2

1.5

1

0.5

0

0.5

1

1.5

2

f x

2

 27 32

 14

1  32

0

1 32

1 4

27 32

2

fx

3

27 16

3 4

3 16

0

3 16

3 4

27 16

3

x

2

−2

58

Chapter 2

Differentiation

55. f 2  24  2  4, f 2.1  2.14  2.1  3.99

f x  0.01  f x 0.01

53. gx 

 2x  0.01  x  0.012  2x  x2  100

f2

3.99  4  0.1 Exact: f2  0 2.1  2

3

g f −2

4 −1

The graph of gx is approximately the graph of fx. 57. f x 

1 x

and fx 

1 . 2x3 2

5

As x → , f is nearly horizontal and thus f 0.

f −2

5

f′ −5

59. f x  4  x  32 Sx x  

f 2  x  f 2 x  2  f 2 x 4  2  x  32  3 1  x  12 x  2  3  x  2  3  x  2x  2  3 x x 1: Sx  x  2  3  x  1

(a) x 

5

S 0.1



3 3 x  2  3  x x  0.5: Sx  2 2 x  0.1: Sx 

 

19 19 4 x  2  3  x  10 10 5

S1 −2

7

S 0.5 −1

(b) As x → 0, the line approaches the tangent line to f at 2, 3. 61. f x  x2  1, c  2 f x  f 2 x2  1  3 x  2x  2  lim  lim  lim x  2  4 x→2 x →2 x→2 x2 x2 x2

f2  lim

x→2

63. f x  x3  2x2  1, c  2 f x  f 2 x2x  2 x3  2x2  1  1  lim  lim  lim x2  4 x →2 x→2 x→2 x2 x2 x2

f2  lim

x→2



67. f x  x  62 3, c  6

65. gx   x , c  0 g0  lim

x→0

As x → 0  , As x → 0  ,



x gx  g0  lim . Does not exist. x→0 x0 x

f6  lim

x→6

f x  f 6 x6

 1 →  

 lim

x  62 3  0 x6



 lim

1 x  61 3

x

x

x

x

1

x

x





x→6

x→6

f

Does not exist.

Section 2.1

69. h x  x  5, c  5 h5  lim

x→5

x  5  0

 lim

x  5

x→5

x→5

71. f x is differentiable everywhere except at x  3. (Sharp turn in the graph.)

hx  h5 x  5

 lim

The Derivative and the Tangent Line Problem

x5

x5

Does not exist. 73. f x is differentiable everywhere except at x  1. (Discontinuity)

75. f x is differentiable everywhere except at x  3. (Sharp turn in the graph)

77. f x is differentiable on the interval 1, . (At x  1 the tangent line is vertical)

79. f x is differentiable everywhere except at x  0. (Discontinuity)





83. f x 

81. f x  x  1

The derivative from the left is lim

x→1

xx  11 ,, xx >≤ 11 3 2

The derivative from the left is





f x  f 1 x1 0  lim  1. x→1 x1 x1

lim

x→1

f x  f 1 x  13  0  lim x→1 x1 x1  lim x  12  0.

The derivative from the right is lim

x→1

x→1





f x  f 1 x1 0  lim  1. x→1 x1 x1

The one-sided limits are not equal. Therefore, f is not differentiable at x  1.

The derivative from the right is lim

x→1

f x  f 1 x  12  0  lim x→1 x1 x1  lim x  1  0. x→1

These one-sided limits are equal. Therefore, f is differentiable at x  1.  f1  0 85. Note that f is continuous at x  2. f x 

4xx  1,3, xx >≤ 22 2

f x  f 2 x2  1  5  lim  lim x  2  4. x→2 x→2 x2 x2

The derivative from the left is lim x→2

The derivative from the right is lim x→2

f x  f 2 4x  3  5  lim  lim 4  4. x→2 x→2 x2 x2

The one-sided limits are equal. Therefore, f is differentiable at x  2.  f2  4 87. (a) The distance from 3, 1 to the line mx  y  4  0 is d 

y

Ax1  By1  C A2  B2

3

m3  11  4  3m  3 . m2  1

m2  1

2

1 x

(b)

1

5

2

3

4

The function d is not differentiable at m  1. This corresponds to the line y  x  4, which passes through the point 3, 1.

−4

4 −1

59

60

Chapter 2

Differentiation

89. False. the slope is lim

x→0

f 2  x  f 2 . x

91. False. If the derivative from the left of a point does not equal the derivative from the right of a point, then the derivative does not exist at that point. For example, if f x  x , then the derivative from the left at x  0 is 1 and the derivative from the right at x  0 is 1. At x  0, the derivative does not exist.



93. f x 

0,x sin1x,

x0 x0





Using the Squeeze Theorem, we have  x ≤ x sin1x ≤ x , x  0. Thus, lim x sin1x  0  f 0 and f is continuous at x→0 x  0. Using the alternative form of the derivative we have lim

x→0

f x  f 0 x sin1x  0 1  lim  lim sin . x→0 x→0 x0 x0 x

 

Since this limit does not exist (it oscillates between 1 and 1), the function is not differentiable at x  0. gx 

x0, sin1x, xx  00 2

Using the Squeeze Theorem again we have x2 ≤ x2 sin1x ≤ x2, x  0. Thus, lim x2 sin1x  0  f 0 and f is continux→0 ous at x  0. Using the alternative form of the derivative again we have lim

x→0

f x  f 0 x2 sin1x  0 1  lim  lim x sin  0. x→0 x→0 x0 x0 x

Therefore, g is differentiable at x  0, g0  0.

Section 2.2

Basic Differentiation Rules and Rates of Change

y  x12

1. (a)

y  12 x12 y1  12 3. y  8 y  0

11. f x  x  1 fx  1

19. y  y 

 sin   cos  2  cos   sin  2

(b)

y  x32

y  x2

(c)

y  32 x12

(d)

y  2x

y1  32

y  3x2

y1  2

5. y  x6

7. y 

y  6x5

y1  3

1  x7 x7

y  7x8 

5 x  x15 9. y 

1 1 y  x45  45 5 5x

7 x8

15. gx  x 2  4x3

13. f t  2t2  3t  6

17. st  t3  2t  4

gx  2x  12x 2

fx  4t  3

21. y  x2 

1 cos x 2

y  2x 

1 sin x 2

y  x3

st  3t2  2

23. y 

1  3 sin x x

y  

1  3 cos x x2

Section 2.2

Function

Rewrite

Derivative

Simplify

5 y  x2 2

y  5x3

y 

5 x3

3 2x3

3 y  x3 8

y 

y 

9 8x4

x

y  x12

1 y   x32 2

5 25. y  2 2x 27. y  29. y 

Basic Differentiation Rules and Rates of Change

x

31. f x 

3  3x2, 1, 3 x2

fx 

6x3

9 4 x 8

y  

1 7 33. f x    x3, 2 5

6  3 x

1 2x32

0,  21

 4x2  4x  1

21 fx  x2 5

y  8x  4 y0  4

f0  0

f1  6

2 2 39. f x  x  5  3x

37. f   4 sin   , 0, 0

41. gt  t2 

fx  2x  6x3  2x 

f  4 cos   1

6 x3

4  t2  4t3 t3

gt  2t  12t4  2t 

f0  41  1  3 43. f x 

y  2x  12, 0, 1

35.

x3  3x2  4  x  3  4x2 x2

45. y  xx2  1  x3  x y  3x2  1

8 x3  8 fx  1  3  x x3 3 x  x12  6x13 47. f x  x  6

1 1 2  fx  x12  2x23  2 2 x x23

49. hs  s45  s23 4 2 4 2 h(s  s45  s13  15  13 5 3 5s 3s

51. f x  6 x  5 cos x  6x12  5 cos x fx  3x12  5 sin x 

3 x

 5 sin x

55. (a) f x 

53. (a) y  x4  3x2  2 y  4x3  6x

fx 

At 1, 0: y  413  61  2. y  0  2x  1

Tangent line:

3

−2

 2x34

3 74 3 x  74 2 2x

At 1, 2, f1 

2x  y  2  0 (b)

2 4 3 x

Tangent line:

3 2 3 y  2   x  1 2 3 7 y x 2 2

2

(1, 0)

3x  2y  7  0

−1

(b)

5

(1, 2) −2

7 −1

12 t4

61

62

Chapter 2

Differentiation

59. y 

57. y  x4  8x2  2 y  4x3  16x

1  x2 x2

y  2x3 

 4xx2  4  4xx  2x  2

2 cannot equal zero. x3

Therefore, there are no horizontal tangents.

y  0 ⇒ x  0, ± 2 Horizontal tangents: 0, 2, 2, 14, 2, 14 61. y  x  sin x, 0 ≤ x < 2

63. x 2  kx  4x  9

y  1  cos x  0

2x  k  4

cos x  1 ⇒ x  

x 2  2x  4x  4x  9 ⇒ x 2  9 ⇒ x  ± 3.

Horizontal tangent: , 

3 k  x3 x 4 

k 3  x2 4

Equate derivatives

Hence, k  2x  4 and

At x  , y  .

65.

Equate functions

For x  3, k  2 and for x  3, k  10.

Equate functions

Equate derivatives

3 2 x 3 2 3 3 4 3 3  x  3 ⇒ x   x  3 ⇒ x  3 ⇒ x  2 ⇒ k  3. Hence, k  x and 4 x 4 4 4 2 67. (a) The slope appears to be steepest between A and B.

(c)

y

(b) The average rate of change between A and B is greater than the instantaneous rate of change at B.

f B C A

D

E x

69. gx  f x  6 ⇒ gx  fx

y

71. 3

f f

1

x 3

2

1

1

2

3

2

If f is linear then its derivative is a constant function. f x  ax  b fx  a

Section 2.2

Basic Differentiation Rules and Rates of Change

73. Let x1, y1 and x2, y2 be the points of tangency on y  x2 and y  x2  6x  5, respectively. The derivatives of these functions are y  2x ⇒ m  2x1

and

y  2x  6 ⇒ m  2x2  6.

m  2x1  2x2  6 x1  x2  3 Since y1  x12 and y2  x22  6x2  5,

y

5

m

y2  y1 x22  6x2  5  x12   2x2  6. x2  x1 x2  x1

4 3

)2, 3)

2

)1, 1)

1

x22  6x2  5  x2  32  2x2  6 x2  x2  3

x 2

3

)1, 0) 2

3

−1

x22  6x2  5  x22  6x2  9  2x2  62x2  3 2x22  12x2  14  4x22  18x2  18 2x22  6x2  4  0

y

5

2x2  2x2  1  0

4

)2, 4)

3

x2  1 or 2

2

x2  1 ⇒ y2  0, x1  2 and y1  4

1

x −1

Thus, the tangent line through 1, 0 and 2, 4 is

−2

40 y0 x  1 ⇒ y  4x  4. 21





x2  2 ⇒ y2  3, x1  1 and y1  1 Thus, the tangent line through 2, 3 and 1, 1 is y1

32  11x  1 ⇒ y  2x  1.

75. f x  x, 4, 0

77. f1  1

1 1 fx  x12  2 2 x 1 2 x



3.64

0y 4  x 0.77 3.33

4  x  2 x y 4  x  2 x x 4  x  2x x  4, y  2 The point 4, 2 is on the graph of f. Tangent line:

y2

02 x  4 4  4

4y  8  x  4 0  x  4y  4

1.24

63

64

Chapter 2

Differentiation

79. (a) One possible secant is between 3.9, 7.7019 and 4, 8: y8

20

8  7.7019 x  4 4  3.9

(4, 8) −2

y  8  2.981x  4

12 −2

y  Sx  2.981x3.924 3 3 (b) fx  x12 ⇒ f4  2  3 2 2 Tx  3x  4  8  3x  4 Sx is an approximation of the tangent line Tx. (c) As you move further away from 4, 8, the accuracy of the approximation T gets worse. 20

f T

−2

12

−2

(d)

x

3

f 4  x

1

T4  x

1

2

1

 0.5

2.828

5.196

6.548

2

5

6.5

81. False. Let f x  x2 and gx  x2  4. Then fx  gx  2x, but f x  gx.

 0.1

0

0.1

0.5

7.702

8

8.302

9.546

11.180

14.697

18.520

7.7

8

8.3

9.5

11

14

17

1

2

83. False. If y   2, then dydx  0.  2 is a constant.

85. True. If gx  3f x, then gx  3fx.

87. f t  2t  7, 1, 2 ft  2 Instantaneous rate of change is the constant 2. Average rate of change: f 2  f 1 22  7  21  7  2 21 1 (These are the same because f is a line of slope 2.)

3

1 89. f x   , 1, 2 x fx 

1 x2

Instantaneous rate of change:

1, 1 ⇒ f1  1

2,  21 ⇒ f2  41 Average rate of change: f 2  f 1 12  1 1   21 21 2

Section 2.2

Basic Differentiation Rules and Rates of Change

91. (a) st  16t2  1362

st  4.9t2  v0t  s0

93.

 4.9t2  120t

vt  32t (b)

65

vt  9.8t  120

s2  s1  1298  1346  48 ftsec 21

v5  9.85  120  71 msec

(c) vt  st  32t

v10  9.810  120  22 msec

When t  1: v1  32 ftsec. When t  2: v2  64 ftsec. (d) 16t2  1362  0 t2  (e) v



1362 1362 9.226 sec ⇒ t 16 4

1362

4

  32

1362

4



 8 1362 295.242 ftsec 2 97. v  40 mph  3 mimin

v

 23 mimin6 min  4 mi

Velocity (in mph)

60 50 40

v  0 mph  0 mimin

30

0 mimin2 min  0 mi

20 10

v  60 mph  1mimin

t 2

4

6

8

s

Distance (in miles)

95.

10

Time (in minutes)

10 8

(10, 6) 6

(6, 4) 4

(8, 4) 2

(0, 0)

t 2

1 mimin2 min  2 mi

4

6

8

(The velocity has been converted to miles per hour) (b) Using a graphing utility, you obtain

99. (a) Using a graphing utility, you obtain R  0.167v  0.02.

B  0.00586v2  0.0239v  0.46.

(c) T  R  B  0.00586v2  0.1431v  0.44

(d)

60

T

dT  0.01172v  0.1431 (e) dv

B R

For v  40, T40 0.612.

0

For v  80, T80 1.081.

(f) For increasing speeds, the total stopping distance increases.

For v  100, T100 1.315.

101. A  s2,

dA  2s ds

100

0

103.

When s  4 m, dA  8 square meters per meter change in s. ds

C

1,008,000  6.3Q Q

dC 1,008,000   6.3 dQ Q2 C351  C350 5083.095  5085 $1.91 When Q  350,

dC $1.93. dQ

105. (a) f1.47 is the rate of change of the amount of gasoline sold when the price is $1.47 per gallon. (b) f1.47 is usually negative. As prices go up, sales go down.

10

Time (in minutes)

66

Chapter 2

Differentiation

107. y  ax2  bx  c Since the parabola passes through 0, 1 and 1, 0, we have

0, 1: 1  a02  b0  c ⇒ c  1 1, 0: 0  a12  b1  1 ⇒ b  a  1. Thus, y  ax2  a  1x  1. From the tangent line y  x  1, we know that the derivative is 1 at the point 1, 0. y  2ax  a  1 1  2a1  a  1 1a1 a2 b  a  1  3 Therefore, y  2x2  3x  1. 109. y  x3  9x y  3x2  9 Tangent lines through 1, 9: y  9  3x2  9x  1

x3  9x  9  3x3  3x2  9x  9 0  2x3  3x2  x22x  3 x  0 or x  32 3 81 3 9 The points of tangency are 0, 0 and  32 ,  81 8 . At 0, 0 the slope is y0  9. At  2 ,  8  the slope is y 2    4 .

Tangent lines: y  0  9x  0

9 3 y  81 8  4 x  2

and

y   94 x  27 4

y  9x 9x  y  0

111. f x 

9x  4y  27  0

xax , b, 3

2

x ≤ 2 x > 2

f must be continuous at x  2 to be differentiable at x  2. lim f x  lim ax3  8a

x→2

x→2

lim f x  lim x2  b  4  b

x→2

x→2

fx 

3ax , 2x, 2

8a  4  b 8a  4  b

x < 2 x > 2

For f to be differentiable at x  2, the left derivative must equal the right derivative. 3a22  22 12a  4 a  13 4 b  8a  4   3

Section 2.3

The Product and Quotient Rules and Higher-Order Derivatives

67

113. Let f x  cos x. f x  x  f x x

fx  lim

x→0

 lim

cos x cos x  sin x sin x  cos x x

 lim

cos xcos x  1 sin x  lim sin x x→0 x x

x→0

x→0





 0  sin x1  sin x

Section 2.3

The Product and Quotient Rules and Higher-Order Derivatives

1. gx  x 2  1x 2  2x gx  x 2  12x  2  x 2  2x2x  2x3  2x 2  2x  2  2x3  4x 2  4x3  6x 2  2x  2

3 tt2  4  t13t2  4 3. ht  

1 ht  t132t  t 2  4 t 23 3  2t 43  7t2  4 3t23

 5. f x  x 3 cos x

x x2  1

7. f x 

fx  x 3sin x  cos x3x 2  3x cos x  2

9. hx 

x3

sin x

3 x  x13  3 x3  1 x 1

1 x 3  1 x23  x133x 2 3 hx  x 3  12  

1  x2 x 2  11  x2x  2 2 2 x  1 x  12

fx 

11. gx 

t2  4 3t23

sin x x2

gx 

x 2cos x  sin x2x x cos x  2 sin x  x 22 x3

x3  1  x9x 2 3x23x 3  12 1  8x 3 x 3  12

3x23

13. f x  x3  3x2x2  3x  5 fx  x3  3x4x  3  2x2  3x  53x2  3  10x4  12x3  3x2  18x  15

15. f x  fx 

x2  4 x3

x  32x  x 2  41 2x 2  6x  x 2  4  x  32 x  32

f0  15

 f1 

f x  x cos x

17.

fx  xsin x  cos x1  cos x  x sin x f

4  

2

2



 

2  2  4   4 2 8

164 1  1  32 4

x 2  6x  4 x  32

68

Chapter 2

Differentiation

Function

Rewrite

Derivative

Simplify 2x  2 3

19. y 

x 2  2x 3

1 2 y  x2  x 3 3

2 2 y  x  3 3

y 

21. y 

7 3x3

y

7 3 x 3

y  7x4

y  

23. y 

4x32 x

y  4x, x > 0

y  2x12

y 

25. f x  fx 

7 x4

2 x

3  2x  x2 x2  1

x2  12  2x  3  2x  x22x x2  12



2x2  4x  2 2x  12  2 x2  12 x  12



2 ,x1 x  12



27. f x  x 1  fx  1 



4 4x x x3 x3

x  34  4x1 x 2  6x  9  12  x  32 x  32 

29. f x 

2x  5  2x12  5x1 2 x



5 5 fx  x12  x32  x32 x  2 2

x 2  6x  3 x  32



31. hs  s3  22  s6  4s3  4 hs  6s5  12s2  6s2s3  2 1 2x  1 x 2x  1   33. f x  x3 xx  3 x 2  3x 2

fx  

x 2  3x2  2x  12x  3 2x 2  6x  4x 2  8x  3  x 2  3x2 x 2  3x2 2x 2  2x  3 2x 2  2x  3  2 x 2  3x2 x x  32

35. f x  3x3  4xx  5x  1 fx  9x2  4x  5x  1  3x3  4x1x  1  3x3  4xx  51  9x2  4x2  4x  5  3x 4  3x 3  4x 2  4x  3x 4  15x3  4x2  20x  9x 4  36x3  41x 2  16x  20  6x 4  12x 3  8x 2  16x  15x 4  48x 3  33x 2  32x  20

37. f x  fx  

x2  c2 x2  c2

x2  c22x  x2  c22x x2  c22 4xc x2  c22 2

39. f x  t2 sin t ft  t2 cos t  2t sin t  tt cos t  2 sin t



2x  5 2x  5  2x32 2xx

Section 2.3

41. f t  ft 

The Product and Quotient Rules and Higher-Order Derivatives

cos t t

43. f x  x  tan x

t sin t  cos t t sin t  cos t  t2 t2

4 t  8 sec t  t14  8 sec t 45. gt  

1 1 gt  t34  8 sec t tan t  34  8 sec t tan t 4 4t

fx  1  sec2 x  tan2 x

47. y 

31  sin x 3  sec x  tan x 2 cos x 2

3 3 y  sec x tan x  sec2 x  sec xtan x  sec x 2 2 3  sec x tan x  tan2 x  1 2 51. f x  x2 tan x

49. y  csc x  sin x

fx  x2 sec2 x  2x tan x

y  csc x cot x  cos x 

 xx sec2 x  2 tan x

cos x  cos x sin2 x

 cos xcsc2 x  1  cos x cot2 x 53. y  2x sin x  x 2 cos x

55. gx 

y  2x cos x  2 sin x  x 2sin x  2x cos x  4x cos x  2 sin x  x 2 sin x 57. g   g  

1  sin  cos

sin  12

y  y

61.

(form of answer may vary)

1  csc x 1  csc x

1  csc xcsc x cot x  1  csc xcsc x cot x 2 csc x cot x  1  csc x2 1  csc x2

6   212 2 3   43 

2

ht  ht   h 

2x2  8x  1 x  22

1  sin

y

59.

gx 

xx  122x  5

sec t t tsec t tan t  sec t1 t2 sec tt tan t  1 t2 sec  tan   1 1  2 2 

(form of answer may vary)

69

70

Chapter 2

Differentiation

63. (a) f x  x3  3x  1x  2, 1, 3

53. (b)

10

fx  x3  3x  11  x  23x2  3 − 10

 4x3  6x2  6x  5

10

(1, − 3)

f1  1  slope at 1, 3.

− 10

Tangent line: y  3  1x  1 ⇒ y  x  2 65. (a) f x 

x , 2, 2 x1

51. (b)

fx 

1 x  11  x1  x  12 x  12

f2 

1  1  slope at 2, 2. 2  12

6

(2, 2) −3

6

−3

Tangent line: y  2  1x  2 ⇒ y  x  4

4 , 1

f x  tan x,

67. (a)

fx  sec2 x f

55. (b)

4

( ( π ,1 4

−



4   2  slope at 4 , 1.

−4

Tangent line:



y12 x y  1  2x 

 4



 2

4x  2y    2  0

69. f x  fx  

x2 x1

6 x  23  3x1  x  22 x  22

71. fx 

x  12x  x21 x  12

gx 

x2  2x xx  2  x  12 x  12

gx 

fx  0 when x  0 or x  2.

6 x  25  5x  41  x  22 x  22

5x  4 3x 2x  4    f x  2 x  2 x  2 x  2

f and g differ by a constant.

Horizontal tangents are at 0, 0 and 2, 4. 73. f x  x n sin x fx  x n cos x  nx n1 sin x x

n1

x cos x  n sin x

When n  1: fx  x cos x  sin x.

75. Area  At  2t  1t  2t32  t12 At  2

When n  4: fx  x3x cos x  4 sin x. For general n, fx  x n1 x cos x  n sin x.

12

 3t12 

When n  2: fx  xx cos x  2 sin x. When n  3: fx  x2x cos x  3 sin x.

32t   21t



12

1 12 t 2

6t  1 2 cm sec 2t

Section 2.3

77.

C  100

x  , 200 x x  30  2



The Product and Quotient Rules and Higher-Order Derivatives

1 ≤ x

dC 400 30  100  3  dx x x  302

79.





Pt  500 1 

4t 50  t2



50  t24  4t2t 50  t22



Pt  500



200  4t 2

 50  t 

(a) When x  10:

dC  $38.13. dx

 500

(b) When x  15:

dC  $10.37. dx

 2000

(c) When x  20:

dC  $3.80. dx

2 2

50  t2

 50  t  2 2

P2 31.55 bacteria per hour

As the order size increases, the cost per item decreases. 1 cos x

sec x 

81. (a)

d d 1 cos x0  1sin x sin x 1 sec x     dx dx cos x cos x2 cos x cos x cos x



d d 1 sin x0  1cos x cos x 1 csc x     dx dx sin x sin x2 sin x sin x sin x



cot x 

(c)

sin x

cos x  sec x tan x

1 sin x

csc x 

(b)







cos x  csc x cot x sin x

cos x sin x

d d cos x sin xsin x  cos xcos x sin2 x  cos2 x 1   2  csc2 x cot x    2 dx dx sin x sin x sin2 x sin x





85. f x 

83. f x  4x32 fx  6x12 f x  3x12 

3

fx 

1 x  11  x1  x  12 x  12

f x 

2 x  13

x

87. f x  3 sin x

89. fx  x2

fx  3 cos x

f x  2x

f x  3 sin x

93.

95. f x  2gx  hx

y 4

fx  2gx  hx

3

f2  2g2  h2

2

 22  4

1 x 1

2

3

4

f 2  0 One such function is f x  x  22.

0

x x1

91. f x  2x f 4x 

97. f x 

1 1 2x12  2 x

gx hx

fx 

hxgx  gxhx hx 2

f2 

h2g2  g2h2 h2 2



12  34 12

 10

71

72

Chapter 2

Differentiation

101. vt  36  t2, 0 ≤ t ≤ 6

y

99. f′

at  2t

2

f

1

v3  27 msec x

2

1

1

a3  6 msec

2

The speed of the object is decreasing. f″

It appears that f is cubic; so f would be quadratic and f would be linear. 103. vt  at  

100t 2t  15

(a) a5 

2t  15100  100t2 2t  152

(b) a10 

1500

1.2 ftsec2 210  15 2

1500 2t  152

(c) a20 

1500

0.5 ftsec2 220  15 2

1500  2.4 ftsec2 25  15 2

105. f x  gxhx fx  gxhx  hxgx

(a)

f x  gxh x  gxhx  hxg x  hxgx  gxh x  2gxhx  hxg x f x  gxh x  gxh x  2gxh x  2g xhx  hxg x  hxg x  gxh x  3gx h x  3g xhx  g xhx f

4x

 gxh4x  gxh x  3gxh x  3g xh x  3g xh x  3g xhx  g xhx  g4xhx  gxh4x  4gxh x  6g xh x  4g xhx  g4xhx

(b) f nx  gxhnx 

nn  1n  2 . . . 21 nn  1n  2 . . . 21 gxhn1x  g xhn2x 1 n  1n  2 . . . 21 21 n  2n  3 . . . 21



nn  1n  2 . . . 21 g xhn3x  . . . 321 n  3n  4 . . . 21



nn  1n  2 . . . 21 n1 g xhx  gnxhx n  1n  2 . . . 21 1

 gxhnx  

n! n! gxhn1x  g xhn2x  . . . 1!n  1! 2!n  2! n! gn1xhx  gnxhx n  1!1!

Note: n!  nn  1 . . . 3

2 1 (read “n factorial.”)

Section 2.4

f

3   cos 3  12

fx  sin x

f

3   sin 3   23

f  x  cos x

f

3   cos 3   21

107. f x  cos x



(a) P1x  fax  a  f a  

3

2

x  3   21

(b)

 1 x 4 3





2



3

2

2

P2

1 P2x  f  ax  a2  f ax  a  f a 2 

The Chain Rule

− 2

x  3   21



−2

(c) P2 is a better approximation.

109. False. If y  f xgx, then

P1

f

(d) The accuracy worsens as you move farther away from x  a  3. 111. True

dy  f xgx  gxfx. dx

113. True

hc  f cgc  gcfc  f c0  gc0 0



115. f x  x x 

x , if x ≥ 0 x , if x < 0 2

2

2x, if x ≥ 0  2 x

2x, if x < 0 2, if x > 0 f x   2, if x < 0 fx 

f  0 does not exist since the left and right derivatives are not equal.

Section 2.4

The Chain Rule

y  f gx

u  gx

y  f u

1. y  6x  54

u  6x  5

y  u4

3. y  x2  1

u  x2  1

y  u

5. y  csc3 x

u  csc x

y  u3

7. y  2x  73 y  32x  722  62x  72 11. f x  9  x223 2 4x fx  9  x2132x   3 39  x213

9. gx  34  9x4 gx  124  9x39  1084  9x3 13. f t  1  t12 1 1 ft  1  t121   2 21  t

73

74

Chapter 2

Differentiation

17. y  24  x 214

15. y  9x2  413 1 6x y  9x2  42318x  3 9x2  423

y  2

2 34

2x

x



4 4  x 23 

21. f t  t  32

19. y  x  21 y  12  x21  23.

144  x 

1 x  22

ft  2t  33 

2 t  33

25. f x  x2x  24

y  x  212

fx  x2 4x  231  x  242x

dy 1 1   x  232   dx 2 2x  232

 2xx  23 2x  x  2  2xx  233x  2

27. y  x1  x2  x1  x212

121  x 

y  x

2 12

29. y 



2x  1  x2121

 x21  x212  1  x212  1  x 

2

xx  52

 x2  132 x2  x2  1

 35. y  y 





1 x2  132

2

33. f v 

2

gx  2

x5 x2  2



x 2  2  x  52x x 2  22



 x2x2  132  x2  112

2

1  2x2  1  x2 31. gx 

 xx2  112

1 y  x  x2  1322x  x2  1121 2

x  1  x 

2 12

x x2  1



112vv 

fv  3

2x  52  10x  x 2 x 2  23





3

1  2v 1v

  1  2v  1  v2  1  v 2

2

91  2v2 1  v4

3t 2 37. gt   2 t  2t  1

x  1

x 1 2

1  3x2  4x32 2xx2  12

gt 

The zero of y corresponds to the point on the graph of y where the tangent line is horizontal.

3tt2  3t  2 t2  2t  132

The zeros of g correspond to the points on the graph of g where the tangent lines are horizontal. 24

2

y −1

g′

5

y′ −2

g

−5

3 −2

Section 2.4

x x 1

39. y 

y  

41. st 

x  1x

st 

2xx  1

The Chain Rule

22  t1  t 3 t 1  t

The zero of st corresponds to the point on the graph of st where the tangent line is horizontal.

y has no zeros. 4

3

y s′

−5

4

−3

6

y′ s −2 −3

43.

y

cos  x  1 x

3

y

dy   x sin  x  cos  x  1  dx x2

−5

5

y′

 x sin  x  cos  x  1  x2

−3

The zeros of y correspond to the points on the graph of y where the tangent lines are horizontal. 45. (a)

(b) y  sin 2x

y  sin x y  cos x

y  2 cos 2x

y0  1

y0  2

1 cycle in 0, 2

2 cycles in 0, 2 The slope of sin ax at the origin is a.

47.

49. gx  3 tan 4x

y  cos 3x

gx  12 sec2 4x

dy  3 sin 3x dx 51. y  sin  x2  sin  2 x 2 y  cos  x2 2 2x  2 2x cos 2x 2

55. f x 

53. hx  sin 2x cos 2x hx  sin 2x2 sin 2x  cos 2x2 cos 2x 2

cos2

75

2x  2

sin2

2x

 2 cos 4x. Alternate solution:

fx  

hx 

1 sin 4x 2

hx 

1 cos 4x4  2 cos 4x 2

cos x cot x  2 sin x sin x sin2 xsin x  cos x2 sin x cos x sin4 x sin2 x  2 cos2 x 1  cos2 x  sin3 x sin3 x

76

Chapter 2

Differentiation

57. y  4 sec2 x y  8 sec x sec x tan x  8 sec2 x tan x

59. f    14 sin2 2  14 sin 2 2 f   2 14 sin 2 cos 2 2  sin 2 cos 2  12 sin 4

61. f x  3 sec2 t  1

63.

ft  6 sec t  1 sec t  1 tan t  1 6 sin t  1  6 sec  t  1 tan t  1  cos3  t  1

y  x 

1 sin2x 2 4

 x 

1 sin4x2 4

2

dy 1 12 1  x  cos4x28x dx 2 4 1  2x cos2x2 2x

 65.

y  sincos x

67.

dy  coscos x sin x dx

st  t 2  2t  812, 2, 4 st 

 sin x coscos x

 s2 

69.

f x 

3  3x3  41, x3  4

fx  3x3  423x2   f1  

1,  53 9x2 x3  42

71. f t  ft 

1 2 t  2t  8122t  2 2 t1 t 2  2t  8

3 4 3t  2 , 0, 2 t1 5 t  13  3t  21  t  12 t  12

f0  5

9 25

y  37  sec32x, 0, 36

73.

y  3 sec22x 2 sec(2x tan2x  6 sec32x tan2x y0  0 75. (a) f x  3x2  2 , 3, 5

77. (a) f x  sin 2x, , 0 fx  2 cos 2x

1 fx  3x2  2126x 2

f  2

3x  3x2  2 f3 

Tangent line: y  2x   ⇒ 2x  y  2  0

9 5

63. (b)

2

Tangent line: 9 y  5  x  3 ⇒ 9x  5y  2  0 5 (b)

−2

7

(3, 5) −5

5

−3

0

(π , 0)

2

Section 2.4

79. f x  2x2  13

The Chain Rule

77

81. f x  sin x 2

fx  6x2  122x

fx  2x cos x 2

 12xx 4  2x2  1

f  x  2x 2xsin x2  2 cos x2

 12x5  24x3  12x

 2 cos x2  2x2 sin x2

f  x  60x 4  72x2  12  125x2  1x2  1

83.

y

85.

y

f′

3

3

2

2

f

1

x

x 2

2

3

3

1

2

f 2

f′

3

The zeros of f correspond to the points where the graph of f has horizontal tangents.

The zeros of f correspond to the points where the graph of f has horizontal tangents.

87. gx  f 3x gx  f3x3 ⇒ gx  3 f3x 89. (a) f x  gxhx

73. (b) f x  ghx

fx  gxhx  gxhx

fx  ghxhx

f5  32  63  24

f5  g32  2g3 Need g3 to find f5.

73. (c) f x 

gx hx

fx 

hxgx  gxhx hx 2

f5 

36  32 12 4   32 9 3

73. (d) f x  gx 3 f x  3 gx 2gx f5  3326  162

(b) f  132,400331  v1

91. (a) f  132,400331  v1

f  1132,400331  v21

f  1132,400331  v21 

132,400 331  v 2



When v  30, f  1.016.

When v  30, f  1.461. 93.  0.2 cos 8t The maximum angular displacement is  0.2 (since 1 ≤ cos 8t ≤ 1. d

 0.2 8 sin 8t  1.6 sin 8t dt When t  3, d dt  1.6 sin 24  1.4489 radians per second.

132,400 331  v 2

95.

S  CR 2  r 2



dR dr dS  C 2R  2r dt dt dt



Since r is constant, we have drdt  0 and dS  1.76 10521.2 102105 dt  4.224 102  0.04224.

78

Chapter 2

Differentiation

97. (a) x  1.6372t3  19.3120t2  0.5082t  0.6161 (b) C  60x  1350  601.6372t3  19.3120t2  0.5082t  0.6161  1350 dC  604.9116t2  38.624t  0.5082 dt  294.696t2  2317.44t  30.492 The function

dC is quadratic, not linear. The cost function levels off at the end of the day, perhaps due to fatigue. dt

99. f x  sin x

101. (a) rx  fgxgx r1  fg1g1

(a) fx  cos x f  x   2 sin x

Note that g1  4 and f4 

f x   3 cos x

Also, g1  0. Thus, r1  0

f 4  4 sin x (b) f x  2 f x   2 sin x  2sin x  0 f 2kx  1k 2k sin x

(c)

f 2k1x  1k1 2k1 cos x

(b) sx  gf xf x s4  gf 4f 4 5 64 1 5   and Note that f 4  , g 2 2 62 2 5 f4  . 4



Thus, s4 

103.



g  xx  n 



2x  n 2x2  nx



2x  n2 xx  n



x  x  n 2 xx  n



a g





107. hx  x cos x





2x  3 , gx  2 2x  3

dg 1 2  x  nx122x  n dx 2

hx   x sin x 



1 5 5  . 2 4 8

105. gx  2x  3

 nx

x2

x

x

50 5  62 4

cos x,

x 0



x

3 2

Section 2.5

109. (a) f x  tan

x 4

f 1  1

f x 

 x sec2 4 4

f  x 

 x sec2 2 4

 tan

x  4 4



P1x  f1x  1  f 1  P2x  (b)

Implicit Differentiation

f1 

  2  4 2

f  1 

  21  8 4

 x  1  1. 2

  1  x  12  f1x  1  f 1  x  12  x  1  1 2 4 8 2



2

P1 P2 f 0

3 0

(c) P2 is a better approximation than P1 (d) The accuracy worsens as you move away from x  c  1. 111. False. If y  1  x12, then y  12 1  x121.

Section 2.5 1.

113. True

Implicit Differentiation

x2  y2  36

3.

2x  2yy  0 y 

1 12 1 12 x  y y  0 2 2

x y

y  

x3  xy  y2  4

5.

7.

3x2  xy  y  2yy  0

y 

3x 2  3x 2y  6xy  4xyy  2y2  0

4xy  3x 2y  6xy  3x 2  2y 2 y1 

6xy  3x  4xy  3x 2

2y 2

yx

x3y3  y  x  0

3x3y2  1y  1  3x2y3

y  3x2 2y  x

9. x3  3x 2  2xy 2  12

x12  y12

3x3y2y  3x2y3  y  1  0

2y  xy  y  3x2

2

x12  y12  9

y 

11.

1  3x2y3 3x3y2  1

sin x  2cos 2y  1 cos x  4sin 2yy  0 y 

cos x 4 sin 2y

79

80

Chapter 2

Differentiation

13. sin x  x1  tan y cos x  x

sec2

y 

y  sinxy

15.

yy  1  tan y1

y  xy  y cosxy y  x cosxyy  y cosxy

cos x  tan y  1 x sec2 y

y  17. (a) x2  y2  16 y2

 16 

(b)

y

x2

6

y  ± 16  x2

(c) Explicitly:

6

x

y=−

16 − x 2

2x  2yy  0 y  

x x x    2 y 16  x2  ± 16  x 19. (a) 16y2  144  9x2

(b)

x y

y 6

1 9 144  9x2  16  x2 16 16

4

y = 34

16 − x2

2

3 y  ± 16  x2 4

−6

−2

x 2

6

−4 −6

y = − 43

16 − x2

(d) Implicitly:

(c) Explicitly:

18x  32yy  0

dy 3  ± 16  x2122x dx 8

y 

3x 3x 9x    416  x2 443y 16y

xy  4

23.

xy  y1  0 x y  y y x

At 4, 1: y  

2

(d) Implicitly:

dy 1  ± 16  x2122x dx 2

y 

16 − x 2

−2

−6

21.

y=

2 −6

y2 

y cosxy 1  x cosxy

1 4

y2 

9x 16y

x2  4 x2  4

2yy 

x 2  42x  x 2  42x x 2  42

2yy 

16x x 2  42

y 

8x yx 2  42

At 2, 0, y is undefined.

Section 2.5

25.

x23  y23  5

1  y sec2x  y  1 1  sec2x  y y  sec2x  y tan2x  y  sin2x  y  tan2x  y  1 x2  2 x 1

yx

x13  y13

81

tanx  y  x

27.

2 13 2 13 x  y y  0 3 3 y 

Implicit Differentiation

3

1 At 8, 1: y   . 2

At 0, 0: y  0.

29.

x2  4y  8

x2  y22  4x2y

31.

2x2  y22x  2yy  4x2y  y8x

x2  4y  y2x  0 y  

4x3  4x2yy  4xy2  4y3y  4x2y  8xy

2xy x2  4

4x2yy  4y3y  4x2y  8xy  4x3  4xy2

2x8x2  4 x2  4

4yx2y  y3  x2  42xy  x3  xy2 y 

16x  2 x  42 At 2, 1: y 

At 1, 1: y  0.

32 1  64 2

Or, you could just solve for y: y  x

2

33.

8 4

tan y  x

 35.

ysec2 y  1

x 2  y 2  36 2x  2yy  0

1   y   cos2 y,  < y < sec2 y 2 2

y 

sec2 y  1  tan2 y  1  x2

x2  y2  16 2x  2yy  0 y 

x y

x  yy  0 1  yy  y2  0

xy

39.

y 

3x2 3x2  2y 2y

y 

2x3y  3y2 4x2

y2  y3y  x2



y 

y2  x2 16  3 y3 y

y2



y 2  x 2 36  3 y3 y

2yy  3x2



2

 yx

y  x 

y2  x3

0

1  yy 

x y

y1  xy y   y2

1 y  1  x2 37.

2xy  x3  xy2 x2y  y3  x2

2x3

xy

3y

 3y2x  6y 4x2

3y 3x  4x2 4y

x3

3y

 xy  2x  y2  2x

82

Chapter 2

Differentiation

41. x  y  4

9

1 12 1 12 x  y y  0 2 2 y 

(9, 1)

 y x

−1

14 −1

At 9, 1, y  

1 3

1 Tangent line: y  1   x  9 3 1 y x4 3 x  3y  12  0 43. x2  y2  25 y 

x y

At 4, 3:

6

Tangent line: y  3 

4 x  4 ⇒ 4x  3y  25  0 3

(4, 3) −9

9

3 Normal line: y  3  x  4 ⇒ 3x  4y  0. 4

−6

At 3, 4:

6

3 Tangent line: y  4  x  3 ⇒ 3x  4y  25  0 4 Normal line: y  4 

45.

4 x  3 ⇒ 4x  3y  0. 3

(−3, 4) −9

9

−6

x2  y2  r 2 2x  2yy  0 y 

x  slope of tangent line y

y  slope of normal line x Let x0, y0 be a point on the circle. If x0  0, then the tangent line is horizontal, the normal line is vertical and, hence, passes through the origin. If x0 0, then the equation of the normal line is y  y0  y

y0 x  x0 x0 y0 x x0

which passes through the origin.

Section 2.5

47. 25x2  16y2  200x  160y  400  0

Implicit Differentiation

y

(− 4, 10)

50x  32yy  200  160y  0 y 

200  50x 160  32y

2516 

6

(− 8, 5)

(0, 5) 4

(− 4, 0)

Horizontal tangents occur when x  4: 16y2

10

x

−10 − 8 − 6 − 4

 2004  160y  400  0

−2

2

y y  10  0 ⇒ y  0, 10 Horizontal tangents: 4, 0, 4, 10. Vertical tangents occur when y  5: 25x2  400  200x  800  400  0 25xx  8  0 ⇒ x  0, 8 Vertical tangents: 0, 5, 8, 5. 49. Find the points of intersection by letting y2  4x in the equation 2x2  y2  6. 2x2  4x  6

x  3x  1  0

and

The curves intersect at 1, ± 2.

y 2 = 4x

Parabola:

Ellipse: 4x  2yy  0 y  

4

(1, 2) −6

2yy  4

2x y

y 

6

(1, − 2) 2x 2 + y 2 = 6

2 y

−4

At 1, 2, the slopes are: y  1

y  1.

At 1, 2, the slopes are: y  1

y  1.

Tangents are perpendicular. 51. y  x and x  sin y

4

x = sin y

Point of intersection: 0, 0

−6

y  x:

x  sin y:

y  1

1  y cos y

6

(0, 0)

−4

x+y=0

y  sec y At 0, 0, the slopes are: y  1

y  1.

Tangents are perpendicular. 53.

xy  C

x2  y2  K

xy  y  0

2x  2yy  0

y  

y x

y 

x y

At any point of intersection x, y the product of the slopes is yxxy  1. The curves are orthogonal.

2

2

C=4 −3

3

C=1 K = −1 −2

−3

3

K=2 −2

83

84

Chapter 2

Differentiation

55. 2y2  3x4  0 (a) 4yy  12x3  0

(b) 4y

4yy  12x3

dx dy  12x3  0 dt dt y

12x3 3x3  y  4y y

dx dy  3x3 dt dt

57. cos  y  3 sin  x  1 (b)   sin y

(a)   sin yy  3 cos  x  0 y 

3 cos  x sin  y

dy dx  3 cos x  0 dt dt dy dx sin y  3 cos x dt dt

59. A function is in explicit form if y is written as a function of x: y  f x. For example, y  x3. An implicit equation is not in the form y  f x. For example, x 2  y 2  5. 61. (a) x4  44x2  y2

10

4y2  16x2  x4

− 10

10

1 y2  4x2  x4 4 y±

(b)

− 10



1 4x2  x4 4

1 y  3 ⇒ 9  4x 2  x4 4 36  16x2  x4 x4  16x2  36  0 x2 

16 ± 256  144  8 ± 28 2

Note that x2  8 ± 28  8 ± 27   1 ± 7  2. Hence, there are four values of x: 1 7, 1 7, 17, 1  7 To find the slope, 2yy  8x  x3 ⇒ y 

x8  x2 . 23

1 For x  1  7, y  3  7  7, and the line is 1 1 y1  37  7x  1  7   3  37  7x  87  23 . 1 For x  1  7, y  3  7  7, and the line is

y2  137  7x  1  7   3  137  7x  23  87 . 1 For x  1  7, y   3  7  7, and the line is

y3   137  7x  1  7   3   137  7x  23  87  . 1 For x  1  7, y   3  7  7, and the line is 1 1 y4   37  7x  1  7   3   37  7x  87  23 .

—CONTINUED—

10

− 10

10

y1

y3

y2 − 10

y4

Section 2.6

Related Rates

61. —CONTINUED— (c) Equating y3 and y4, 

1  7  7 x  1  7   3   13  7  7 x  1  7   3 3

 7  7 x  1  7    7  7 x  1  7  7x  7  7  7x  7  77  7x  7  7  7x  7  77

167  14x x If x 

87 7





87 87 , then y  5 and the lines intersect at ,5 . 7 7

63. Let f x  xn  xpq, where p and q are nonzero integers and q > 0. First consider the case where p  1. The derivative of f x  x1q is given by d 1q f x  x  f x f t  f x x  lim  lim x→0 t→x dx x tx where t  x  x. Observe that f t  f x t1q  x1q t1q  x1q   1q q tx tx t   x1qq  



t1q





x1q

t11q



t1q  x1q  . . .  t1qx12q  x11q

t12qx1q

1 . t11q  t12qx1q  . . .  t1qx12q  x11q

As t → x, the denominator approaches qx11q. That is, d 1q 1 1 x  11q  x1q1. dx qx q Now consider f x  xpq  xp1q. From the Chain Rule,





1 1 d p p p fx  xp1q1 xp  xp1q 1pxp1  xpqp  p1  xpq 1  nxn1 n  . q dx q q q q

Section 2.6 1.

Related Rates

y  x



xy  4

3.



1 dx dy  dt 2x dt

x

dx dy y  0 dt dt

 

dx dy  2x dt dt

y dx dy   dt x dt

(a) When x  4 and dxdt  3,

dx x dy   dt y dt

dy 1 3  3  . dt 24 4 (b) When x  25 and dydt  2, dx  225 2  20. dt

 

(a) When x  8, y  12, and dxdt  10, dy 12 5  10   . dt 8 8 (b) When x  1, y  4, and dydt  6, 1 3 dx   6  . dt 4 2

85

86

5.

Chapter 2

Differentiation

y  x2  1

7.

y  tan x

dx 2 dt

dx 2 dt

dy dx  2x dt dt

dy dx  sec2 x dt dt

(a) When x  1,

(a) When x   3,

dy  212  4 cmsec. dt (b) When x  0,

dy  222  8 cmsec. dt (b) When x   4,

dy  202  0 cmsec. dt (c) When x  1, dy  212  4 cmsec. dt 9. (a)

dy dx negative ⇒ positive dt dt

(b)

dy dx positive ⇒ negative dt dt

13.

dy   2 22  4 cmsec. dt (c) When x  0, dy  122  2 cmsec. dt dy dx a . 11. Yes, y changes at a constant rate: dt dt No, the rate

dy dx is a multiple of . dt dt

D  x2  y2  x2  x2  12  x4  3x2  1 dx 2 dt dx 2x3  3x dx 4x3  6x dD 1 4  x  3x2  1 124x3  6x   4 2 dt 2 dt x  3x  1 dt x4  3x2  1

15.

A  r2

17. (a) sin

dr 3 dt

cos

12b  ⇒ b  2s sin 2 s 2 h  ⇒ h  s cos 2 s 2 A

dA dr  2 r dt dt (a) When r  6,



1 1 bh  2s sin 2 2 2



s cos 2 

s2 s2 2 sin cos  sin 2 2 2 2





dA  2 63  36 cm2min. dt θ

(b) When r  24,

s

s h

dA  2 243  144 cm2min. dt

b

(b)

dA s2 d d 1  cos where  radmin. dt 2 dt dt 2 When 

 12 

 dA s2 3 ,  6 dt 2 2

3s 2

8

 dA s2 1 1 s2 ,   3 dt 2 2 2 8 (c) If d dt is constant, dAdt is proportional to cos . When 

  

Section 2.6

dV 4  800 V   r 3, 3 dt

19.

21.

ds dx  12x dt dt

 

dr 1 dV 1   800 dt 4 r 2 dt 4 r 2 (a) When r  30,

dr 1 2  800  cmmin. dt 4 302 9

(b) When r  60,

dr 1 1  800  cmmin. dt 4 60 2 18

 

1 1 9 V   r 2h   h2 h 3 3 4 

s  6x2 dx 3 dt

dV dr  4 r 2 dt dt

23.

(a) When x  1, ds  1213  36 cm2sec. dt (b) When x  10, ds  12103  360 cm2sec. dt

since 2r  3h

3 3 h 4

h

dV  10 dt

r

dh 4dVdt dV 9 2 dh  h ⇒  dt 4 dt dt 9h2 When h  15, 25.

8 410 dh   ftmin. dt 9 152 405 12

6

Related Rates

1

3 1

(a) Total volume of pool 

1 2126  1612  144 m3 2

Volume of 1m. of water 

1 166  18 m3 2

2 h=1

(see similar triangle diagram) 18 % pool filled  144 100%  12.5%

(b) Since for 0 ≤ h ≤ 2, b  6h, you have 1 V  bh6  3bh  36hh  18h2 2 dV dh 1 dh 1 1 1  36h  ⇒    mmin. dt dt 4 dt 144h 1441 144

12 b=6

87

88

Chapter 2

Differentiation

x2  y2  252

27. 2x

dx dy  2y 0 dt dt dy x  dt y



dx dx 2x  since  2. dt y dt

25

y

x

(a) When x  7, y  576  24,

dy 27 7   ftsec. dt 24 12

When x  15, y  400  20, When x  24, y  7,

dy 215 3   ftsec. dt 20 2

dy 224 48   ftsec. dt 7 7

(b)

1 A  xy 2



dx dA 1 dy  x y dt 2 dt dt



From part (a) we have x  7, y  24, and

dx  2, dt

dy 7  . dt 12







7 dA 1 Thus, dt  2 7  12  242 527  21.96 ft2sec. 24 tan 

(c)

sec2

x y

d 1  dt y



dx x  2 dt y

d 1  cos2 dt y



Using x  7, y  24,





dy dt

dx x  2 dt y

θ



dy dt



x

d dx dy 7 24 24  2,   and cos  , we have  dt dt 12 25 dt 25

  241 2  247   127   121 rad sec.

29. When y  6, x  122  62  63, and 12 − y

s  x2  12  y2

2x

2

2

s x

 108  36  12. x2

25

y

( x, y )

y 12

 12  y  2

s2

dy ds dx  212  y1  2s dt dt dt x

dx dy ds  y  12  s dt dt dt

Also, x2  y2  122 2x

dy dy x dx dx  2y 0⇒  . dt dt dt y dt

Thus, x



x dx ds dx   y  12 s dt y dt dt







12x ds dx sy dx xx s ⇒  dt y dt dt 12x dy x dx 63   dt y dt 6





ds 126 1  3  0.2   msec (horizontal) dt 15 12 63 53

  3   1 msec (vertical). 15

5

Section 2.6

s2  x2  y2

31. (a)

dx  450 dt

)

les

in e(

dy  600 dt

mi

y

c 200 tan

s

Di

s

100

x 200

100

dx dy ds  2x  2y 2s dt dt dt

Distance (in miles)

ds xdxdt  ydydt  dt s When x  150 and y  200, s  250 and ds 150450  200600   750 mph. dt 250 (b) t 

250 1  hr  20 min 750 3

s2  902  x2

33.

2nd

x  30 30 ft

dx  28 dt 2s

3rd

x

1st s

ds ds x dx  2x ⇒  dt dt dt s



dx dt

90 ft Home

When x  30, s  902  302  3010 ds 28 30  28  8.85 ftsec. dt 10 3010 35. (a)

15 y  ⇒ 15y  15x  6y 6 yx y

5 x 3

15

dx 5 dt dy 5  dt 3 (b)

6



dx 5 25  5  ftsec dt 3 3

10 d y  x dy dx 25    5 ftsec dt dt dt 3 3

x y

Related Rates

89

90

Chapter 2

37. xt 

Differentiation

39. Since the evaporation rate is proportional to the surface area, dVdt  k4 r 2. However, since V  43 r 3, we have

1 t sin , x 2  y 2  1 2 6

(a) Period:

2  12 seconds 6

1 (b) When x  , y  2 Lowest point:

1  12 2

dr dV  4 r 2 . dt dt 2



3

2

m.

0, 23  

1 (c) When x  , y  4

Therefore, k4 r 2  4 r 2

1  14

2



15

4

dr dr ⇒k . dt dt

and t  1

dx 1  t  t  cos  cos dt 2 6 6 12 6



x2  y2  1 2x

dx dy dy x dx .  2y 0⇒  dt dt dt y dt

Thus, dy 14  dt 154  Speed 







 12 cos 6 

 1  23  24 15  1205. 



15 12



5  5 msec  120 120

pV1.3  k

41. 1.3 pV 0.3

dV dp  V1.3 0 dt dt



dV dp V 0 dt dt

V 0.3 1.3p



1.3p tan 

43.

dV dp  V dt dt

y 30

y

dy  3 msec. dt sec2



d 1 dy  dt 30 dt 1 d  cos2 dt 30

y

θ



dy dt

When y  30,  4 and cos  22. Thus, d 1 1 1 3   radsec. dt 30 2 20



x

30

Section 2.6

y tan  , y  5 x

45.

L

dx  600 mihr dt d 5 sec2    2 dt x



y=5

θ x

dx dt

d 5 dx x2 5 dx  cos2  2  2  2 dt x dt L x dt

 

 

 L5 15dxdt  sin 15600  120 sin

 

47.

2

2

2

2

(a) When  30 ,

d 120 1   30 radhr  radmin. dt 4 2

(b) When  60 ,

d 3 3  120  90 radhr  radmin. dt 4 2

(c) When  75 ,

d  120 sin2 75 111.96 radhr 1.87 radmin. dt



d  10 revsec2 radrev  20 radsec dt x (a) cos  30

P 30

θ x

d 1 dx  sin dt 30 dt

x

dx d  30 sin  30 sin 20  600 sin dt dt (b)

2000



0

− 2000



is least when dxdt  n or n  180 .



(c) dxdt  600 sin is greatest when sin  1 ⇒  2  n or 90  n

(d) For  30 , For  60 ,

49. tan 

dx 1  600 sin30   600  300 cmsec. dt 2 3 dx  600 sin60   600  3003  cmsec dt 2

x ⇒ x  50 tan 50 d dx  50 sec2 dt dt 2  50 sec2

d dt

d 1    cos2 ,  ≤ ≤ dt 25 4 4

 180 

Related Rates

91

92

Chapter 2

Differentiation

51. x2  y2  25; acceleration of the top of the ladder 

First derivative: 2x

d 2y dt 2

dy dx  2y 0 dt dt dy dx y 0 dt dt

x Second derivative: x

d 2x dx  dt 2 dt



d 2y dy dx y 2  dt dt dt



dy 0 dt

 xddt x  dxdt  dydt 

1 d 2y  dt 2 y When x  7, y  24,

2

2

2

2

dy 7 dx dx d 2x   , and  2 (see Exercise 27). Since is constant, 2  0. dt 12 dt dt dt





d 2y 1 7  70  22   dt 2 24 12

49 1 625    241 4  144   24 144  0.1808 ft sec 2

2

53. (a) Using a graphing utility, you obtain ms  0.881s2  29.10s  206.2 (b)

dm dm ds ds   1.762s  29.10 dt ds dt dt

(c) If t  s 1995, then s  15.5 and Thus,

ds  1.2. dt

dm  1.76215.5  29.101.2  2.15 million. dt

Review Exercises for Chapter 2 1. f x  x2  2x  3 fx  lim

x→0

f x  x  f x x

x  x2  2x  x  3  x2  2x  3 x→0 x

 lim

x2  2xx  x2  2x  2x  3  x2  2x  3 x→0 x

 lim

2xx  x2  2x  lim 2x  x  2  2x  2 x→0 x→0 x

 lim

5. f is differentiable for all x  1.

3. f x  x  1 fx  lim

x→0

 lim

x→0

 lim

x→0

 lim

x→0

 lim

x→0

f x  x  f x x

 x  x  1   x  1 x x  x  x

x



x  x  x x  x  x

x  x  x x x  x  x 1 x  x  x



1 2 x

Review Exercises for Chapter 2



7. f x  4  x  2

1 4 9. Using the limit definition, you obtain gx  x  . 3 6

(a) Continuous at x  2. (b) Not differentiable at x  2 because of the sharp turn in the graph.

4 1 3 At x  1, g1     3 6 2

y 7 6 5 4 3 2 x

−1

1 2 3 4 5 6

−2 −3

11. (a) Using the limit defintion, fx  3x 2.

13. g2  lim

x→2

At x  1, f1  3. The tangent line is y  3x  1

x3  x 2  4 x→2 x2

 lim

0

−4

x 2x  1  4 x→2 x2

 lim

y  2  3x  1

(b)

gx  g2 x2

2

 lim

(−1, −2)

x→2

x  2x 2  x  2 x2

 lim x 2  x  2  8 x→2

−4

15.

19. f x  x8

17. y  25

y

f′

f

fx  8x7

y  0

2

1

x −1

1

21. ht  3t 4

23. f x  x3  3x2

ht  12t 3

fx  3x2  6x  3xx  2

3 x  6x1 2  3x1 3 25. hx  6 x  3

hx  3x1 2  x2 3  29. f    2  3 sin f   2  3 cos

3 x



2 27. gt  t2 3

1 3 x2

gx 

4 3 4 t  3 3 3t

31. f    3 cos 

sin 4

f   3 sin 

cos 4

93

94

Chapter 2

Differentiation

F  200 T

33.

Ft 

35.

st  16t2  s0 s9.2  169.22  s0  0

100 T

s0  1354.24

(a) When T  4, F4  50 vibrations/sec/lb.

The building is approximately 1354 feet high (or 415 m).

(b) When T  9, F9  3313 vibrations/sec/lb. 37. (a)

(c) Ball reaches maximum height when x  25.

y

y  x  0.02x2

(d)

15

y  1  0.04x

10

y0  1

5

y10  0.6

x 20

40

60

Total horizontal distance: 50 (b) 0  x  0.02x2



y25  0 y30  0.2 y50  1



x 0x 1 implies x  50. 50 39. xt  t2  3t  2  t  2t  1 (a) vt  xt  2t  3

(e) y25  0

3 (b) vt < 0 for t < 2 .

(d) xt  0 for t  1, 2.

at  vt  2 3 (c) vt  0 for t  2 . 3 3 1 1 1 x   2  2 2  1    2  2    4

v1  21  3  1

v2  22  3  1 The speed is 1 when the position is 0. 43. hx  x sin x  x1 2 sin x

41. f x  3x2  7x2  2x  3 fx  3x2  72x  2  x2  2x  36x  2

6x3



9x2

 16x  7

1 sin x  x cos x 2 x

x2  x  1 x2  1 x2  12x  1  x2  x  12x fx  x2  12 2  x  1  2 x  12

45. f x  2x  x2

47. f x 



fx  2  2x3  2 1  

hx 

1 x3



2x3  1 x3

51. y 

49. f x  4  3x21 fx   4  3x226x  53. y  3x 2 sec x y  3x 2 sec x tan x  6x sec x

6x 4  3x22

y 

x2 cos x cos x 2x  x 2sin x 2x cos x  x 2 sin x  cos2 x cos2 x

55. y  x tan x y  x sec2 x  tan x

Review Exercises for Chapter 2

59. gt  t3  3t  2

57. y  x cos x  sin x

gt  3t2  3

y  x sin x  cos x  cos x  x sin x

g t  6t 61. f    3 tan

y  2 sin x  3 cos x

63.

f    3 sec2

y  2 cos x  3 sin x

f    6 sec sec tan   6 sec tan

y  2 sin x  3 cos x

2

y  y   2 sin x  3 cos x  2 sin x  3 cos x 0 65. f x  1  x31 2 1 fx  1  x31 23x2 2 

3x2 

2 1  x3

s2

 1

 s

s2

 1

3s2



2

xx  31x

2

2

 11  x  32x x 2  12



2x  3x 2  6x  1 x 2  13

71. y  3 cos3x  1

    5   1 2s



5 2

x3 x2  1

hx  2

69. f s  s2  15 2s3  5 fs  



67. hx 

s3

5 2

s2

3 2

y  9 sin3x  1

3s  1  5  5

3 2

s2

s3

 ss2  13 28s3  3s  25

73. y 

1 csc 2x 2

1 y  csc 2x cot 2x2 2

y 

 csc 2x cot 2x

77. y 

x sin 2x  2 4

75. y 

1 1  cos 2x2 2 4

1  1  cos 2x  sin2 x 2

2 3 2 2 sin x  sin7 2x 3 7

y  sin1 2 x cos x  sin5 2 x cos x

79. y  y 

 cos x sin x1  sin2 x

sin x x2

x  2 cos x  sin x x  22

 cos3 x sin x 81. f t  t2t  15

83. gx  2xx  11 2

ft  tt  147t  2 The zeros of f correspond to the points on the graph of f where the tangent line is horizontal. 0.1

gx 

g does not equal zero for any value of x in the domain. The graph of g has no horizontal tangent lines.

f′

4

−0.1

1.3

g′

f −0.1

x2 x  13 2

−2

7

g −2

95

96

Chapter 2

Differentiation

85. f t  t  11 2t  11 3  t  15 6 ft 

87. y  tan 1  x

5 6t  11 6

y  

f does not equal zero for any x in the domain. The graph of f has no horizontal tangent lines.

sec2 1  x 2 1  x

y does not equal zero for any x in the domain. The graph has no horizontal tangent lines.

5

5

y

f − 20

f′ −2

7

2

y′

−1

−4

91. f x  cot x

89. y  2x2  sin 2x

93. f t 

t 1  t2

ft 

t1 1  t3

f t 

2t  2 1  t4

fx  csc2 x

y  4x  2 cos 2x

f  2 csc xcsc x  cot x

y  4  4 sin 2x

 2 csc2 x cot x

95. g   tan 3  sin  1 g   3 sec2 3  cos  1 g    18 sec2 3 tan 3  sin  1 97. T  700t2  4t  101 T 

1400t  2 t2  4t  102

(a) When t  1, T 

(b) When t  3,

14001  2  18.667 deg hr. 1  4  102

T 

(d) When t  10,

(c) When t  5, T 

14003  2  7.284 deg hr. 9  12  102

14005  2  3.240 deg hr. 25  30  102

T 

140010  2  0.747 deg hr. 100  40  102

x2  3xy  y3  10

99.

2x  3xy  3y  3y2y  0 3x  y2y   2x  3y  2x  3y 3x  y2

y 

y x  x y  16

101. y

12x   x 1 2

y  x

1 2

12y

1 2



y  y1 2  0

 x  2 x yy  y  2 y x 2 xy  x 2 xy  y y  2 y 2 x y 

2 xy  y 2 x



2 y 2 xy  x



2y x  y y 2x y  x x

Review Exercises for Chapter 2

x sin y  y cos x

103.

105.

x cos yy  sin y  y sin x  y cos x

6

(2, 4)

2x  2yy  0 −9

yx cos y  cos x  y sin x  sin y y 

x2  y2  20

97

9

x y   y

y sin x  sin y cos x  x cos y

−6

1 At 2, 4: y   2 1 Tangent line: y  4   x  2 2 x  2y  10  0 Normal line: y  4  2x  2 2x  y  0

107.

y  x dy  2 units sec dt dx dy 1 dx dy  ⇒  2 x  4 x dt dt dt 2 x dt 1 dx  2 2 units/sec. (a) When x  , 2 dt

109.

(b) When x  1,

dx  4 units/sec. dt

(c) When x  4,

dx  8 units/sec. dt

s 1 2  h 2

111. st  60  4.9t2 st  9.8t

1 s h 4

s  35  60  4.9t2 4.9t2

dV 1 dt

w  2  2s  2  2

14h  4 2 h

tan 30 



dV 5 dh  4  h dt 2 dt 2dV dt dh  dt 54  h When h  1,

dh 2  m min. dt 25

1 2

1 3



5 4.9 st xt

xt  3 st

4h 5 5 2 h  8  hh 2 2 4



 25

t

Width of water at depth h:

V

s (t)

ds 5 dx  3  39.8 dt dt 4.9 1 2

2

 38.34 m sec

s 2 h 2

30˚ x(t )

C H A P T E R 2 Differentiation Section 2.1

The Derivative and the Tangent Line Problem . . 330

Section 2.2

Basic Differentiation Rules and Rates of Change 338

Section 2.3

The Product and Quotient Rules and Higher-Order Derivatives . . . . . . . . . . . . . 344

Section 2.4

The Chain Rule . . . . . . . . . . . . . . . . . . 350

Section 2.5

Implicit Differentiation . . . . . . . . . . . . . . 356

Section 2.6

Related Rates . . . . . . . . . . . . . . . . . . . 361

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 367 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . 373

C H A P T E R Differentiation Section 2.1

2

The Derivative and the Tangent Line Problem

Solutions to Even-Numbered Exercises

2. (a) m 

1 4

4. (a)

f 4  f 1 5  2  1 41 3 f 4  f 3 5  4.75   0.25 43 1

(b) m  1

Thus,

f 4  f 1 f 4  f 3 > 41 43

(b) The slope of the tangent line at 1, 2 equals f1. This slope is steeper than the slope of the line through 1, 2 and 4, 5. Thus, f 4  f 1 < f1. 41 6. g x 

3 3 x  1 is a line. Slope  2 2

8. Slope at 2, 1  lim

x→0

g2  x  g2 x

5  2  x2  1 x→0 x

 lim

5  4  4x  x2  1 x→0 x

 lim

 lim 4  x  4 x→0

10. Slope at 2, 7  lim

t→0

h2  t  h2 t

2  t2  3  7 t→0 t

 lim

4  4t  t2  4 t→0 t

 lim

 lim 4  t  4 t→0

14. f x  3x  2 fx  lim

x→0

 lim

x→0

 lim

x→0

f x  x  f x x

330

gx  lim

x→0

gx  x  gx x

 lim

5  5 x

 lim

0 0 x

x→0

x→0

1 16. f x  9  2x fx  lim

x→0

f x  x  f x x

3x  x  2  3x  2 x

 lim

9  1 2x  x  9  1 2x x

3x x

 lim

 21   21

 lim 3  3 x→0

12. gx  5

x→0

x→0

Section 2.1

The Derivative and the Tangent Line Problem

331

18. f x  1  x2 fx  lim

x→0

f x  x  f x x

1  x  x2  1  x2 x→0 x

 lim  lim

x→0

1  x2  2xx  x2  1  x2 x

2xx  x2  lim 2x  x  2x x→0 x→0 x

 lim

20. f x  x3  x2 fx  lim

x→0

f x  x  f x x

x  x3  x  x2  x3  x2 x→0 x

 lim

x3  3x2x  3xx2  x3  x2  2xx  x2  x3  x2 x→0 x

 lim  lim

x→0

3x2x  3xx2  x3  2xx  x2 x

 lim 3x2  3xx  x2  2x  x  3x2  2x x→0

22. f x 

1 x2

24. f x 

fx  lim

x→0

f x  x  f x x

1 1  x  x2 x2  lim x→0 x x  x  x xx  x2x2 2

fx  lim

x→0

f x  x  f x x 4

 lim

x→0

2

x  x



4

x

x



 lim

4 x  4 x  x x x x  x

2xx  x2 2 2 x→0 xx  x x

 lim

4x  4x  x x x x  x x  x  x

2x  x x  x2x2

 lim

4

x x  x x  x  x

 lim

x→0

 lim  lim

x→0



4

x

2x x4



2 x3

x→0

x→0

x→0





4 2 

x x x  x x x

x  x  x

x  x  x



332

Chapter 2

Differentiation

26. (a) f x  x2  2x  1 fx  lim

x→0

18. (b)

5

f x  x  f x x

(−3, 4)

−6

x  x2  2x  x  1  x2  2x  1 x→0 x

3

 lim

 lim

x→0

−1

2xx  x2  2x x

 lim 2x  x  2  2x  2 x→0

At 3, 4, the slope of the tangent line is m  23  2  4. The equation of the tangent line is y  4  4x  3 y  4x  8. 28. (a) f x  x3  1 f x  x  f x fx  lim x→0 x

18. (b)

4

(1, 2) −6

6

x  x3  1  x3  1  lim x→0 x  lim

x3



−4

x  3xx  x  1  x

3x 2

x→0

2

3

x3

1

 lim 3x 2  3xx  x2  3x 2 x→0

At 1, 2, the slope of the tangent line is m  312  3. The equation of the tangent line is y  2  3x  1 y  3x  1. (b)

30. (a) f x  x  1

(5, 2)

f x  x  f x fx  lim x→0 x  lim

x  x  1  x  1

x

x→0

 lim

x→0

 lim

x→0

−2





x  x  1  x  1

x  x  1  x  1

x  x  1  x  1 x x  x  1  x  1 1

x  x  1  x  1



1 2 x  1

At 5, 2, the slope of the tangent line is m

1 1  2 5  1 4

The equation of the tangent line is 1 y  2  x  5 4 1 3 y x 4 4

4



10

−4

Section 2.1

The Derivative and the Tangent Line Problem

1 x1

32. (a) f x 

(b)

f x  x  f x x→0 x 1 1  x  x  1 x  1  lim x→0 x x→0



−6

3

−3

x  1  x  x  1 xx  x  1x  1

 lim  x→0

3

(0, 1)

fx  lim

 lim

333

1 x  x  1x  1

1 x  12

At 0, 1, the slope of the tangent line is m

1  1. 0  12

The equation of the tangent line is y  x  1. 34. Using the limit definition of derivative, fx  3x 2. Since the slope of the given line is 3, we have

36. Using the limit definition of derivative, fx 

1 Since the slope of the given line is  , we have 2

3x 2  3 x 2  1 ⇒ x  ± 1.

1 1  2x  132 2

Therefore, at the points 1, 3 and 1, 1 the tangent lines are parallel to 3x  y  4  0. These lines have equations

1  x  132 1x1⇒x2

y  3  3x  1 and y  1  3x  1 y  3x

1 . 2x  13 2

At the point 2, 1, the tangent line is parallel to x  2y  7  0. The equation of the tangent line is

y  3x  4

1 y  1   x  2 2 1 y x2 2 38. h1  4 because the tangent line passes through 1, 4 h1 

40. f x  x 2 ⇒ fx  2x

(d)

64 2 1   3  1 4 2

42. f does not exist at x  0. Matches (c)

44.

Answers will vary.

y 4

Sample answer: y  x

3 2 1 x

−4 −3 −2

1 −2 −3 −4

2

3

4

334

Chapter 2

46. (a) Yes. lim

x→0

Differentiation

f x  2x  f x f x  x  f x  lim  fx x→0 2Dx x

(b) No. The numerator does not approach zero. (c) Yes. lim

x→0

f x  x  f x  x f x  x  f x  f x  x  f x  lim x→0 2x 2x  lim

x→0

 (d) Yes. lim

x→0

  f x f x  x  f x  f x  x 2x 2x

1 1 fx  fx  fx 2 2

f x  x  f x  fx x

48. Let x0, y0 be a point of tangency on the graph of f. By the limit definition for the derivative, fx  2x. The slope of the line y through 1, 3 and x0, y0 equals the derivative of f at x0: 3  y0  2x0 1  x0

10

(3, 9)

8 6

3  y0  1  x02x0

4

(−1, 1)

3  x02  2x0  2x02

−8 −6 −4 −2 −2

x02  2x0  3  0

−4

x 2

4

6

(1, −3)

x0  3x0  1  0 ⇒ x0  3, 1 Therefore, the points of tangency are 3, 9 and (1, 1, and the corresponding slopes are 6 and 2. The equations of the tangent lines are y  3  6x  1

y  3  2x  1

y  6x  9

y  2x  1

50. (a) f x  x2 fx  lim

x→0

(b) gx  lim

x→0

f x  x  f x x

g x  x  g x x

x  x3  x3 x→0 x

 lim

x  x2  x2 x→0 x

 lim

x2  2xx  x2  x2 x→0 x

x3  3x2x  3xx2  x3  x3 x

 lim

x3x2  3xx  x2 x

 lim

x→0

 lim

 lim

x→0

x2x  x x

x→0

 lim 3x2  3xx  x2  3x2 x→0

 lim 2x  x  2x

At x  1, g1  3 and the tangent line is

x→0

At x  1, f1  2 and the tangent line is y  1  2x  1

or

y  2x  1.

At x  0, f0  0 and the tangent line is y  0. At x  1, f1  2 and the tangent line is y  2x  1.

y  1  3x  1

y  3x  2.

At x  1, g1  3 and the tangent line is y  1  3x  1 or y  3x  2. 2

2

−3

or

At x  0, g0  0 and the tangent line is y  0.

3

−3

For this function, the slopes of the tangent lines are always distinct for different values of x.

−3

3

−2

For this function, the slopes of the tangent lines are sometimes the same.

Section 2.1

The Derivative and the Tangent Line Problem

1 52. f x  2 x2

3

By the limit definition of the derivative we have fx  x. 2

x f x

2

fx

2

 1.5

1

1.125  1.5

 0.5

0.5 1

0.125  0.5

0

0.5

1

1.5

2

0

0.125

0.5

1.125

2

0

0.5

1

1.5

2

f x  0.01  f x 0.01

54. gx 

−2

2 −1

1 56. f 2  23  2, f 2.1  2.31525 4

  3 x  0.01  3 3 100

f2 

8

2.31525  2  3.1525 Exact: f2  3 2.1  2

f

g −1

8 −1

The graph of gx is approximately the graph of fx. 58. f x 

x3 3  3x and fx  x2  3 4 4 6

f′ −9

9

f −6

60. f x  x 

1 x

f 2  x  f 2 x  2  f 2  Sx x  x 

1 5  2  x 2 5 x  2  x 2

2  x 

5 2x  3 5 22  x2  2  52  x x  2  x  2   22  x x 2 22  x 2

(a) x 

1: Sx 

5 5 5 5 x  2   x  6 2 6 6

4 5 4 9 x  0.5: Sx  x  2   x  5 2 5 10 x  0.1: Sx 

16 5 16 41 x  2   x  21 2 21 42

(b) As x → 0, the line approaches the tangent line to f at  2, 52 . 62. g x  xx  1  x 2  x, c  1 gx  g1 x2  x  0 xx  1  lim  lim x→1 x→1 x→1 x  1 x1 x1

g1  lim

 lim x  1 x→1

4

−6

6

S0.1 S0.5 S1

f −4

335

336

Chapter 2

Differentiation

64. f x  x3  2x, c  1

x  1x2  x  3 f x  f 1 x3  2x  3  lim  lim  lim x2  x  3  5 x→1 x →1 x→1 x1 x1 x1

f1  lim

x→1

1 66. f x  , c  3 x f x  f 3 1 x  1 3 3x  lim  lim x→3 x→3 x3 x3 3x

f3  lim

x→3

lim      x  3  x→3 3x 9 1

1

1

68. g x  x  31 3, c  3 gx  g3 1 x  31 3  0  lim  lim x→3 x→3 x→3 x  32 3 x  3 x3

g3  lim

Does not exist.



70. f x  x  4 , c  4 f4  lim

x→4





x4 0 x4 f x  f 4  lim  lim x→4 x→4 x  4 x4 x4

Does not exist. 72. f x is differentiable everywhere except at x  ± 3. (Sharp turns in the graph.) 74. f x is differentiable everywhere except at x  1. (Discontinuity) 76. f x is differentiable everywhere except at x  0. (Sharp turn in the graph) 78. f x is differentiable everywhere except at x  ± 2. (Discontinuities) 80. f x is differentiable everywhere except at x  1. (Discontinuity) 82. f x  1  x2 The derivative from the left does not exist because lim

x→1

1  x2  0

1  x2 f x  f 1  lim  lim x→1 x→1 x1 x1 x1



1  x2

1  x2

lim   x→1

1x

1  x2

  . (Vertical tangent)

The limit from the right does not exist since f is undefined for x > 1. Therefore, f is not differentiable at x  1. 84. f x 

xx,, xx >≤ 11 2

The derivative from the left is lim

x→1

f x  f 1 x1  lim  lim 1  1. x→1 x  1 x→1 x1

The derivative from the right is lim 

x→1

f x  f 1 x2  1  lim  lim x  1  2. x→1 x  1 x→1 x1

These one-sided limits are not equal. Therefore, f is not differentiable at x  1.

Section 2.1

86. Note that f is continuous at x  2. f x 



1 2x

The Derivative and the Tangent Line Problem

337

 1, x < 2 x ≥ 2

2x,

The derivative from the left is lim

x→2

f x  f 2  1 x  1  2  lim 12 x  2  1.  lim 2 x→2 x→2 x  2 x2 x2 2

The derivative from the right is lim

x→2

2x  2 f x  f 2  lim x→2 x2 x2

 lim x→2



2x  2

2x  2

2x  4 2x  2 2 1  lim  lim x  2 2x  2 x→2 x  2 2x  2 x→2 2x  2  2.

The one-sided limits are equal. Therefore, f is differentiable at x  2.  f2  12  88. (a) f x  x2 and fx  2x

72. (b) gx  x3 and gx  3x2

y

y

5

3

4

f

g′

3

2

2

−4 −3 −2 −1

f'

g

1

1 x 1

2

3

4

−2

x

−1

1

2

−1 −3

72. (c) The derivative is a polynomial of degree 1 less than the original function. If hx  x n, then hx  nx n1. 72. (d) If f x  x4, then fx  lim

x→0

f x  x  f x x

 lim

x  x4  x4 x

 lim

x4  4x3x  6x2x2  4xx3  x4  x4 x

 lim

x4x3  6x2x  4xx2  x3 x

x→0

x→0

x→0

 lim 4x3  6x2x  4xx2  x3  4x3 x→0

Hence, if f x  x , then fx  4x3 which is consistent with the conjecture. However, this is not a proof, since you must verify the conjecture for all integer values of n, n ≥ 2. 4



90. False. y  x  2 is continuous at x  2, but is not differentiable at x  2. (Sharp turn in the graph) 92. True—see Theorem 2.1

94.

3

−3

3 −1

As you zoom in, the graph of y1  x2  1 appears to be locally the graph of a horizontal line, whereas the graph of y2  x  1 always has a sharp corner at 0, 1. y2 is not differentiable at 0, 1.



338

Chapter 2

Differentiation

Section 2.2

Basic Differentiation Rules and Rates of Change

y  x12

2. (a)

y  x1

(b)

y  x2

y   12 x32

5 15 y  3x4  2 sin x   2 sin x 8 8x4

4 y   x3 3

y  

4 3x3

y  

2 9x3

28. y 

 3x2

y

30. y 

4 x3

y  4x3

 2 x 9

35, 2

y  

2 3 x 9

y  12x2

y  12x2 34.

y  3x3  6, 2, 18

36. f x  35  x2, 5, 0

y  9x2

3 ft  2 5t

38.

5 5  2 cos x  x3  2 cos x 2x3 8

Simplify

2 y  x2 3

f

fx  6x2  2x  3

Derivative

2 3x2

3 , 5t

18. f x  2x3  x2  3x

Rewrite

26. y 

f t  3 

24. y 

y  cos x

Function

1 1 y  x34  34 4 4x

8 x9

y  3x 2

22. y  5  sin x

gt    sin t

4 x  x14 10. y  

16. y  8  x3

y  2t  2

20. gt   cos t

y1  2

1  x8 x8

y  8x9 

14. y  t2  2t  3

gx  3

32.

8. y 

y  8x7

f x  0

 3x2  30x  75

y2  36

fx  6x  30 f5  0

35  35 gt  2  3 cos t, , 1

40. f x  x2  3x  3x2

gt  3 sin t g  0

44. hx 

y  2x3

y1   32

6. y  x8

4. f x  2

y  x2

(d)

y   32 x52

y1  1

y1   12

12. gx  3x  1

y  x32

(c)

2x2  3x  1  2x  3  x1 x

1 2x2  1 hx  2  2  x x2 3 x  5 x  x13  x15 48. f x  

1 1 1 1 fx  x23  x45  23  45 3 5 3x 5x

42. f x  x  x2

fx  2x  3  6x3  2x  3 

fx  1  2x3

6 x3

1

2 x3

46. y  3x6x  5x 2  18x 2  15x3 y  36x  45x 2

50. f t  t23  t13  4 2 1 2 1 ft  t13  t23  13  23 3 3 3t 3t

Section 2.2

52. f x  fx 

2 3  x

Basic Differentiation Rules and Rates of Change

339

 3 cos x  2x13  3 cos x

2 43 2 x  3 sin x  43  3 sin x 3 3x

54. (a) y  x3  x

(b)

y  3x2  1

5

−5

5

At 1, 2: y  312  1  4. y  2  4x  1

Tangent line:

−7

4x  y  2  0 56. (a) y  x2  2xx  1

(b)

12

 x3  3x2  2x y  3x2  6x  2 −3

At 1, 6: y  312  61  2  11.

3 −2

Tangent line: y  6  11x  1 0  11x  y  5 60. y  x2  1

58. y  x3  x y  3x2  1 > 0 for all x.

y  2x  0 ⇒ x  0

Therefore, there are no horizontal tangents.

At x  0, y  1. Horizontal tangent: 0, 1 64. k  x 2  4x  7

62. y  3x  2 cos x, 0 ≤ x < 2 y  3  2 sin x  0 sin x 

3

2

⇒ x

2x  4

 2 or 3 3

At x 

3  3  ,y . 3 3

At x 

2 23  3 ,y . 3 3

Horizontal tangents:

3 ,

3  3

3

66. kx  x  4

Equate functions

k 1 2x

Equate derivatives

Hence, k  2x and

Equate functions Equate derivatives

Hence, x  2 and k  4  8  7 ⇒ k  3

, 23, 2

3  3

3



2x x  x  4 ⇒ 2x  x  4 ⇒ x  4 ⇒ k  4

68. The graph of a function f such that f > 0 for all x and the rate of change the function is decreasing i.e. f  < 0 would, in general, look like the graph at the right.

y

x

340

Chapter 2

Differentiation

72.

70. gx  5f x ⇒ gx  5fx

y 2

f

1 −2

x

−1

1

3

4

f′ −3 −4

If f is quadratic, then its derivative is a linear function. f x  ax2  bx  c fx  2ax  b 74. m1 is the slope of the line tangent to y  x. m2 is the slope of the line tangent to y  1x. Since y  x ⇒ y  1 ⇒ m1  1 and y 

1 1 1 ⇒ y  2 ⇒ m2  2 . x x x

The points of intersection of y  x and y  1x are 1 ⇒ x2  1 ⇒ x  ± 1. x

x

At x  ± 1, m2  1. Since m2  1m1, these tangent lines are perpendicular at the points intersection. 2 76. f x  , 5, 0 x fx   

78. f4  1 16

2 x2

2 0y  x2 5  x

−10

10  2x  x2y 10  2x  x2

2x 

10  2x  2x 4x  10 5 4 x ,y 2 5 The point  52 , 45  is on the graph of f. The slope of the

8 tangent line is f 52    25 .

Tangent line:

19 −1

y



8 5 4  x 5 25 2

25y  20  8x  20 8x  25y  40  0



Section 2.2

Basic Differentiation Rules and Rates of Change

(b) fx  3x2

80. (a) Nearby point: 1.0073138, 1.0221024 Secant line: y  1 

Tx  3x  1  1  3x  2

1.0221024  1 x  1 1.0073138  1

(c) The accuracy worsens at you move away from 1, 1.

y  3.022x  1  1 (Answers will vary.)

341

2

2

(1, 1) −3

(1, 1) −3

3

f

T

3 −2 −2

(d)

x

3

2

1

f x

8

1

0

Tx

8

5

2

 0.5 0.125  0.5

 0.1

0

0.1

0.5

1

2

3

0.729

1

1.331

3.375

8

27

64

0.7

1

1.3

2.5

4

7

10

The accuracy decreases more rapidly than in Exercise 59 because y  x3 is less “linear” than y  x32. 82. True. If f x  gx  c, then fx  gx  0  gx. 86. False. If f x 

1 n  xn, then fx  nxn1  n1 xn x

88. f t  t2  3, 2, 2.1 ft  2t

2, 1 ⇒ f2  22  4 2.1, 1.41 ⇒ f2.1  4.2 Average rate of change: f 2.1  f 2 1.41  1   4.1 2.1  2 0.1

st  16t2  22t  220 vt  32t  22 v3  118 ftsec st  16t2  22t  220  112 height after falling 108 ft 16t2

6

90. f x  sin x, 0, fx  cos x

Instantaneous rate of change:

92.

84. True. If y  x  1 x, then dydx  11  1.

 22t  108  0

2t  28t  27  0 t2 v2  322  22  86 ftsec

Instantaneous rate of change:

0, 0 ⇒ f0  1

6 , 12 ⇒ f6  

3

2

0.866

Average rate of change: f 6  f 0 12  0 3   0.955 6  0 6  0  94. st  4.9t2  v0t  s0  4.9t2  s0  0 when t  6.8. s0  4.9t2  4.96.82  226.6 m

342

Chapter 2

96.

Differentiation

98. This graph corresponds with Exercise 75.

v

s 10

40

Distance (in miles)

Velocity (in mph)

50

30 20 10 t 2

4

6

8

8

4 2

10

Time (in minutes)

(10, 6)

6

(0, 0)

(4, 2)

(6, 2) t

2

4

6

8

10

Time (in minutes)

(The velocity has been converted to miles per hour) 1 100. st   at2  c and st  at. 2 Average velocity:

st0  t  st0  t  12at0  t2  c   12at0  t2  c  t0  t  t0  t 2t 

 12at02  2t0t  t2  12at02  2t0t  t2 2t



2at0t 2t

 at0  st0 Instantaneous velocity at t  t0 102. V  s3,

dV  3s2 ds

When s  4 cm, 104.

dV  48 cm2. ds

C  gallons of fuel usedcost per gallon 

18,750 1.25  15,000 x  x

dC 18,750  dx x2 x

10

C

1875

dC dx

 187.5

15 1250  83.333

20 537.5  46.875

25 750  30

30 625  20.833

35

40

535.71

468.75

 15.306

 11.719

The driver who gets 15 miles per gallon would benefit more from a 1 mile per gallon increase in fuel efficiency. The rate of change is larger when x  15. 106.

dT  KT  Ta dt

Section 2.2

Basic Differentiation Rules and Rates of Change

1 108. y  , x > 0 x y  

y

1 x2

2

( )

(a, b) = a, a1

At a, b, the equation of the tangent line is

1

x 1 1 2   2x  a or y   2  . a a a a

y

343

x 1

2

3

The x-intercept is 2a, 0.

 2a.

The y-intercept is 0,



1 2 1  2. The area of the triangle is A  bh  2a 2 2 a 110. y  x2 y  2x (a) Tangent lines through 0, a: y  a  2xx  0 x2  a  2x2 a  x2 ± a  x

The points of tangency are  ± a, a. At a, a the slope is y  a  2a. At   a, a the slope is y   a  2a. Tangent lines: y  a  2a x  a and y  a  2a x  a y  2a x  a

y  2a x  a

Restriction: a must be negative. (b) Tangent lines through a, 0: y  0  2xx  a x2  2x2  2ax 0  x2  2ax  xx  2a The points of tangency are 0, 0 and 2a, 4a2. At 0, 0 the slope is y0  0. At 2a, 4a2 the slope is y2a  4a. Tangent lines: y  0  0x  0 and y  4a2  4ax  2a y0

y  4ax  4a2

Restriction: None, a can be any real number.



f2x  sin x is differentiable for all x 0.

112. f1x  sin x is differentiable for all x n, n an integer.

You can verify this by graphing f1 and f2 and observing the locations of the sharp turns.

344

Chapter 2

Differentiation

Section 2.3

The Product and Quotient Rules and Higher-Order Derivatives

3 2. f x  6x  5x  2

4. gs  s4  s2  s124  s2

fx  6x  53x 2  x3  26

4  s2 1 gs  s122s  4  s 2 s12  2s 32  2 2 s12

 18x3  15x 2  6x3  12  24x3  15x2  12



6. gx  x sin x

8. gt 

gx  x cos x  sin x

10. hs 

hs 

21 x  x cos x  21 x sin x

gt 

s s  1

12. f t 

s  11  s

12s 

ft 

12

s  12 1 2 s  12

s  1  s





16. f x 

fx  x2  2x  13x2  x3  12x  2 

x  1  2x  1  2

 x  1  2

5x2

t2  2 2t  7

2t  72t  t2  22 2t2  14t  4  2t  72 2t  72 cos t t3 t 3sin t  cos t3t 2 t sin t  3 cos t  t 32 t4

s  2 2 2s  1

14. f x  x2  2x  1x3  1

3x2

4  5s 2 2s12

2

x2

fx 

 x  1

 2x  2



f1  0

x1 x1

x  11  x  11 x  12 x1x1 x  12

 f2   18.

f x 

sin x x

fx 

xcos x  sin x1 x2

 f

2 x  12 2  2 2  12

x cos x  sin x x2

6   6 3236  12 

2



33  18 2



3 3  6 2

Function 20. y 

5x 2  3 4

Rewrite

Derivative

3 5 y  x2  4 4

y 

10 x 4

Simplify y 

5x 2

Section 2.3

Function

The Product and Quotient Rules and Higher-Order Derivatives

Rewrite

Derivative

Simplify

22. y 

4 5x2

4 y  x2 5

8 y   x3 5

y  

24. y 

3x2  5 7

5 3 y  x2  7 7

y 

6x 7

6 y  x 7

26. f x  fx  

2 4 4 x  1 28. f x  x 1  x  1  x x  1



x3  3x  2 x2  1

x2  13x2  3  x3  3x  22x x2  12 x4  6x2  4x  3 x2  12

12x   x 12



5 16 x  x23 6



5 1  6x16 x23

12

fx  x4

 3

13x  23







 x  1x  1x  1   xx  11 4x 

 2x3

3 x x  3  x13x12  3 30. f x    

fx  x13

8 5x3

3

2

 2xxx1 2 2

2

32. hx  x2  12  x4  2x2  1 hx  4x3  4x  4xx2  1

Alternate solution: 3 x x  3 f x    

 x56  3x13 5 fx  x16  x23 6 

5 1  6x16 x23

34. gx  x 2

2x  x 1 1  2x  x x 1

gx  2 

2

x  12x  x 21 2x 2  2x  1  x 2  2x x 2  2x  2   x  12 x  12 x  12

36. f x  x2  xx2  1x2  x  1 fx  2x  1x2  1x2  x  1  x2  x2xx2  x  1  x2  xx2  12x  1  2x  1x 4  x3  2x2  x  1  x2  x2x3  2x2  2x  x2  x2x3  x2  2x  1  2x5  x 4  3x3  x  1  2x5  2x2  2x5  x 4  x3  x2  x  6x5  4x3  3x2  1

38. f x 

c2  x2 c2  x2

c2  x22x  c2  x22x fx  c2  x22 

4xc2 c2  x22

40. f     1 cos  f    1sin   cos 1  cos     1 sin 

345

346

Chapter 2

42. f x  fx  46. hs 

Differentiation

44. y  x  cot x

sin x x

y  1  csc2 x  cot2 x

x cos x  sin x x2 1  10 csc s s

hs  

48. y 

1  10 csc s cot s s2

y  

sec x x x sec x tan x  sec x x2 sec xx tan x  1 x2

52. f x  sin x cos x

50. y  x sin x  cos x

fx  sin xsin x  cos xcos x

y  x cos x  sin x  sin x  x cos x

 cos 2x 54. h  5 sec    tan  h  5 sec  tan   5 sec   

56. f x  sec2

  tan 

x x x 1 3x

fx  2 58. f   f 

sin  1  cos 

2

2

2

 x  1

x5  2x3  2x2  2 (form of answer may vary) x2  12

60. f x  tan x cot x  1

1 cos   1  cos   1 1  cos 2

fx  0 f1  0

(form of answer may vary) f x  sin xsin x  cos x

62.

fx  sin xcos x  sin x  sin x  cos xcos x  sin x cos x  sin2 x  sin x cos x  cos2 x  sin 2x  cos 2x f

4   sin 2  cos 2  1

64. (a) f x  x  1x2  2, 0, 2

51. (b)

4

fx  x  12x  x2  21  3x2  2x  2 −4

f0  2  slope at 0, 2.

4

Tangent line: y  2  2x ⇒ y  2x  2 66. (a) f x 

x1 , x1

2, 13

fx 

x  11  x  11 2  x  12 x  12

f2 

2 1  slope at 2, . 9 3

Tangent line: y 

 

1 2 1 2  x  2 ⇒ y  x  3 9 9 9

−4

54. (b)

4

−3

6

−4

Section 2.3

f x  sec x,

68. (a)

3 , 2

The Product and Quotient Rules and Higher-Order Derivatives

. (b)

347

6

fx  sec x tan x f

3   23  slope at 3 , 2.

−

 −2

Tangent line:



y  2  23 x 

 3



63x  3y  6  23  0 70. f x  fx 

x2 x2  1

72. f x 

xcos x  3  sin x  3x1 x cos x  sin x  x2 x2

gx 

xcos x  2  sin x  2x1 x cos x  sin x  x2 x2

x2  12x  x22x 2x  2 x2  12 x  12

fx  0 when x  0.

sin x  2x sin x  3x  5x   f x  5 x x

gx 

Horizontal tangent is at 0, 0.

f and g differ by a constant.

74. f x 

cos x  xn cos x xn

76. V   r 2h  t  2

fx  xn sin x  nxn1 cos x 

xn1



1  t32  2t12 2

x sin x  n cos x

Vt 

x sin x  n cos x xn1

When n  1: fx  

x sin x  cos x . x2

When n  2: fx  

x sin x  2 cos x . x3

When n  3: fx  

x sin x  3 cos x . x4

When n  4: fx  

x sin x  4 cos x . x5

For general n, fx  

x sin x  n cos x . x n1

78.

P

fx  gx 1 sin x  sec x tan x cos x cos x  1 ⇒ sec x tan x  csc x cot x ⇒  1 ⇒ csc x cot x 1 cos x  sin x sin x sin3 x 3  1 ⇒ tan x  1 ⇒ tan x  1 cos3 x 3 7  , 4 4



dP k  2 dV V

gx  csc x, 0, 2

x

1 3 12 3t  2  cubic inchessec t  t12   2 2 4t12

k V

f x  sec x

80.

12t 

348

Chapter 2

Differentiation

82. (a) nt  9.6643t2  90.7414t  77.5029 vt  276.4643t2  2987.6929t  1809.9714 (b) A 

vt 276.46t2  2987.69t  1809.97 nt 9.66t2  90.74t  77.50

86. f x 

fx  1 

64 x3

192 x4

40.46x 2  2.09x  17.83 x 2  9.39x  8.022

1 x2  2x  1 x2 x x

fx  1  f x  

32 x2

f x 

A represents the average retail value (in millions of dollars) per 1000 motor homes. (c) At

84. f x  x 

88. f x  sec x fx  sec x tan x

1 x2

f x  sec xsec2 x  tan xsec x tan x  sec xsec2 x  tan2 x

2 x3 92. f 4x  2x  1

90. f x  2  2x1 f x  2x2 

94. The graph of a differentiable function f such that f > 0 and f < 0 for all real numbers x would in general look like the graph below.

f 5x  2

2 x2

f 6x  0

y

f x

98. f x  gxhx

96. f x  4  hx

100.

fx  hx

fx  gxhx  hxgx

f2  h2  4

f2  g2h2  h2g2

y 3

f′

f f ′′

 34  12

−2

 14

−1

x −1

2

3

4

−2

It appears that f is quadratic; so f would be linear and f would be constant. 102. st  8.25t2  66t

Average velocity on:

vt  16.50t  66 at  16.50 tsec st ft

0

1

2

3

0

57.75

99

123.75

vt  st ftsec

66

49.5

33

16.5

at  vt ftsec2

 16.5

 16.5

 16.5

 16.5

4

0, 1 is

57.75  0  57.75. 10

1, 2 is

99  57.75  41.25. 21

2, 3 is

123.75  99  24.75. 32

3, 4 is

132  123.75  8.25. 43

132 0  16.5

Section 2.3

104. (a)

The Product and Quotient Rules and Higher-Order Derivatives

f x  x n

f x 

86. (b)

f n x  nn  1n  2 . . . 21  n! f nx   Note: n!  nn  1 . . . 3

1 x

1nnn  1n  2 . . . 21 x n1 1nn! x n1

 2  1 (read “n factorial.”)

106. xf x   xfx  f x

xf x  xf x  f x  f x  xf x  2f x

xf x   xf x  f x  2f x  xf x  3f x In general, xf x n  xf nx  nf n1x. f

2   1

fx  cos x

f

2   0

f x  sin x

f

2   1 

(a) P1x  fax  a  f a  0 x  P2x 

 11 2



(b)

1 1  f ax  a2  fax  a  f a  1 x  2 2 2

1



1  x 2 2







2

2

1

2

(π2 , 1

(

108. f x  sin x

− 2

3 2

−2

(c) P2 is a better approximation than P1. (d) The accuracy worsens as you move farther away from x  a  110. True. y is a fourth-degree polynomial.

112. True

114. True. If vt  c then at  vt  0.

dny  0 when n > 4. dx n 116. (a)  fg  fg  fg  fg  fg  f g  fg  f g

True

(b)  fg   fg  fg  fg  fg  fg  f g  fg  2f g  f g

fg  f g

 . 2

False

349

350

Chapter 2

Differentiation

Section 2.4

The Chain Rule

y  f gx 2. y 

1 x  1

4. y  3 tan x 2 6. y  cos

3x 2

u  gx

y  f u

ux1

y  u12

u   x2

y  3 tan u

u

3x 2

y  cos u

8. y  2x3  12

10. y  34  x 25

y  22x3  16x 2  12x22x3  1

y  154  x 22x  30x4  x 2 14. gx  5  3x  5  3x12

12. f t  9t  223

1 3 gx  5  3x123  2 25  3x

2 6 ft  9t  2139  3 3 9t  2





16. gx  x2  2x  1  x  12  x  1 gx 

3 27 fx   2  9x349  4 42  9x34

1,1, xx >< 11

20. st  t 2  3t  11

22. y  5t  33

st  1t 2  3t  122t  3 

18. f x  32  9x14

y  15t  34 

 2t  3 t2  3t  12

24. gt  t2  212

15 t  34

26. f x  x3x  93

1 t gt   t2  2322t   2 2 t  232

fx  x33x  923  3x  931  3x  929x  3x  9  27x  324x  3

1 28. y  x 216  x 2 2

30. y 





1 1 y  x 2 16  x 2122x  x16  x 212 2 2 

x3  x16  x 2 216  x 2



x3x 2  32 216  x 2

32. ht 



ht  2 

t2 t3  2

t

3



t2 2

t

3

 22t  t23t2 t3  22

2t24t  t4 2t34  t3  3 t3  23 t  23

1 x 4  4121  x x 4  4124x 3 2 y  x4  4 

2



x x4  4

x 4  4  2x 4 4  x4 4 32  x  4 x 4  432

Section 2.4

34. gx 



gx  3  36. y  y 

3x 2  2 2x  3



2

2

2

 22



33x 2  226x 2  18x  4 63x 2  223x 2  9x  2  2x  34 2x  34

x 2x 1

38. f x  x2  x2 fx 

1 2xx  132

x  25x  2 2x

The zeros of f correspond to the points on the graph of f where the tangent lines are horizontal.

y has no zeros. 7

4

y f′

y′ −6

6

f

−3

6

−1 −2

40. y  t 2  9t  2 y 

42. gx  x  1  x  1

5t2  8t  9 2t  2

gx 

The zero of y corresponds to the point on the graph of y where the tangent line is horizontal.

1 1  2x  1 2x  1

g has no zeros. 6

15

g

y′

g′

y −3

6

−2

10 −2

− 15

44.

y  x2 tan

1 x

6

y

1 1 dy  2x tan  sec2 dx x x

−4

y  sin 3x

5

y′

The zeros of y correspond to the points on the graph of y where the tangent lines are horizontal.

46. (a)

351

3

3x2x  32 2x  36x2x  33x 2

The Chain Rule

−6

(b)

y  sin

y  3 cos 3x y0  3 3 cycles in 0, 2

y  y0 

2x

12 cos 2x 1 2

Half cycle in 0, 2 The slope of sin ax at the origin is a.

352

48.

Chapter 2

Differentiation

y  sin  x

50. hx  secx2 hx  2x secx2 tanx2

dy   cos  x dx 52. y  cos 1  2x2  cos 1  2x2 y  sin 1  2x221  2x2  41  2x sin1  2x2 54. g  sec g  sec

12 tan 12

12 sec 12 12  tan 12 sec 12 tan 12 12 2

sec 12  tan 12

1 1 sec  2 2



2

2

cos v  cos v  sin v csc v

56. gv 

gv  cos vcos v  sin vsin v  cos2 v  sin2 v  cos 2v 60. gt  5 cos 2  t  5cos  t2

58. y  2 tan3 x y  6 tan2 x  sec2 x

gt  10 cos  tsin  t  10 sin  tcos  t  5 sin 2 t

62. ht  2 cot2 t  2

64.

ht  4 cot t  2csc2 t  2

y  3x  5 cos x 2  3x  5 cos 2 x 2

 4 cot t  2 csc2 t  2

dy  3  5 sin 2 x 22 2x dx  3  10 2x sinx2

66. y  sin x13  sin x13 y  cos x13 

68.

13x  31sin x 23



cos x 1 cos x13  3 x23 sin x23

23

cos x

y  3x3  4x15, 2, 2 1 y  3x3  4x459x2  4 5  y2 

70. f x 



x2

1  x2  3x2,  3x2

fx  2x2  3x32x  3  f4   74. y 

y  

22x  3 x2  3x3

72. f x  fx 

1 2 x1 , 2, 3 2x  3

2x  31  x  12 5  2x  32 2x  32

f2  5

5 32

1  cos x, x

4, 161

9x2  4 53x3  4x45

2 , 2

1 sin x  x2 2cos x

y2 is undefined.

Section 2.4

1 76. (a) f x  xx2  5 , 2, 2 3



f x  tan2 x,

78. (a)

f

x2 1   x2  5 3x2  5 3

62. (b)

4 , 1

4  212  4

Tangent line:

4 1 13 f2   3  33 3 9

y2

353

fx  2 tan x sec2 x

1 1 1 fx  x x2  5122x  x2  512 3 2 3



y14 x 64. (b)

Tangent line:

The Chain Rule

13 x  2 ⇒ 13x  9y  8  0 9

 ⇒ 4x  y  1    0 4



4

−



6 −4 −9

9

−6

80. f x  x  21 fx   x  22  f x  2x  23 

1 x  22

2 x  23

82. f x  sec2  x fx  2 sec  x sec  x tan  x  2 sec2  x tan  x f x  2 sec2  xsec2  x  2 tan  x2 sec2  x tan  x  2 2 sec4  x  4 2 sec2  x tan2  x  2 2 sec2  xsec2  x  2 tan2  x  2 2 sec2  x3 sec2  x  2 84.

y

f

86.

3

f′

y

4

f

3

2

2

1 −3

f′

−2

−1

x −1

1

2

3

−2 −3

f is decreasing on  , 1 so f must be negative there. f is increasing on 1,  so f must be postive there. 88. gx  f x 2 gx  fx 22x ⇒ gx  2x fx 2

f x

−1 −2

4

f′

−3 −4

The zeros of f correspond to the points where the graph of f has horizontal tangents.

354

Chapter 2

Differentiation

90. (a) gx  sin2 x  cos 2 x  1 ⇒ gx  0

92. y  13 cos 12t  14 sin 12t v  y  13 12 sin 12t  14 12 cos 12t

gx  2 sin x cos x  2 cos xsin x  0

 4 sin 12t  3 cos 12t

(b) tan2 x  1  sec2 x

When t  8, y  0.25 feet and v  4 feet per second.

gx  1  f x Taking derivatives of both sides, gx  fx. Equivalently, fx  2 sec x  sec x  tan x and gx  2 tan x  sec2 x, which are the same. 94. y  A cos t (a) Amplitude: A 



3.5  1.75 2

(b) v  y  1.75 

y  1.75 cos t Period: 10 ⇒ 

 0.35  sin

2   10 5

y  1.75 cos

t 5

t 5

96. (a) Using a graphing utility, or by trial and error, you obtain a model of the form

t 1 T t  64.18  22.15 sin 6



(b)

 t sin 5 5

(c) Tt  22.15 cos

6t  1 6

 11.60 cos



6t  1

20

100 0

13

−20 0

13 0

(d) The temperature changes most rapidly when t  4.1 (April) and t  10.1 (October). The temperature changes most slowly Tt  0 when t  1.1 (January) and t  7.1 (July). 98. (a) gx  f x2 ⇒ gx  fx (b) hx  2 f x ⇒ hx  2 fx (c) rx  f 3x ⇒ rx  f3x3  3 f3x Hence, you need to know f3x. 1 r0  3 f0  3  3   1

r1  3 f3  34  12 (d) sx  f x  2 ⇒ sx  fx  2 Hence, you need to know fx  2. s2  f0   13 , etc.

x fx gx hx

2

1

0

1

2

3

4

2 3

 13

1

2

4

4

2 3

 13

1

2

4

8

4 3

 23

2

4

8

12

1

1

2

rx sx

1

3

4

Section 2.4

100. f x  p  f x for all x.

The Chain Rule

102. If f x  f x, then

(a) Yes, fx  p  fx, which shows that f is periodic as well.

d d  f x  f x dx x fx1  fx

(b) Yes, let gx  f 2x, so gx  2 f2x. Since f is periodic, so is g.

fx  fx. Thus, fx is even.

104.

u  u2 d 1 uu d u  u  u 2  u2122uu   u , u 0 dx dx 2 u2 u











fx  2x

xx

2 2



108. f x  sin x

106. f x  x2  4

4 , x ±2 4



fx  cos x

110. (a) f x  sec2x

(b)

x , x k

sin sin x

6

P2

fx  2sec 2xtan 2x

P1

f x  22sec 2xtan 2x tan 2x  2sec 2xsec2 2x2  4sec 2xtan2 2x  sec3 2x f

6  sec 3  2

f

6  2 sec 3 tan 3  43

f

6  423  2  56

f 0.78

0 0

3



P1x  43 x  P2x 

 2 6



1  56 x  2 6





 28 x 

 6



2



2



 43 x 



 43 x 

 2 6



 2 6



(c) P2 is a better approximation than P1. 112. False. If f x  sin2 2x, then fx  2sin 2x2 cos 2x. 114. False. First apply the Product Rule.

(d) The accuracy worsens as you move away from x  6.

355

356

Chapter 2

Differentiation

Section 2.5 2.

Implicit Differentiations

x2  y2  16 2x  2yy  0 y 

x3  y3  8

4.

3x2  3y2y  0

x y

y   x2y  y2x  2

6.

x2 y2

xy12  x  2y  0

8.

1 xy12xy  y  1  2y  0 2

x2y  2xy  y2  2yxy  0

x2  2xyy   y2  2xy

x y y   1  2y  0 2xy 2xy

yy  2x y  xx  2y

xy  y  2xy  4xy y  0 y 

2 sin x cos y  1

10.

2sin xsin yy  cos ycos x  0 y 

2xy  y 4xy  x

sin  x  cos  y2  2

12.

2sin  x  cos y cos  x   sin yy  0

 cos  x  sin  yy  0

cos x cos y sin x sin y

y 

 cot x cot y 14.

cot y  x  y

16. x  sec

csc2 yy  1  y y 

1

1 1  csc2 y

y 

1   tan2 y cot 2 y 18. (a) x2  4x  4  y2  6y  9  9  4  9

x  22  y  32  4 (Circle) y  32  4  x  22 y  3± 4  x  22 (c) Explicitly:

1 y

y 1 1 sec tan y2 y y

y2 1 1  y2 cos cot sec1y tan1y y y

 

(b)

y x 1

2

3

−1

4

5 2

y = −3 + 4 − (x − 2)

−2 −3 −4 −5

dy 1  ± 4  x  22122x  2 dx 2 

x  2

4  x  22

 x  2  ± 4  x  22 

 x  2 3 ± 4  x  22  3



 x  2 y3

y = −3 −

4 − (x − 2)2

(d) Implicitly: 2x  2yy  4  6y  0

2y  6y  2x  2 y 

 x  2 y3

cos  x sin  y

Section 2.5

20. (a) 9y 2  x 2  9 y2  y

x2 9

(b) x2

1

9 9

4

−6

6

± x 2  9

−4

3

dy  (c) Explicitly: dx (d) Implicitly:

9y 2

Implicit Differentiation

1 2

± x 2  9122x

3



±x

3x  9 2



x ±x  3± 3y 9y

x 9 2

18yy  2x  0 18yy  2x y 

2x x  18y 9y

x2  y3  0

22.

x  y3  x3  y3

24.

2x  3y2y  0

x3  3x2y  3xy2  y3  x3  y3

2x 3y2

3x2y  3xy2  0

2 At 1, 1: y  . 3

x 2y  2xy  2xyy  y 2  0

y 

x 2 y  xy 2  0

x2  2xyy   y2  2xy y  

y y  2x xx  2y

At 1, 1: y  1. x3  y3  4xy  1

26.

3x 2  3y 2y  4xy  4y



3y 2

 4xy  4y  y 

At 2, 1, y 

30.

x cos y  1

28.

xy sin y  cos y  0

3x 2

y 

4y  3x 2 3y 2  4x



4  12 8  38 5

1 cot y cot y  x x

 3 : y  21 3.

At 2,

4  xy2  x3 4  x2yy  y21  3x2 y 

cos y x sin y

x3  y3  6xy  0

32.

3x2  3y2y  6xy  6y  0

3x2  y2 2y4  x

y3y2  6x  6y  3x2 y 

At 2, 2: y  2. At

6y  3x2 2y  x2  3y2  6x y2  2x

  169 32 4  .  43, 83 : y  163 649  83 40 5

357

358

Chapter 2

Differentiation

cos y  x

34.

sin y  y  1 y 

1 ,0 < y <  sin y

sin2 y  cos2 y  1 sin2 y  1  cos2 y sin y  1  cos2 y  1  x 2 y 

1 1  x 2

, 1 < x < 1 x2y2  2x  3

36.

2x2yy  2xy2  2  0 x2yy  xy2  1  0 y 

1  xy2 x2y

2xyy  x2 y2  x2yy  2xyy  y2  0 4xyy  x2y2  x2yy  y2  0 4  4xy2 1  xy22   x2yy  y2  0 x x2y2 4xy2  4x2y4  1  2xy2  x2y4  x 4y3y  x2y4  0 x 4y3y  2x2y4  2xy2  1 y  38. 1  xy  x  y

2x2y4  2xy2  1 x4y3

y  xy  x  1 y

y2  4x

40.

2yy  4

x1  1 1x

y 

y  0

y  2y2y 

y  0 42.

y2  2yy   y 



At 2,

2 y

x1 x2  1

x2  11  x  12x x2  12 x2  1  2x2  2x x2  12 1  2x  x2 2yx2  12 5

5

: y  2 15544 4 1  10

Tangent line: y 

1



5

5



2

1 x  2 105

105y  10  x  2 x  105y  8  0

5

.

1

(2, ) 5 5

−1

5

−1

2 4   y

2 y y 2

3

Section 2.5

Implicit Differentiation

44. x2  y2  9 y 

x y

4

(0, 3)

At 0, 3:

−6

6

Tangent line: y  3 Normal line: x  0.

−4

At  2, 5 :

4

Tangent line: y  5  Normal line: y  5  46.

2 x  2 ⇒ 2x  5y  9  0 5 5

2

(2, 5 ) −6

6

x  2 ⇒ 5x  2y  0.

−4

y2  4x 2yy  4 y 

2  1 at 1, 2 y

Equation of normal at 1, 2 is y  2  1x  1, y  3  x. The centers of the circles must be on the normal and at a distance of 4 units from 1, 2. Therefore,

x  12  3  x  22  16 2x  12  16 x  1 ± 22 . Centers of the circles:  1  22, 2  22  and  1  22, 2  22  Equations:  x  1  22  2   y  2  22  2  16

 x  1  22  2   y  2  22  2  16 48. 4x2  y2  8x  4y  4  0 8x  2yy  8  4y  0 y 

8  8x 4  4x  2y  4 y2

Horizontal tangents occur when x  1: 41  2

y2

 81  4y  4  0

y2  4y  y y  4  0 ⇒ y  0, 4 Horizontal tangents: 1, 0, 1, 4. Vertical tangents occur when y  2: 4x2  22  8x  42  4  0 4x2  8x  4xx  2  0 ⇒ x  0, 2 Vertical tangents: 0, 2, 2, 2.

y

(1, 0) −1

1

x 2

3

−1

(2, − 2)

(0, − 2) −3 −4 −5

(1, − 4)

4

359

360

Chapter 2

Differentiation

50. Find the points of intersection by letting y2  x3 in the equation 2x2  3y2  5. 2x2  3x3  5

and

3x3  2x2  5  0

2

2x2 + 3y2 = 5

Intersect when x  1.

(1, 1) −2

Points of intersection: 1, ± 1 y2  x3:

2x 2  3y 2  5:

2yy  3x2

4x  6yy  0

y 

4

(1, − 1)

3x2 2y

y  

−2

y 2= x 3

2x 3y

At 1, 1, the slopes are: y 

3 2

2 y   . 3

At 1, 1, the slopes are: y  

3 2

2 y  . 3

Tangents are perpendicular. 52. Rewriting each equation and differentiating, x3  3y  1 y

x3y  29  3

3

x 1 3

y

y  x2

x (3y − 29) = 3 15



1 3  29 3 x

y  

x 3 = 3y − 3



1 . x2

−15

12 −3

For each value of x, the derivatives are negative reciprocals of each other. Thus, the tangent lines are orthogonal at both points of intersection. 54.

x2  y2  C2 2x  2yy  0

y  Kx

2

2

K=1

y  K −3

x y   y

K = −1

C=1

−3

3

3

C=2

At the point of intersection x, y the product of the slopes is xyK  xKxK  1. The curves are orthogonal.

−2

−2

56. x2  3xy2  y3  10 (a) 2x  3y2  6xyy  3y2y  0

(b) 2x

dx dy dy dx  3y 2  6xy  3y2 0 dt dt dt dt

6xy  3y2y  3y2  2x

2x  3y2

3y2  2x y  2 3y  6xy 58. (a) 4 sin x cos y  1

(b) 4 sin xsin y

4 sin xsin yy  4 cos x cos y  0 y 

cos x cos y sin x sin y

cos x cos y

dx dy  6xy  3y2 dt dt

dy dx  4 cos x cos y  0 dt dt

dx dy  sin x sin y dt dt

Section 2.6

60. Given an implicit equation, first differentiate both sides with respect to x. Collect all terms involving y on the left, and all other terms to the right. Factor out y on the left side. Finally, divide both sides by the left-hand factor that does not contain y.

Related Rates

62.

18

00

1671

B 1994

A 18

00

Use starting point B.

x  y  c

64. 1 2x



1

dy

2y dx

0

y dy  dx x

Tangent line at x0, y0: y  y0  

y0

x  x0

x0

x-intercept:  x0  x0y0, 0 y-intercept:  0, y0  x0y0  Sum of intercepts:

 x0  x0y0    y0  x0y0   x0  2x0y0  y0   x0  y0 2   c 2  c.

Section 2.6 2.

Related Rates

y  2x 2  3x dy dx  4x  6 dt dt

2x

dy dx  2y  0 dt dt



x dx dy   dt y dt

dx 1 dy  dt 4x  6 dt (a) When x  3 and

x2  y2  25

4.

dx dy  2,  43  62  12 dt dt

(b) When x  1 and

dy dx 1 5  5,  5   dt dt 41  6 2



dx y dy   dt x dt (a) When x  3, y  4, and dxdt  8, dy 3   8  6 dt 4 (b) When x  4, y  3, and dydt  2, 3 3 dx   2  . dt 4 2

361

362

6.

Chapter 2

y

Differentiation

8.

1 1  x2

dx 2 dt

dx 2 dt

dx dy  cos x dt dt

dy 2x dx  dt 1  x22 dt



y  sin x



(a) When x  6,

(a) When x  2,

dy   cos 2  3 cmsec. dt 6



dy 222 8   cmsec. dt 25 25

(b) When x  4,

(b) When x  0,

dy   cos 2  2 cmsec. dt 4



dy  0 cmsec. dt

dy   cos 2  1 cmsec. dt 3



dy 222 8   cmsec. dt 25 25

(b) 14.

dx dy negative ⇒ negative dt dt



(c) When x  3,

(c) When x  2,

10. (a)





12. Answers will vary. See page 145.

dx dy positive ⇒ positive dt dt

D  x2  y2  x2  sin2 x dx 2 dt dx x  sin x cos x dx 2  2 sin x cos x dD 1 2  x  sin2 x122x  2 sin x cos x   dt 2 dt x2  sin2 x dt x2  sin2x

16.

A  r2 dA dr  2 r dt dt If drdt is constant, dAdt is not constant. dA dr depends on r and . dt dt

18.

4 V  r3 3 dr 2 dt dr dV  4 r 2 dt dt (a) When r  6,

dV  4 622  288 in3min. dt

When r  24,

dV  4 2422  4608 in3min. dt

(b) If drdt is constant, dVdt is proportional to r2.

20.

V  x3 dx 3 dt dV dx  3x 2 dt dt (a) When x  1, dV  3123  9 cm3sec. dt

(b) When x  10, dV  310 2 3  900 cm3sec. dt

Section 2.6

22.

1 1 V   r 2h   r 23r   r 3 3 3

Related Rates

1 1 25 3 25 3 V   r 2h   h  h 3 3 144 3144

24.

dr 2 dt

By similar triangles, 5r  12h ⇒ r  125 h.

dV dr  3 r 2 dt dt

dV  10 dt

(a) When r  6,

dV 25 2 dh dh 144 dV  h ⇒  dt 144 dt dt 25 h 2 dt



dV  3 622  216 in3min. dt

363

When h  8,

(b) When r  24,



dh 144 9  ftmin. 10  dt 2564 10 5

dV  3 2422  3456 in3min. dt r 12

h

1 26. V  bh12  6bh  6h2 since b  h 2 (a)

dV dh dh 1 dV  12h ⇒  dt dt dt 12h dt When h  1 and

(b) If

x2  y2  25

28. 2x

dy dx  2y 0 dt dt dx y  dt x

dV dh 1 1  2,  2  ftmin dt dt 121 6



dh 3 dV 3  and h  2, then  122  9 ft3min. dt 8 dt 8



0.15y dy dy  since  0.15. dt x dt

When x  2.5, y  18.75,

18.75 dx  0.15 0.26 msec dt 2.5

12 ft 3 ft

5

y

h ft

3 ft

x

30. Let L be the length of the rope. (a)

L2  144  x2 dL dx 2L  2x dt dt dx L dL 4L dL     since  4 ftsec. dt x dt x dt When L  13, x  L2  144  169  144  5 413 52 dx     10.4 ftsec. dt 5 5 Speed of the boat increases as it approaches the dock.

(b) If

dx  4, and L  13, dt

dL x dx  dt L dt 

5 4 13



20 ftsec 13

4 ft/sec 13 ft 12 ft

As L → 0,

dL increases. dt

364

Chapter 2

32.

x 2  y 2  s2 2x

Differentiation

34. s2  902  x2

since dydt  0

dx ds  0  2s dt dt dx s ds  dt x dt

When s  10, x  100  25  75  53 dx 10 480  240   1603 277.13 mph. dt 3 53

2nd

30 ft

x  60

x

dx  28 dt ds x  dt s



3rd

1st

s 90 ft

dx dt

Home

When x  60, s  902  602  3013 ds 60 56  28  15.53 ftsec. dt 3013 13

y

x

s

5 mi

x

20 y  6 yx

36. (a)

20y  20x  6y 20

14y  20x 10 x y 7

6 x y

dx  5 dt 50 dy 10 dx 10   5  ftsec dt 7 dt 7 7 (b)

50 35 15 d y  x dy dx 50     5    ftsec dt dt dt 7 7 7 7

38. xt 

3 sin  t, x2  y2  1 5

(a) Period:

(c) When x 

2  2 seconds 

3 (b) When x  , y  5 Lowest point:

  3 1 5

2

3 ,y 10

1  14

2



15

4

and

3 1 1 3  sin  t ⇒ sin  t  ⇒ t  10 5 2 6

4  m. 5

dx 3   cos  t dt 5

 4 0, 5

x2  y2  1 2x Thus, 

dx dy dy x dx  2y 0⇒  . dt dt dt y dt 310 dy  dt 154



 5  cos 6 3

95 9  . 125 255

Speed 



95 0.5058 msec 125

Section 2.6

1 1 1   R R1 R2

40.

42.

rg tan  v2

32r sec2

dR2  1.5 dt 1 dR  2 dt R1



365

32r tan  v2, r is a constant.

dR1 1 dt

1 R2

Related Rates

d dv  2v dt dt d dv 16r  sec2 dt v dt



dR1 1  2 dt R2



dR2 dt

Likewise,

d v dv  cos2 . dt 16r dt

When R1  50 and R2  75, R  30





1 1 dR  302 1  1.5 dt 502 752  0.6 ohmssec. sin 

44.

10 x

dx  1ftsec dt cos

x 10

dx  dt ddt  10 x

θ

2

d 10 dx  2 sec  dt x dt 

10 10 1 2 221 25 1    0.017 radsec 252  102 252 25 521 2521 525 Police

x 50

tan 

46.

d  302  60 radmin   radsec dt sec2

θ 50 ft

ddt  501 dxdt dx d  50 sec2 dt dt



(a) When  30 ,

dx 200  ftsec. dt 3

(c) When  70 ,

dx 427.43 ftsec. dt

48. sin 22 

x y

(b) When  60 ,

dx  200 ftsec. dt

50. (a) dydt  3dxdt means that y changes three times as fast as x changes.

0 dx x  dt y

x

x y2





dy 1  dt y



dx dt

dy  sin 22 240 89.9056 mihr dt

y x 22˚

(b) y changes slowly when x 0 or x L. y changes more rapidly when x is near the middle of the interval.

366

Chapter 2

Differentiation

52. L2  144  x2; acceleration of the boat 

First derivative: 2L L

d 2x . dt 2

dx dL  2x dt dt dx dL x dt dt

Second derivative: L

d 2L dL  dt 2 dt



dL d 2x dx x 2  dt dt dt



dx dt

 L ddtL  dLdt  dxdt

1 d 2x  dt 2 x When L  13, x  5,

2

2

2

2

dx dL d 2L dL is constant, 2  0.  10.4, and  4 (see Exercise 30). Since dt dt dt dt

d 2x 1  130  42  10.42 dt 2 5 1 1  16  108.16  92.16  18.432 ftsec2 5 5 54.

yt  4.9t2  20

y

dy  9.8t dt y1  4.9  20  15.1 y1  9.8

20

y 20  By similar triangles, x x  12 20x  240  xy. When y  15.1, 20x  240  x15.1

20  15.1x  240 x

240 . 4.9

20x  240  xy 20

dx dy dx x y dt dt dt dx x dy  dt 20  y dt

At t  1,

dx 2404.9 9.8 97.96 msec.  dt 20  15.1

y 12

(0, 0)

x

x

92

Chapter 2

Differentiation

51. x2  y2  25; acceleration of the top of the ladder 

First derivative: 2x

d 2y dt 2

dy dx  2y 0 dt dt dy dx y 0 dt dt

x Second derivative: x

d 2x dx  dt 2 dt



d 2y dy dx y 2  dt dt dt



dy 0 dt

 xddt x  dxdt  dydt 

1 d 2y  dt 2 y When x  7, y  24,

2

2

2

2

dy 7 dx dx d 2x   , and  2 (see Exercise 27). Since is constant, 2  0. dt 12 dt dt dt





d 2y 1 7  70  22   dt 2 24 12

49 1 625    241 4  144   24 144  0.1808 ft sec 2

2

53. (a) Using a graphing utility, you obtain ms  0.881s2  29.10s  206.2 (b)

dm dm ds ds   1.762s  29.10 dt ds dt dt

(c) If t  s 1995, then s  15.5 and Thus,

ds  1.2. dt

dm  1.76215.5  29.101.2  2.15 million. dt

Review Exercises for Chapter 2 1. f x  x2  2x  3 fx  lim

x→0

f x  x  f x x

x  x2  2x  x  3  x2  2x  3 x→0 x

 lim

x2  2xx  x2  2x  2x  3  x2  2x  3 x→0 x

 lim

2xx  x2  2x  lim 2x  x  2  2x  2 x→0 x→0 x

 lim

5. f is differentiable for all x  1.

3. f x  x  1 fx  lim

x→0

 lim

x→0

 lim

x→0

 lim

x→0

 lim

x→0

f x  x  f x x

 x  x  1   x  1 x x  x  x

x



x  x  x x  x  x

x  x  x x x  x  x 1 x  x  x



1 2 x

Review Exercises for Chapter 2



7. f x  4  x  2

1 4 9. Using the limit definition, you obtain gx  x  . 3 6

(a) Continuous at x  2. (b) Not differentiable at x  2 because of the sharp turn in the graph.

4 1 3 At x  1, g1     3 6 2

y 7 6 5 4 3 2 x

−1

1 2 3 4 5 6

−2 −3

11. (a) Using the limit defintion, fx  3x 2.

13. g2  lim

x→2

At x  1, f1  3. The tangent line is y  3x  1

x3  x 2  4 x→2 x2

 lim

0

−4

x 2x  1  4 x→2 x2

 lim

y  2  3x  1

(b)

gx  g2 x2

2

 lim

(−1, −2)

x→2

x  2x 2  x  2 x2

 lim x 2  x  2  8 x→2

−4

15.

19. f x  x8

17. y  25

y

f′

f

fx  8x7

y  0

2

1

x −1

1

21. ht  3t 4

23. f x  x3  3x2

ht  12t 3

fx  3x2  6x  3xx  2

3 x  6x1 2  3x1 3 25. hx  6 x  3

hx  3x1 2  x2 3  29. f    2  3 sin f   2  3 cos

3 x



2 27. gt  t2 3

1 3 x2

gx 

4 3 4 t  3 3 3t

31. f    3 cos 

sin 4

f   3 sin 

cos 4

93

94

Chapter 2

Differentiation

F  200 T

33.

Ft 

35.

st  16t2  s0 s9.2  169.22  s0  0

100 T

s0  1354.24

(a) When T  4, F4  50 vibrations/sec/lb.

The building is approximately 1354 feet high (or 415 m).

(b) When T  9, F9  3313 vibrations/sec/lb. 37. (a)

(c) Ball reaches maximum height when x  25.

y

y  x  0.02x2

(d)

15

y  1  0.04x

10

y0  1

5

y10  0.6

x 20

40

60

Total horizontal distance: 50 (b) 0  x  0.02x2



y25  0 y30  0.2 y50  1



x 0x 1 implies x  50. 50 39. xt  t2  3t  2  t  2t  1 (a) vt  xt  2t  3

(e) y25  0

3 (b) vt < 0 for t < 2 .

(d) xt  0 for t  1, 2.

at  vt  2 3 (c) vt  0 for t  2 . 3 3 1 1 1 x   2  2 2  1    2  2    4

v1  21  3  1

v2  22  3  1 The speed is 1 when the position is 0. 43. hx  x sin x  x1 2 sin x

41. f x  3x2  7x2  2x  3 fx  3x2  72x  2  x2  2x  36x  2

6x3



9x2

 16x  7

1 sin x  x cos x 2 x

x2  x  1 x2  1 x2  12x  1  x2  x  12x fx  x2  12 2  x  1  2 x  12

45. f x  2x  x2

47. f x 



fx  2  2x3  2 1  

hx 

1 x3



2x3  1 x3

51. y 

49. f x  4  3x21 fx   4  3x226x  53. y  3x 2 sec x y  3x 2 sec x tan x  6x sec x

6x 4  3x22

y 

x2 cos x cos x 2x  x 2sin x 2x cos x  x 2 sin x  cos2 x cos2 x

55. y  x tan x y  x sec2 x  tan x

Review Exercises for Chapter 2

59. gt  t3  3t  2

57. y  x cos x  sin x

gt  3t2  3

y  x sin x  cos x  cos x  x sin x

g t  6t 61. f    3 tan

y  2 sin x  3 cos x

63.

f    3 sec2

y  2 cos x  3 sin x

f    6 sec sec tan   6 sec tan

y  2 sin x  3 cos x

2

y  y   2 sin x  3 cos x  2 sin x  3 cos x 0 65. f x  1  x31 2 1 fx  1  x31 23x2 2 

3x2 

2 1  x3

s2

 1

 s

s2

 1

3s2



2

xx  31x

2

2

 11  x  32x x 2  12



2x  3x 2  6x  1 x 2  13

71. y  3 cos3x  1

    5   1 2s



5 2

x3 x2  1

hx  2

69. f s  s2  15 2s3  5 fs  



67. hx 

s3

5 2

s2

3 2

y  9 sin3x  1

3s  1  5  5

3 2

s2

s3

 ss2  13 28s3  3s  25

73. y 

1 csc 2x 2

1 y  csc 2x cot 2x2 2

y 

 csc 2x cot 2x

77. y 

x sin 2x  2 4

75. y 

1 1  cos 2x2 2 4

1  1  cos 2x  sin2 x 2

2 3 2 2 sin x  sin7 2x 3 7

y  sin1 2 x cos x  sin5 2 x cos x

79. y  y 

 cos x sin x1  sin2 x

sin x x2

x  2 cos x  sin x x  22

 cos3 x sin x 81. f t  t2t  15

83. gx  2xx  11 2

ft  tt  147t  2 The zeros of f correspond to the points on the graph of f where the tangent line is horizontal. 0.1

gx 

g does not equal zero for any value of x in the domain. The graph of g has no horizontal tangent lines.

f′

4

−0.1

1.3

g′

f −0.1

x2 x  13 2

−2

7

g −2

95

96

Chapter 2

Differentiation

85. f t  t  11 2t  11 3  t  15 6 ft 

87. y  tan 1  x

5 6t  11 6

y  

f does not equal zero for any x in the domain. The graph of f has no horizontal tangent lines.

sec2 1  x 2 1  x

y does not equal zero for any x in the domain. The graph has no horizontal tangent lines.

5

5

y

f − 20

f′ −2

7

2

y′

−1

−4

91. f x  cot x

89. y  2x2  sin 2x

93. f t 

t 1  t2

ft 

t1 1  t3

f t 

2t  2 1  t4

fx  csc2 x

y  4x  2 cos 2x

f  2 csc xcsc x  cot x

y  4  4 sin 2x

 2 csc2 x cot x

95. g   tan 3  sin  1 g   3 sec2 3  cos  1 g    18 sec2 3 tan 3  sin  1 97. T  700t2  4t  101 T 

1400t  2 t2  4t  102

(a) When t  1, T 

(b) When t  3,

14001  2  18.667 deg hr. 1  4  102

T 

(d) When t  10,

(c) When t  5, T 

14003  2  7.284 deg hr. 9  12  102

14005  2  3.240 deg hr. 25  30  102

T 

140010  2  0.747 deg hr. 100  40  102

x2  3xy  y3  10

99.

2x  3xy  3y  3y2y  0 3x  y2y   2x  3y  2x  3y 3x  y2

y 

y x  x y  16

101. y

12x   x 1 2

y  x

1 2

12y

1 2



y  y1 2  0

 x  2 x yy  y  2 y x 2 xy  x 2 xy  y y  2 y 2 x y 

2 xy  y 2 x



2 y 2 xy  x



2y x  y y 2x y  x x

Review Exercises for Chapter 2

x sin y  y cos x

103.

105.

x cos yy  sin y  y sin x  y cos x

6

(2, 4)

2x  2yy  0 −9

yx cos y  cos x  y sin x  sin y y 

x2  y2  20

97

9

x y   y

y sin x  sin y cos x  x cos y

−6

1 At 2, 4: y   2 1 Tangent line: y  4   x  2 2 x  2y  10  0 Normal line: y  4  2x  2 2x  y  0

107.

y  x dy  2 units sec dt dx dy 1 dx dy  ⇒  2 x  4 x dt dt dt 2 x dt 1 dx  2 2 units/sec. (a) When x  , 2 dt

109.

(b) When x  1,

dx  4 units/sec. dt

(c) When x  4,

dx  8 units/sec. dt

s 1 2  h 2

111. st  60  4.9t2 st  9.8t

1 s h 4

s  35  60  4.9t2 4.9t2

dV 1 dt

w  2  2s  2  2

14h  4 2 h

tan 30 



dV 5 dh  4  h dt 2 dt 2dV dt dh  dt 54  h When h  1,

dh 2  m min. dt 25

1 2

1 3



5 4.9 st xt

xt  3 st

4h 5 5 2 h  8  hh 2 2 4



 25

t

Width of water at depth h:

V

s (t)

ds 5 dx  3  39.8 dt dt 4.9 1 2

2

 38.34 m sec

s 2 h 2

30˚ x(t )

98

Chapter 2

Differentiation

Problem Solving for Chapter 2 1. (a) x 2  y  r2  r2 Circle

3

x 2  y Parabola Substituting,

−3

 y  r2  r2  y

3 −1

y 2  2r y  r 2  r 2  y y2  2r y  y  0 y y  2r  1  0 Since you want only one solution, let 1  2r  0 ⇒ r  12 Graph y  x 2 and x 2  y  12 2  14

(b) Let x, y be a point of tangency: x 2   y  b2  1 ⇒ 2x  2 y  by  0 ⇒ y 

x circle. by

y  x 2 ⇒ y  2x (parabola). Equating, 2x 

x by

3

2b  y  1 by

−3

1 1 ⇒by 2 2

3 −1

Also, x 2   y  b2  1 and y  x 2 imply





y   y  b2  1 ⇒ y  y  y 

1 2

  1 ⇒ y  21  1 ⇒ y  43 and b  45.

 54

Center: 0,



Graph y  x 2 and x 2  y 

3. (a)

5 4



2

1

f x  cos x

P2x  a0  a1x  a2x 2

P10  a0 ⇒ a0  1

f 0  1

P20  a0 ⇒ a0  1

P10  a1 ⇒ a1  0

f0  0

P20  a1 ⇒ a1  0

f  0  1

1 P20  2a2 ⇒ a2   2

f x  cos x

P1x  a0  a1x

f 0  1 f0  0

(b)

P1x  1

1 P2x  1  2x 2

(c)

x

1.0

0.1

0.001

0

0.001

0.1

1.0

cos x

0.5403

0.9950

1

1

1

0.9950

0.5403

P2x

0.5

0.9950

1

1

1

0.9950

0.5

P2x is a good approximation of f x  cos x when x is near 0. (d)

f x  sin x

P3x  a0  a1x  a2 x 2  a3x3

f 0  0

P30  a0 ⇒ a0  0

f0  1

P30  a1 ⇒ a1  1

f  0  0

P30  2a2 ⇒ a2  0

f 0  1

P30  6a3 ⇒ a3   16

P3x  x  6 x3 1

Problem Solving for Chapter 2 5. Let px  Ax3  Bx 2  Cx  D px  3Ax 2  2Bx  C At 1, 1: A  B  C  D  1

Equation 1

3A  2B  C

Equation 2

 14

At 1, 3: A  B  C  D  3 3A  2B  C

Equation 3

 2

Equation 4

Adding Equations 1 and 3: 2B  2D  2 Subtracting Equations 1 and 3: 2A  2C  4 Adding Equations 2 and 4: 6A  2C  12 Subtracting Equations 2 and 4: 4B  16 1 Hence, B  4 and D  22  2B  5 1 Subtracting 2A  2C  4 and 6A  2C  12, you obtain 4A  8 ⇒ A  2. Finally, C  24  2A  0

Thus, px  2x3  4x 2  5. x4  a2 x 2  a 2 y 2

7. (a)

a2 y 2  a2x 2  x 4 y

± a2x 2  x 4

a

Graph: y1  (b)

a2x 2  x4

a

and y2  

a2x 2  x4

a

2

a = 12 −3

3

a=2 a=1 −2

± a, 0 are the x-intercepts, along with 0, 0. (c) Differentiating implicitly, 4x 3  2a2 x  2a2 y y y 

  a2 2

±a 2a2x  4x3 xa2  2x 2   0 ⇒ 2x 2  a2 ⇒ x  . 2 2a2y a2y

2

 a2

a2   a y 2

2 2

a4 a4   a2y 2 4 2 a2y 2 

a4 4

y2 

a2 4

y±

a 2

Four points:

 a2, a2,  a2,  2a,  a2, a2,  a2,  2a

99

100

Chapter 2

9. (a)

Differentiation Line determined by 0, 30 and 90, 6:

y

(0, 30)

30

y  30 

(90, 6) (100, 3) x 90

100

30  6 24 4 4 x  0   x   x ⇒ y   x  30 0  90 90 15 15

When x  100, y 

4 10 100  30  > 3 ⇒ Shadow determined by man. 15 3

Not drawn to scale

(b)

Line determined by 0, 30 and 60, 6:

y

30

(0, 30)

y  30 

(60, 6) (70, 3) x 60

70

Not drawn to scale

30  6 2 2 x  0   x ⇒ y   x  30 0  60 5 5

When x  70, y 

2 70  30  2 < 3 ⇒ Shadow determined by child. 5

(c) Need 0, 30, d, 6, d  10, 3 collinear. 30  6 63 24 3  ⇒  ⇒ d  80 feet 0d d  d  10 d 10 (d) Let y be the length of the street light to the tip of the shadow. We know that For x > 80, the shadow is determined by the man. dy 5 dx 25 5 y yx  ⇒ y  x and   . 30 6 4 dt 4 dt 4 For x < 80, the shadow is determined by the child. y y  x  10 10 100 dy 10 dx 50    . ⇒y x and 30 3 9 9 dt 9 dt 9 Therefore,



25 dy 4  dt 50 9

x > 80 0 < x < 80

dy is not continuous at x  80. dt

11. Lx  lim

x→0

Lx  x  Lx x

 lim

Lx  Lx  Lx x

 lim

Lx x

x→0

x→0

Also, L0  lim

x→0

Lx  L0 x

But, L0  0 because L0  L0  0  L0  L0 ⇒ L0  0. Thus, Lx  L0, for all x. The graph of L is a line through the origin of slope L0.

dx  5. dt

Problem Solving for Chapter 2 13. (a)

z (degrees)

0.1

0.01

0.0001

sin z z

0.0174524

0.0174533

0.0174533

(b) lim

z→0

sin z  0.0174533 z

In fact, lim

z→0

(c)

sin z  z 180

d sin z  z  sin z sin z  lim z →0 dz z  lim

sin z  cos z  sin z  cos z  sin z z

 lim

sin z

z →0

z →0

cos z  1 z

 sin z0  cos z (d) S90  sin

 

lim

z →0

cos z 

sin z z



cos z 180   180

90  sin  1; C180  cos 180  1 180 2 180

d d Sz  sincz  c  coscz  Cz dz dz 180 (e) The formulas for the derivatives are more complicated in degrees. 15. jt  at (a) jt is the rate of change of the acceleration. (b) From Exercise 102 in Section 2.3, st  8.25t 2  66t vt  16.5t  66 at  16.5 at  jt  0

101

Review Exercises for Chapter 2

Review Exercises for Chapter 2

2. f x 

x1 x1

x  x  1 x  1  f x  x  f x x  x  1 x  1 fx  lim  lim x→0 x→0 x x

x  x  1x  1  x  x  1x  1 xx  x  1x  1

 lim

x→0

x2  xx  x  x  x  1  x2  xx  x  x  x  1 x→0 xx  x  1x  1

 lim

2x 2 2  lim  xx  x  1x  1 x→0 x  x  1x  1 x  12

 lim

x→0

2 4. f x  x

6. f is differentiable for all x  3.

fx  lim

x→0

f x  x  f x x

2 2  x  x x  lim x→0 x  lim

2x  2x  2x xx  xx

 lim

2x xx  xx

 lim

2 2  2 x  xx x

x→0

x→0

x→0

8. f x 

x1 4x4xx2,,

if x < 2 if x ≥ 2

2

2

10. Using the limit defintion, you obtain hx 

(a) Nonremovable discontinuity at x  2.

At x  2, h2 

(b) Not differentiable at x  2 because the function is discontinuous there. y 5 4

1 −5 −4

−2 −1 −1

x 1

2

−2

12. (a) Using the limit definition, fx 

2 . x  12

At x  0, f0  2. The tangent line is y  2  2x  0 y  2x  2

(b)

4

(0, 2) −6

6

−4

3 67  42  . 8 8

3  4x. 8

367

368

Chapter 2

14. f2  lim

x→2

Differentiation

f x  f 2 x2

16.

y

1

1 1  x1 3  lim x→2 x2  lim

3x1 x  2x  13

 lim

1 1  x  13 9

x→2

x→2

18. y  12



π 2

x

π 2

−1

f′

22. f t  8t 5

20. gx  x12

y  0

f

ft  40t 4

gx  12x11

24. gs  4s4  5s2

2 28. hx  x2 9

26. f x  x12  x12

gs  16s3  10s

1 1 x1 fx  x12  x32  32 2 2 2x

30. g  4 cos   6

32. g 

g  4 sin  g 

hx 

4 3 4 x  3 9 9x

5 sin   2 3 5 cos  2 3

34. s  16t2  s0 First ball: 16t2  100  0 t

10   2.5 seconds to hit ground 100 16 4

Second ball: 16t2  75  0 t2 

7516  5 4 3  2.165 seconds to hit ground 

Since the second ball was released one second after the first ball, the first ball will hit the ground first. The second ball will hit the ground 3.165  2.5  0.665 second later. 36. st  16t2  14,400  0 16t2  14,400 t  30 sec 1 1 Since 600 mph  6 mi/sec, in 30 seconds the bomb will move horizontally  6 30  5 miles.

Review Exercises for Chapter 2

38.

y

v02 64

(

v02 v02 , 64 128

) 2 0

( v32 , 0 ) x v02 128

(a) y  x 



32 32 2 x  x 1  2x v02 v0

 0 if x  0 or x 



(b) y  1 

v02 . 32

64 x v02

When x 



v02 64 v02 , y  1  2  0. 64 v0 64

Projectile strikes the ground when x  v0232. Projectile reaches its maximum height at x  v0264. (one-half the distance) (c) y  x 





32 2 32 x  x 1  2x  0 v02 v0

(d) v0  70 ftsec

when x  0 and x  x0232. Therefore, the range is x  v0232. When the initial velocity is doubled the range is x

Range: x 

Maximum height: y 

2v0 4v0  32 32 2

v02 702   153.125 ft 32 32

2

v02 702   38.28 ft 128 128

50

or four times the initial range. From part (a), the maximum height occurs when x  v0264. The maximum height is 0





v02 v02 32 v02  2 y  64 64 v0 64

2

v02 v02 v02   .  64 128 128

0

160

If the initial velocity is doubled, the maximum height is



y

v02 2v02 2v02 4  64 128 128





or four times the original maximum height. 40. (a) y  0.14x2  4.43x  58.4

(b)

320

0

60 0

(c)

(d) If x  65, y  362 feet.

12

0

60 0

(e) As the speed increases, the stopping distance increases at an increasing rate.

369

370

Chapter 2

Differentiation

42. gx  x3  3xx  2

44. f t  t 3 cos t

gx  x3  3x1  x  23x 2  3

ft  t3sin t  cos t3t2

 x3  3x  3x3  6x 2  3x  6

 t3 sin t  3t2 cos t

 4x3  6x 2  6x  6 46. f x  fx  

x1 x1

48. f x 

x  11  x  11 x  12

fx 

2 x  12



50. f x  93x2  2x1 fx  93x2  2x26x  2  54. y  2x  x 2 tan x

52. y  181  3x 3x2  2x2

y  56. y 

y  2  x 2 sec2 x  2x tan x y   58. vt  36  t2, 0 ≤ t ≤ 6

sin x x2

x2 cos x  sin x2x x cos x  2 sin x  x4 x3 1  sin x 1  sin x

1  sin x cos x  1  sin xcos x 1  sin x2 2 cos x 1  sin x2

f x 

a4  8 msec

h t  4 sin t  5 cos t

23  5x  3x2 x2  12

fx  3x34

v4  36  16  20 msec

ht  4 cos t  5 sin t

x2  16  6x  52x x2  12

60. f x  12x14

at  vt  2t

62. ht  4 sin t  5 cos t

6x  5 x2  1

9 74 9 x  74 4 4x

y

64.

10  cos x x

xy  cos x  10 xy  y  sin x  0 xy  sin x  y xy  y  sin x  y  y  sin x

66. f x  x2  113 1 fx  x2  1232x 3 2x  3x2  123



68. f x  x2 





5

1 x

2x  x1

1 x

fx  5 x2 

4

2

Review Exercises for Chapter 2

70. h  

371

72. y  1  cos 2x  2 cos2 x

1  3

y  2 sin 2x  4 cos x sin x

1  3  31  21 h   1  6

 2 2 sin x cos x  4 sin x cos x 0

1  21   3  2  1   1  6 1  4 74. y  csc 3x  cot 3x

76. y 

y  3 csc 3x cot 3x  3 csc2 3x  3 csc 3xcot 3x  csc 3x

sec7 x sec5 x  7 5

y  sec6 xsec x tan x  sec4 xsec x tan x  sec5 x tan xsec2 x  1  sec5 x tan3 x

3x

78. f x 

80. y 

x 2  1

1 3x 2  112  3x x 2  1122x 2 fx  x2  1

y 

 x  1 sinx  1  cosx  11 x  12



3x 2  1  3x 2  x 2  132 

cosx  1 x1

1 x  1 sinx  1  cosx  1 x  12

3 x 2  132

82. f x  x  2x  4 2  x2  2x  82

100

f′

fx  4x3  3x2  6x  8  4x  2x  1x  4

−7

The zeros of f correspond to the points on the graph of f where the tangent line is horizontal.

gx 

2x2  1 x2  1

y 

g does not equal zero for any value of x. The graph of g has no horizontal tangent lines.

y does not equal zero for any x in the domain. The graph has no horizontal tangent lines. 75

y′

y

g′ 6

−3

3

g −3

− 60

3x  227x  2 23x

5

−6

5

86. y  3xx  23

84. gx  xx2  112

− 25

f

372

Chapter 2

Differentiation

88. y  2 csc3 x  y  

3 x

10

csc3 x cot x

y

The zero of y corresponds to the point on the graph of y where the tangent line is horizontal.

−4



 2 sec xsec x tan x

y  2 cos 2x

2  2 sec2 x tan x x3

96. hx  xx2  1

x2x2  3 x2  132

x2  9y2  4x  3y  0

23x2  5x  3 x2  12

g x 

26x3  15x2  18x  5 x2  13

(a) When h  9,

4 dv  ftsec. dh 3

(b) When h  4,

dv  2 ftsec. dh

y2  x3  x2y  xy  y2

102.

2x  18yy  4  3y  0

0  x3  x2y  xy  2y2

36y  1y  4  2x y 

0  3x2  x2y  2xy  xy  y  4yy

x2  x  4yy  3x2  2xy  y

4  2x 36y  1

cosx  y  x

104.

gx 

4 dv  dh h

x2  1

h x 

6x  5 x2  1

v  2gh  232h  8h

98.

2x2  1

hx 

100.

94. gx 

y  2 sin x cos x  sin 2x

y  x2  sec2 x y  2x

8

92. y  sin2 x

90. y  x1  tan x 3

y′

−1

106.

 1  y sinx  y  1

3x2  2xy  y x2  x  4y

x2  y2  16

10

2x  2yy  0

y sinx  y  1  sinx  y y  

y 

1  sinx  y sinx  y

 cscx  1  1

y 

−10

x y

At 5, 3: y 

5 3

5 Tangent line: y  3  x  5 3 5x  3y  16  0 3 Normal line:y  3   x  5 5 3x  5y  30  0 108. Surface area  A  6x 2, x length of edge. dx 5 dt da dx  12x  124.55  270 cm2sec dt dt

10

−10

Problem Solving for Chapter 2 tan   x

110.

d  32 radmin dt sec2 

1

θ

ddt  dxdt

x

dx  tan2   16  6x2  1 dt 1 dx 1 15 When x  ,  6  1  kmmin  450 kmhr. 2 dt 4 2





Problem Solving for Chapter 2 2.

Let a, a2 and b, b2  2b  5 be the points of tangency.

y 10 8 6 4 −8 −6 −4 −2

For y  x 2, y  2x and for y  x 2  2x  5, y  2x  2. Thus, 2a  2b  2 ⇒ a  b  1, or a  1  b. Furthermore, the slope of the common tangent line is

x 2 4 6 8 10

−4 −6

a2  b2  2b  5 1  b2  b2  2b  5   2b  2 ab 1  b  b ⇒

1  2b  b2  b2  2b  5  2b  2 1  2b

⇒ 2b2  4b  6  4b2  6b  2 ⇒ 2b2  2b  4  0 ⇒ b2  b  2  0 ⇒ b  2b  1  0 b  2, 1 For b  2, a  1  b  1 and the points of tangency are 1, 1, 2, 5. The tangent line has slope 2: y  1  2x  1 ⇒ y  2x  1 For b  1, a  1  b  2 and the points of tangency are 2, 4 and 1, 8. The tangent line has slope 4: y  4  4x  2 ⇒ y  4x  4. 4. (a) y  x 2, y  2x. Slope  4 at 2, 4. Tangent line: y  4  4x  2 y  4x  4 1

(b) Slope of normal line:  4. 1 Normal line: y  4   4x  2

y   14x  92 y   14x  92  x 2 ⇒ 4x 2  x  18  0 ⇒ 4x  9x  2  0 x  2,  94. Second intersection point:  94, 81 16  (c) Tangent line: y  0 Normal line: x  0 —CONTINUED—

373

374

Chapter 2

Differentiation

4. —CONTINUED— (d) Let a, a2, a  0, be a point on the parabola y  x 2. Tangent line at a, a2 is y  2ax  a  a2. Normal line at a, a2 is 1 y   x  a  a2. To find points of intersection, solve 2a x2   x2  x2 

1 x  a  a2 2a

1 1 x  a2  2a 2

1 1 1 1 x  a2   2a 16a2 2 16a2

x  4a1   a  4a1  2

x



2

1 1 ± a 4a 4a



x

1 1 a ⇒ x  a Point of tangency 4a 4a

x

1 1 1 2a2  1  a ⇒ x  a   4a 4a 2a 2a





The normal line intersects a second time at x  

2a2  1 . 2a

6. f x  a  b cos cx fx  bc sin cx At 0, 1: a  b  1 At

Equation 1

4 , 32: a  b cosc4  23

Equation 2

c4  1

Equation 3

bc sin

From Equation 1, a  1  b. Equation 2 becomes 1  b  b cos From Equation 3, b 

1  cos

c4  23 ⇒ b  b cos c4  12

1 1 1 1 c . Thus  cos  c c c 4 2 c sin c sin c sin 4 4 4

 

 

 

 

c4  21 c sinc4

Graphing the equation gc 

1 c c c sin  cos  1, you see that many values of c will work. 2 4 4

 

 

1 3 3 1 One answer: c  2, b   , a  ⇒ f x   cos 2x 2 2 2 2

Problem Solving for Chapter 2 8. (a) b2y 2  x3a  x; a, b > 0 y2 

(b) a determines the x-intercept on the right: a, 0.

x a  x b2 3

b affects the height.

x3a  x

Graph y1 

b

and y2  

x3a  x

b

(c) Differentiating implicitly. 2b 2 y y  3x 2a  x  x 3  3ax 2  4x 3 y 

3ax 2  4x3 0 2b2y

⇒ 3ax 2  4x3 3a  4x x b2y 2  y2 

3a . 4

1 a 3a4  a  3a4   27a 64  4  3

3

27a 4 33a2 ⇒y± 256b 2 16b

Two points:

10. (a) y  x13 ⇒

3a4 , 3 16b3a , 3a4 , 316b3a  



2

2

dy 1 23 dx  x dt 3 dt

1 dx 1  823 3 dt dx  12 cmsec dt (b) D  x 2  y 2 ⇒



dD 1 2 dx dy  x  y 2 2x  2y dt 2 dt dt



dx dy y dt dt  x 2  y 2 x



y (c) tan   ⇒ sec2  x



812  21 98 49   cmsec. 64  4 68 17

dy dx x y d dt dt  dt x2

68 2

θ 8

From the triangle, sec  

68

8

. Hence

d 81  212 16 4    radsec dt 68 68 17 64 64

 

375

376

Chapter 2

Differentiation

12. Ex  lim

Ex  x  Ex

x

 lim

ExE x  Ex

x

x→0

x→0

 lim Ex

E x x  1

 Ex lim

E x  1

x

x→0

x→0

But, E0  lim

x→0

E x  E0 E x  1  lim  1.

x→0

x

x

Thus, Ex  ExE0  Ex exists for all x. For example: Ex  e x.

14. (a) vt  

27 t  27 ftsec 5

at   (b) vt  

27 ftsec2 5 27 27 t  27  0 ⇒ t  27 ⇒ t  5 seconds 5 5

S5  

27 2 5  275  6  73.5 feet 10

(c) The acceleration due to gravity on Earth is greater in magnitude than that on the moon.

C H A P T E R 3 Applications of Differentiation Section 3.1

Extrema on an Interval

. . . . . . . . . . . . . . 103

Section 3.2

Rolle’s Theorem and the Mean Value Theorem

Section 3.3

Increasing and Decreasing Functions and the First Derivative Test . . . . . . . . . . . . . . 113

Section 3.4

Concavity and the Second Derivative Test . . . . 121

Section 3.5

Limits at Infinity

Section 3.6

A Summary of Curve Sketching

Section 3.7

Optimization Problems . . . . . . . . . . . . . . 145

Section 3.8

Newton’s Method . . . . . . . . . . . . . . . . . 155

Section 3.9

Differentials . . . . . . . . . . . . . . . . . . . . 160

. 107

. . . . . . . . . . . . . . . . . 129 . . . . . . . . . 136

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 163 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . 172

C H A P T E R 3 Applications of Differentiation Section 3.1

Extrema on an Interval

Solutions to Odd-Numbered Exercises

1. f x  fx 

x2 x2  4

3. f x  x 

x2  42x  x22x 8x  2 x2  42 x  42

f0  0

5.

fx  1  27x3  1  f3  1 

f x  x  223

27 27  x  x2 2x2 x 27 x3

27 110 33

7. Critical numbers: x  2 x  2: absolute maximum

2 fx  x  213 3 f2 is undefined. 9. Critical numbers: x  1, 2, 3

11. f x  x2x  3  x3  3x2

x  1, 3: absolute maximum

fx  3x2  6x  3xx  2

x  2: absolute minimum

Critical numbers: x  0, x  2 15. hx  sin2 x  cos x, 0 < x < 2

13. gt  t4  t, t < 3

 124  t

gt  t



1  4  t12

12

1  4  t12t  24  t 2 

hx  2 sin x cos x  sin x  sin x2 cos x  1 On 0, 2, critical numbers: x 

5  , x  , x  3 3

8  3t 24  t

8 Critical number is t  . 3 17. f x  23  x, 1, 2

19. f x  x2  3x, 0, 3

fx  2 ⇒ No critical numbers

fx  2x  3

Left endpoint: 1, 8 Maximum

Left endpoint: 0, 0 Minimum

Right endpoint: 2, 2 Minimum

Critical number:

 32 , 94  Maximum

Right endpoint: 3, 0 Minimum

103

104

Chapter 3

Applications of Differentiation

3 21. f x  x3  x2, 1, 2 2 fx  3x2  3x  3xx  1 Left endpoint:

1,  25 Minimum

23. f x  3x23  2x, 1, 1 fx  2x13  2 

3 x 2 1    3 x

Left endpoint: 1, 5 Maximum

Right endpoint: 2, 2 Maximum

Critical number: 0, 0 Minimum

Critical number: 0, 0

Right endpoint: 1, 1

1,  21

Critical number:

25. gt  gt 

t2

t2 , 1, 1 3

27. hs 

6t t2  32

Left endpoint:

hs 

1, 41 Maximum

Critical number: 0, 0 Minimum Right endpoint:

1 s  22

Left endpoint:

0,  21 Maximum

Right endpoint: 1, 1 Minimum

1, 14 Maximum  6

29. f x  cos  x, 0,

1

31. y 

fx    sin  x Left endpoint: 0, 1 Maximum Right endpoint:

1 , 0, 1 s2





1 3 Minimum , 6 2

y 

4 x  tan , 1, 2 x 8 4  x 0  sec2 x2 8 8

 x 4 sec2  2 8 8 x On the interval 1, 2, this equation has no solutions. Thus, there are no critical numbers. Left endpoint: 1, 2  3 1, 4.4142 Maximum Right endpoint: 2, 3 Minimum

33. (a) Minimum: 0, 3 Maximum: 2, 1 (b) Minimum: 0, 3

35. f x  x2  2x (a) Minimum: 1, 1 Maximum: 1, 3

(c) Maximum: 2, 1

(b) Maximum: 3, 3

(d) No extrema

(c) Minimum: 1, 1 (d) Minimum: 1, 1

Section 3.1

37. f x 

2x4x , 2, 2

0 ≤ x ≤ 1 1 < x ≤ 3

Extrema on an Interval

105

3 , 1, 4 x1 Right endpoint: 4, 1 Minimum

39. f x 

Left endpoint: 0, 2 Minimum

4

Right endpoint: 3, 36 Maximum 36 −1

4 −1

−1

3 −4

41. (a)

f x  3.2x5  5x3  3.5x, 0, 1

(b)

5

(1, 4.7)

0

fx  16x4  15x2  3.5 16x4  15x2  3.5  0

1

(0.4398, − 1.0613)

x2 

−2

Maximum: 1, 4.7 (endpoint)



Minimum: 0.4398, 1.0613

x

15 ± 152  4163.5 216 15 ± 449 32

15 32

449

0.4398

f 0  0 f 1  4.7 Maximum (endpoint) f

15 32

449

1.0613

Minimum: 0.4398, 1.0613 43. f x  1  x312, 0, 2 3 fx  x21  x312 2 3 f x  x4  4x1  x332 4 3 fx   x6  20x3  81  x352 8 Setting f  0, we have x6  20x3  8  0. x3  x

20 ± 400  418 2 3 10 

± 108  3  1

In the interval 0, 2, choose x



3 10 

± 108  3  1 0.732.



3 10  108 f   1.47 is the maximum value.

45.

f x  x  123, 0, 2 fx 

2 x  113 3

2 f x   x  143 9 8 fx  x  173 27 f 4x   f 5x 

56 x  1103 81

560 x  1133 243 56

 f 40  81 is the maximum value.

106

Chapter 3

Applications of Differentiation

47. f x  tan x f is continuous on 0, 4 but not on 0, . y

49.

51. (a) Yes

53. (a) No

(b) No

(b) Yes

5 4 3

lim tan x  .

x → 2

f

2 1

x

−2 −1

1

3

4

5

6

−2 −3

55. P  VI  RI 2  12I  0.5I 2, 0 ≤ I ≤ 15

S  6hs 

57.

P  0 when I  0.





3s2 3  cos   , ≤ ≤ 2 sin 6 2

dS 3s2    3csc cot  csc2  d 2

P  67.5 when I  15. P  12  I  0



Critical number: I  12 amps

3s 2 csc   3cot  csc   0 2

csc  3cot

When I  12 amps, P  72, the maximum output.

sec  3

No, a 20-amp fuse would not increase the power output. P is decreasing for I > 12.

 arcsec3 0.9553 radians S

6  6hs  3s2  3 

S

2  6hs  3s2  3 

2

2

S arcsec3   6hs 

3s 2  2  2

S is minimum when  arcsec3 0.9553 radians. 59. (a) y  ax2  bx  c

y

A

y  2ax  b

B

The coordinates of B are 500, 30, and those of A are 500, 45. From the slopes at A and B,

9% −500

6%

x 500

1000a  b  0.09 1000a  b  0.06. Solving these two equations, you obtain a  340000 and b  3200. From the points 500, 30 and 500, 45, you obtain 30 

3 3 c 5002  500 40000 200

45 

3 3  c. 5002  500 40000 200



In both cases, c  18.75  y



75 . Thus, 4

3 75 3 x2  x . 40000 200 4

—CONTINUED—

Section 3.2

Rolle’s Theorem and the Mean Value Theorem

107

59. —CONTINUED— (b)

x

500

400

300

200

100

000

100

200

300

400

500

d

0

.75

3

6.75

12

18.75

12

6.75

3

.75

0

For 500 ≤ x ≤ 0, d  ax2  bx  c  0.09x. For 0 ≤ x ≤ 500, d  ax2  bx  c  0.06x. (c) The lowest point on the highway is 100, 18, which is not directly over the point where the two hillsides come together. 61. True. See Exercise 25.

Section 3.2

63. True.

Rolle’s Theorem and the Mean Value Theorem





1. Rolle’s Theorem does not apply to f x  1  x  1 over 0, 2 since f is not differentiable at x  1.

3. f x  x2  x  2  x  2x  1 x-intercepts: 1, 0, 2, 0 1 fx  2x  1  0 at x  . 2

5. f x  x x  4

7. f x  x2  2x, 0, 2

x-intercepts: 4, 0, 0, 0

f 0  f 2  0

1 fx  x x  41 2  x  41 2 2

f is continuous on 0, 2. f is differentiable on 0, 2. Rolle’s Theorem applies.

 x  41 2



2x  x  4



3 8 fx  x  4 x  41 2  0 at x   2 3 9. f x  x  1x  2x  3, 1, 3

fx  2x  2 2x  2  0 ⇒ x  1 c value: 1 11. f x  x2 3  1, 8, 8

f 1  f 3  0

f 8  f 8  3

f is continuous on 1, 3. f is differentiable on 1, 3. Rolle’s Theorem applies.

f is continuous on 8, 8. f is not differentiable on 8, 8 since f0 does not exist. Rolle’s Theorem does not apply.

f x  x3  6x2  11x  6 fx  3x2  12x  11 3x2  12x  11  0 ⇒ x  c

6  3 6  3 ,c 3 3

6 ± 3 3

108

Chapter 3

13. f x 

Applications of Differentiation

x2  2x  3 , 1, 3 x2

f 1  f 3  0 f is continuous on 1, 3. (Note: The discontinuity, x  2, is not in the interval.) f is differentiable on (1, 3. Rolle’s Theorem applies. fx 

x  22x  2  x2  2x  31 0 x  22 x2  4x  1 0 x  22 x

4 ± 2 5  2 ± 5 2

c value: 2 5

15. f x  sin x, 0, 2

17. f x 

f 0  f 2  0

f 0  f

f is continuous on 0, 2. f is differentiable on 0, 2. Rolle’s Theorem applies.



0, 6

6   0

f is continuous on 0,  6. f is differentiable on 0,  6. Rolle’s Theorem applies.

fx  cos x c values:

6x  4 sin2 x, 

 3 , 2 2

fx 

6  8 sin x cos x  0 

6  8 sin x cos x  1 3  sin 2x 4 2 3  sin 2x 2

 

3 1 arcsin x 2 2 x 0.2489 c value: 0.2489 19. f x  tan x, 0, 



f x  x  1, 1, 1

21.

f 0  f   0

f 1  f 1  0

f is not continuous on 0,  since f  2 does not exist. Rolle’s Theorem does not apply.

f is continuous on 1, 1. f is not differentiable on 1, 1 since f0 does not exist. Rolle’s Theorem does not apply. 1

−1

1

−1

Section 3.2

23.

 4, 4 1 1

f x  4x  tan  x,

 



25. f t  16t2  48t  32

(b) v  ft must be 0 at some time in 1, 2.

f is continuous on 1 4, 1 4. f is differentiable on 1 4, 1 4. Rolle’s Theorem applies.

ft  32t  48  0 t

fx  4   sec2  x  0 sec2  x 

109

(a) f 1  f 2  64

1 1 f 0 4 4

f 

Rolle’s Theorem and the Mean Value Theorem

3 seconds 2

4 

sec  x  ± x±

2



1 2 1

 arcsec  ± arccos  

 2

± 0.1533 radian c values: ± 0.1533 radian 0.5

− 0.25

0.25

− 0.5

27.

29. f x 

y

tangent line

1 , 0, 6 x3

f has a discontinuity at x  3.

(c2, f(c2)) f

(a, f(a)) (b, f(b)) (c1, f(c1)) a tangent line

b secant line

x

31. f x  x2 is continuous on 2, 1 and differentiable on 2, 1. f 1  f 2 1  4   1 1  2 3 1 fx  2x  1 when x   . Therefore, 2 1 c . 2

33. f x  x2 3 is continuous on 0, 1 and differentiable on 0, 1. f 1  f 0 1 10 2 fx  x1 3  1 3 x

23

c

8 27

3



8 27

110

Chapter 3

Applications of Differentiation

35. f x  2  x is continuous on 7, 2 and differentiable on 7, 2. f 2  f 7 0  3 1   2  7 9 3 fx 

37. f x  sin x is continuous on 0,  and differentiable on 0, . f   f 0 0  0  0 0 

1 1  3 2 2  x

fx  cos x  0 c

2 2  x  3

39. f x  (a)

2  x 

3 2

2x

9 4



x

1 4

c

1 4

 2

x 1 on  , 2 . x1 2 (c) fx 

1

f

tangent − 0.5

2

secant

1 2  x  12 3

x  12 

−1

3 2

x  1 ±

(b) Secant line: f 2  f 1 2 2 3  1 2  slope   2  1 2 5 2 3 y

2 2  x  2 3 3

6

2

In the interval 1 2, 2, c  1   6 2. f c 

1   6 2

1   6 2  1

Tangent line: y  1 

3y  2  2x  4 3y  2x  2  0

32  1 ±

y1



2 2  6  1

6

6



6 2 2 1  x 3 2

6

6

3



6 2 2 x  3 3 3

3y  2x  5  2 6  0



Section 3.2

Rolle’s Theorem and the Mean Value Theorem

111

41. f x  x, 1, 9

1, 1, 9, 3 m (a)

31 1  91 4 (c)

3

tangent

1 2 x

f 9  f 1 1  91 4

secant

f

fx 

1

9 1

1 (b) Secant line: y  1  x  1 4 y

3 1 x 4 4

1 1  2 c 4

c  2

c4

c, f c  4, 2

0  x  4y  3

m  f4 

1 4

1 Tangent line: y  2  x  4 4 y

1 x1 4

0  x  4y  4 43. st  4.9t 2  500 (a) Vavg 

45. No. Let f x  x2 on 1, 2.

s3  s0 455.9  500   14.7 m sec 30 3

(b) st is continuous on 0, 3 and differentiable on 0, 3. Therefore, the Mean Value Theorem applies.

fx  2x f0  0 and zero is in the interval (1, 2 but f 1  f 2.

vt  st  9.8t  14.7 m sec t

14.7  1.5 seconds 9.8

47. Let St be the position function of the plane. If t  0 corresponds to 2 P.M., S0  0, S5.5  2500 and the Mean Value Theorem says that there exists a time t0, 0 < t0 < 5.5, such that St0  vt0 

2500  0 454.54. 5.5  0

Applying the Intermediate Value Theorem to the velocity function on the intervals 0, t0 and t0, 5.5, you see that there are at least two times during the flight when the speed was 400 miles per hour. 0 < 400 < 454.54

112

Chapter 3

Applications of Differentiation

49. (a) f is continuous on 10, 4 and changes sign,  f 8 > 0, f 3 < 0. By the Intermediate Value Theorem, there exists at least one value of x in 10, 4 satisfying f x  0.

(b) There exist real numbers a and b such that 10 < a < b < 4 and f a  f b  2. Therefore, by Rolle’s Theorem there exists at least one number c in 10, 4 such that fc  0. This is called a critical number.

y

(c)

y

(d)

8

8

4

4 x

−8

−4

x −8

4

−4

4

−4

−4

−8

−8

(e) No, f did not have to be continuous on 10, 4. 51. f is continuous on 5, 5 and does not satisfy the conditions of the Mean Value Theorem. ⇒ f is not differentiable on 5, 5. Example: f x  x

53. False. f x  1 x has a discontinuity at x  0.



y

8

f )x)

x

6

)5, 5)

) 5, 5) 4 2

x 4

2

2

4

2

55. True. A polynomial is continuous and differentiable everywhere. 57. Suppose that px  x2n1  ax  b has two real roots x1 and x2. Then by Rolle’s Theorem, since px1  px2  0, there exists c in x1, x2 such that pc  0. But px  2n  1x2n  a  0, since n > 0, a > 0. Therefore, px cannot have two real roots. 59. If px  Ax2  Bx  C, then px  2Ax  B 

f b  f a Ab2  Bb  C  Aa2  Ba  C  ba ba 

Ab2  a2  Bb  a ba



b  aAb  a  B ba

 Ab  a  B. Thus, 2Ax  Ab  a and x  b  a 2 which is the midpoint of a, b. 61. f x  12 cos x differentiable on  , . fx   12 sin x  12 ≤ fx ≤

1 2

⇒ fx < 1 for all real numbers.

Thus, from Exercise 60, f has, at most, one fixed point. x 0.4502

Section 3.3

Section 3.3

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test

1. f x  x2  6x  8

3. y 

Increasing on: 3, 

Decreasing on: 2, 2 2 7. gx  x  2x  8

5. f x  1  x2 x2

gx  2x  2

2 x3

Critical number: x  1

Discontinuity: x  0 Test intervals: Sign of fx:

 < x < 0

Conclusion:

0 < x <



f > 0

f < 0

Increasing

Decreasing

Test intervals:

 < x < 1

Sign of gx:

g < 0

g > 0

Decreasing

Increasing

Conclusion:

1 < x <



Increasing on: 1, 

Increasing on  , 0

Decreasing on:  , 1

Decreasing on 0,  Domain: 4, 4

9. y  x16  x2 y 

x3  3x 4

Increasing on:  , 2, 2, 

Decreasing on:  , 3

fx 

113

2  8 2  x  22x  22 16  x2 16  x2 x2

Critical numbers: x  ± 22 Test intervals:

4 < x < 22

22 < x < 22

22 < x < 4

y < 0

y > 0

y < 0

Decreasing

Increasing

Decreasing

Sign of y: Conclusion:

Increasing on 22, 22 Decreasing on 4, 22, 22, 4 11. f x  x2  6x

13. f x  2x2  4x  3

fx  2x  6  0

fx  4x  4  0

Critical number: x  3

Critical number: x  1

Test intervals: Sign of fx:

 < x < 3

Conclusion:

3 < x <



Test intervals:

f < 0

f > 0

Sign of fx:

Decreasing

Increasing

Conclusion:

 < x < 1

1 < x <



f > 0

f < 0

Increasing

Decreasing

Increasing on: 3, 

Increasing on:  , 1

Decreasing on:  , 3

Decreasing on: 1, 

Relative minimum: 3, 9

Relative maximum: 1, 5

114

Chapter 3

Applications of Differentiation

15. f x  2x3  3x2  12x fx  6x2  6x  12  6x  2x  1  0 Critical numbers: x  2, 1 Test intervals: Sign of fx:

  < x < 2

2 < x < 1

f > 0

f < 0

f > 0

Increasing

Decreasing

Increasing

Conclusion:

1 < x <



Increasing on:  , 2, 1,  Decreasing on: 2, 1 Relative maximum: 2, 20 Relative minimum: 1, 7 17. f x  x23  x  3x2  x3 fx  6x  3x2  3x2  x Critical numbers: x  0, 2 Test intervals:

 < x < 0

0 < x < 2

Sign of fx:

f < 0

f > 0

f < 0

Conclusion:

Decreasing

Increasing

Decreasing

2 < x <



Increasing on: 0, 2 Decreasing on:  , 0, 2,  Relative maximum: 2, 4 Relative minimum: 0, 0

19. f x 

x5  5x 5

fx  x4  1 Critical numbers: x  1, 1 Test intervals: Sign of fx: Conclusion:

  < x < 1

1 < x < 1

f > 0

f < 0

f > 0

Increasing

Decreasing

Increasing

Increasing on:  , 1, 1,  Decreasing on: 1, 1 Relative maximum:  1, 45  Relative minimum:  1,  45 

1 < x <



Section 3.3

Increasing and Decreasing Functions and the First Derivative Test

21. f x  x13  1

23. f x  x  123

1 1 fx  x23  23 3 3x

fx 

Critical number: x  0

Critical number: x  1

 < x < 0

Test intervals: Sign of fx: Conclusion:

0 < x <



2 3x  113

 < x < 1

Test intervals:

f > 0

f > 0

Sign of fx:

Increasing

Increasing

Conclusion:

Decreasing

Increasing

No relative extrema

Decreasing on:  , 1 Relative minimum: 1, 0







1, x < 5 x5  x5 1, x > 5





Critical number: x  5 Test intervals: Sign of fx:

 < x < 5

Conclusion:

5 < x <



f > 0

f < 0

Increasing

Decreasing

Increasing on:  , 5 Decreasing on: 5,  Relative maximum: 5, 5 27. f x  x  fx  1 

1 x 1 x2  1  2 x x2

Critical numbers: x  1, 1 Discontinuity: x  0 Test intervals: Sign of fx: Conclusion:

  < x < 1

1 < x < 0

0 < x < 1

f > 0

f < 0

f < 0

f > 0

Increasing

Decreasing

Decreasing

Increasing

Increasing on:  , 1, 1,  Decreasing on: 1, 0, 0, 1 Relative maximum: 1, 2 Relative minimum: 1, 2

1 < x <





f > 0

Increasing on: 1, 

25. f x  5  x  5

1 < x <

f < 0

Increasing on:  , 

fx  

115

116

Chapter 3

29. f x  fx 

Applications of Differentiation

x2 x2  9 18x x2  92x  x22x  2 x2  92 x  92

Critical number: x  0 Discontinuities: x  3, 3 Test intervals: Sign of fx:

  < x < 3

3 < x < 0

0 < x < 3

f > 0

f > 0

f < 0

f < 0

Increasing

Increasing

Decreasing

Decreasing

Conclusion:

3 < x <



Increasing on:  , 3, 3, 0 Decreasing on: 0, 3, 3,  Relative maximum: 0, 0 31. f x  fx 

x2  2x  1 x1

x  12x  2  x2  2x  11 x2  2x  3 x  3x  1   x  12 x  12 x  12

Critical numbers: x  3, 1 Discontinuity: x  1 Test intervals: Sign of fx:

  < x < 3

3 < x < 1

1 < x < 1

f > 0

f < 0

f < 0

f > 0

Increasing

Decreasing

Decreasing

Increasing

Conclusion:

1 < x <



Increasing on:  , 3, 1,  Decreasing on: 3, 1, 1, 1 Relative maximum: 3, 8 Relative minimum: 1, 0 33. f x  fx 

x  cos x, 0 < x < 2 2 1  sin x  0 2

Critical numbers: x 

Test intervals:

 5 , 6 6

0 < x <

 6

 5 < x < 6 6

5 < x < 2 6

Sign of fx:

f > 0

f < 0

f > 0

Conclusion:

Increasing

Decreasing

Increasing

Increasing on: Decreasing on:

0, 6 , 56, 2

6 , 56

6 ,  126 3 5 5  6 3 Relative minimum: , 6 12 Relative maximum:





Section 3.3

Increasing and Decreasing Functions and the First Derivative Test

117

35. f x  sin2 x  sin x, 0 < x < 2 fx  2 sin x cos x  cos x  cos x2 sin x  1  0

 7 3 11 , , , 2 6 2 6

Critical numbers: x 

0 < x <

Test intervals:

 2

7  < x < 2 6

7 3 < x < 6 2

11 3 < x < 2 6

11 < x < 2 6

Sign of fx:

f > 0

f < 0

f > 0

f < 0

f > 0

Conclusion:

Increasing

Decreasing

Increasing

Decreasing

Increasing

0, 2 , 76, 32 , 116, 2

Increasing on: Decreasing on:

2 , 76 , 32, 116

Relative minima:

76,  41 , 116,  14

Relative maxima:

2 , 2 , 32, 0

37. f x  2x9  x2, 3, 3 (a) fx 

29  2x2 9  x2

(c)

y

(b) f′

Critical numbers: x  ±

f

10 8

3 2



32 2

(d) Intervals:

4 2

3,  3 2 2  3 2 2, 3 2 2 3 2 2, 3 

x 1

29  2x2 0 9  x2

1

2

8 10







fx < 0

fx > 0

fx < 0

Decreasing

Increasing

Decreasing

f is increasing when f is positive and decreasing when f is negative. 39. f t  t 2 sin t, 0, 2 (a) ft  t2 cos t  2t sin t  tt cos t  2 sin t (b)

(c) tt cos t  2 sin t  0 t  0 or t  2 tan t t cot t  2

y 40

t 2.2889, 5.0870 (graphing utility)

f′

30

Critical numbers: t  2.2889, t  5.0870

20 10

−10 −20

t

π 2



f

(d) Intervals:

0, 2.2889

2.2889, 5.0870

5.0870, 2

ft > 0

ft < 0

ft > 0

Increasing

Decreasing

Increasing

f is increasing when f is positive and decreasing when f is negative.

118

41.

Chapter 3

f x 

Applications of Differentiation

x5  4x3  3x x2  1x3  3x   x3  3x, x  ± 1 x2  1 x2  1

y

f x  gx  x3  3x for all x  ± 1.

(− 1, 2)

fx  3x2  3  3x2  1, x  ± 1

fx  0 −4 −3

f symmetric about origin

x

−1

1 2 3 4 5

−2 −3 −4 −5

zeros of f: 0, 0, ± 3, 0

(1, − 2)

Holes at 1, 2 and 1, 2

No relative extrema 43. f x  c is constant ⇒ fx  0

45. f is quadratic ⇒ f is a line.

y

y

4

4

2

f′

2

f′ −4

5 4 3

−2

2

x

x −4

4

−2

2

−2

−2

−4

−4

4

47. f has positive, but decreasing slope y

4 2

f′ x −4

−2

2

4

−2 −4

In Exercises 49–53, f  x > 0 on , 4, f  x < 0 on 4, 6 and f  x > 0 on 6, . 49. gx  f x  5

51.

gx  fx

gx  f x

53. gx  f x  10

gx  fx

gx  fx  10 g0  f10 > 0

g6  f6 < 0

g0  f0 < 0



> 0, x < 4 ⇒ f is increasing on  , 4. 55. fx  undefined, x  4 < 0, x > 4 ⇒ f is decreasing on 4, . Two possibilities for f x are given below. (a)

y

(b)

y

6

2

4

1

x 1

2

1 x 2 −2

6

8

3

3

4

5

Section 3.3

Increasing and Decreasing Functions and the First Derivative Test

57. The critical numbers are in intervals 0.50, 0.25 and 0.25, 0.50 since the sign of f changes in these intervals. f is decreasing on approximately 1, 0.40, 0.48, 1, and increasing on 0.40, 0.48.

y

1

x

−1

Relative minimum when x 0.40.

1

Relative maximum when x 0.48.

−1

59. f x  x, gx  sin x, 0 < x <  (a)

0.5

x

1

1.5

2

2.5

3

f x

0.5

1

1.5

2

2.5

3

gx

0.479

0.841

0.997

0.909

0.598

0.141

f x seems greater than gx on 0, . (b)

(c) Let hx  f x  gx  x  sin x

5

hx  1  cos x > 0 on 0, . Therefore, hx is increasing on 0, . Since h0  0, hx > 0 on 0, . Thus,



0 −2

x  sin x > 0

x > sin x on 0, 

x > sin x f x > gx on 0, .

61. v  kR  rr2  kRr2  r3

63.

v  k2Rr  3r2

P

dP R  R22vR1  vR1R22R1  R21  1 dR2 R1  R24

 kr2R  3r  0 2

r  0 or 3 R Maximum when r 

vR1R2 , v and R1 are constant R1  R22



2 3 R.

vR1R1  R2  0 ⇒ R2  R1 R1  R23

Maximum when R1  R2 . 65. (a) B  0.1198t4  4.4879t3  56.9909t2  223.0222t  579.9541 (b)

1500

0

20 0

(c) B  0 for t 2.78, or 1983, (311.1 thousand bankruptcies) Actual minimum: 1984 (344.3 thousand bankruptcies) 3 1 (c) The solution is a0  a1  0, a2  , a3   : 2 2

67. (a) Use a cubic polynomial f x  a3 x 3  a 2 x 2  a1x  a0.

1 3 f x   x 3  x 2. 2 2

(b) fx  3a 3 x 2  2a 2 x  a1.

0, 0:

2, 2:

0  a0

 f 0  0

0  a1

 f0  0

2  8a 3  4a 2

 f 2  2

0  12a3  4a 2

 f2  0

(d)

4

(2, 2) −2

(0, 0)

−4

4

119

120

Chapter 3

Applications of Differentiation

69. (a) Use a fourth degree polynomial f x  a4 x 4  a 3 x 3  a 2 x 2  a1 x  a0. (b) fx  4a4x3  3a3x2  2a2x  a1 (0, 0:

4, 0:

2, 4:

0  a0

 f 0  0

0  a1

 f0  0

0  256a4  64a3  16a2

 f 4  0

0  256a4  48a3  8a2

 f4  0

4  16a4  8a3  4a2

 f 2  4

0  32a4  12a3  4a2

 f2  0

1 (c) The solution is a0  a1  0, a2  4, a3  2, a4  . 4 1 f x  x4  2x3  4x2 4 (d)

5

(2, 4)

−2

(0, 0)

(4, 0)

5

−1

71. True

73. False

Let hx  f x  gx where f and g are increasing. Then hx  fx  gx > 0 since fx > 0 and gx > 0.

Let f x  x3, then fx  3x2 and f only has one critical number. Or, let f x  x3  3x  1, then fx  3x2  1 has no critical numbers.

75. False. For example, f x  x3 does not have a relative extrema at the critical number x  0. 77. Assume that fx < 0 for all x in the interval a, b and let x1 < x2 be any two points in the interval. By the Mean Value Theorem, we know there exists a number c such that x1 < c < x2, and fc 

f x2  f x1 . x2  x1

Since fc < 0 and x2  x1 > 0, then f x2  f x1 < 0, which implies that f x2 < f x1. Thus, f is decreasing on the interval. 79. Let f x  1  xn  nx  1. Then fx  n1  xn1  n  n1  xn1  1 > 0 since x > 0 and n > 1. Thus, f x is increasing on 0, . Since f 0  0 ⇒ f x > 0 on 0, 

1  xn  nx  1 > 0 ⇒ 1  xn > 1  nx.

Section 3.4

Section 3.4

Concavity and the Second Derivative Test

Concavity and the Second Derivative Test 3. f x 

1. y  x2  x  2, y  2 Concave upward:  , 

24 1444  x2 , y  x  12 x2  123 2

Concave upward:  , 2, 2,  Concave downward: 2, 2

5. f x 

x2  1 43x2  1 , y  2 2 x 1 x  13

7. f x  3x2  x3 fx  6x  3x2

Concave upward:  , 1, 1, 

f x  6  6x

Concave downward: 1, 1

Concave upward:  , 1 Concave downward: 1, 

9. y  2x  tan x,

 2 , 2 

11. f x  x3  6x2  12x fx  3x2  12x  12

y  2  sec2 x

f  x  6x  2  0 when x  2.

y  2 sec2 x tan x Concave upward:



  ,0 2



Concave upward: 2, 

 2

  0,

Concave downward:

13.

The concavity changes at x  2. 2, 8 is a point of inflection. Concave downward:  , 2

1 f x  x4  2x2 4 fx  x3  4x f  x  3x2  4 f  x  3x2  4  0 when x  ±

Test interval:

 < x < 

Sign of f  x: Conclusion: Points of inflection:

2 3

2 3

.



2 3

< x <

2

2

3

3

< x <



f  x > 0

f  x < 0

f  x > 0

Concave upward

Concave downward

Concave upward

± 23,  209

121

122

Chapter 3

Applications of Differentiation

15. f x  xx  43 fx  x3x  4 2  x  43  x  424x  4 f  x  4x  12x  4  4x  42  4x  42x  1  x  4  4x  43x  6  12x  4x  2 f  x  12x  4x  2  0 when x  2, 4.  < x < 2

2 < x < 4

f  x > 0

f  x < 0

f  x > 0

Concave upward

Concave downward

Concave upward

Test interval: Sign of f  x: Conclusion:

4 < x <



Points of inflection: 2, 16, 4, 0 17. f x  xx  3, Domain: 3,  fx  x f  x 

12x  3

1 2

 x  3 

3x  2 2x  3

6x  3  3x  2x  31 2 3x  4  4x  3 4x  33 2

f  x > 0 on the entire domain of f (except for x  3, for which f  x is undefined). There are no points of inflection. Concave upward on 3,  19. f x 

x x2  1

fx 

1  x2 x2  12

f  x 

2xx2  3  0 when x  0, ± 3 x2  13

Test intervals:

  < x <  3

 3 < x < 0

0 < x < 3

Sign of fx:

f < 0

f > 0

f < 0

f > 0

Conclusion:

Concave downward

Concave upward

Concave downward

Concave upward

Test interval:

0 < x < 2

Points of inflection:

21. f x  sin



3, 

2x , 0 ≤ x ≤ 4 

1 x fx  cos 2 2



1 x f  x   sin 4 2

f  x  0 when x  0, 2, 4. Point of inflection: 2, 0

3

4

, 0, 0, 

3,

3

4

3 < x <



 Sign of f  x: Conclusion:

2 < x < 4

f < 0

f > 0

Concave downward

Concave upward

Section 3.4



 , 0 < x < 4 2



  tan x  2 2

23. f x  sec x  fx  sec x 

Concavity and the Second Derivative Test





f  x  sec3 x 

 



    sec x  tan2 x  0 for any x in the domain of f. 2 2 2





 



Concave upward: 0, , 2, 3 Concave downward: , 2, 3, 4 No points of inflection 25. f x  2 sin x  sin 2x, 0 ≤ x ≤ 2 f x  2 cos x  2 cos 2x f  x  2 sin x  4 sin 2x  2 sin x1  4 cos x f  x  0 when x  0, 1.823, , 4.460. Test interval:

0 < x < 1.823

1.823 < x < 

 < x < 4.460

4.460 < x < 2

Sign of f  x:

f < 0

f > 0

f < 0

f > 0

Concave downward

Concave upward

Concave downward

Concave upward

Conclusion:

Points of inflection: 1.823, 1.452, , 0, 4.46, 1.452 27. f x  x4  4x3  2

29. f x  x  52

fx  4x3  12x2  4x2x  3

fx  2x  5

f  x  12x 2  24x  12xx  2

f  x  2

Critical numbers: x  0, x  3

Critical number: x  5

However, f  0  0, so we must use the First Derivative Test. fx < 0 on the intervals  , 0 and 0, 3; hence, 0, 2 is not an extremum. f  3 > 0 so 3, 25 is a relative minimum. 31. f x  x3  3x2  3

f  5 > 0 Therefore, 5, 0 is a relative minimum.

33. gx  x26  x3

fx  3x2  6x  3xx  2

gx  xx  6212  5x

f  x  6x  6  6x  1

g x  46  x5x2  24x  18

Critical numbers: x  0, x  2

12 Critical numbers: x  0, 5 , 6

f  0  6 < 0 Therefore, 0, 3 is a relative maximum. f  2  6 > 0 Therefore, 2, 1 is a relative minimum.

g 0  432 > 0 Therefore, 0, 0 is a relative minimum. g 12 5   155.52 < 0 Therefore,  5 , 268.7 is a relative minimum. 12

g 6  0 Test fails by the First Derivative Test, 6, 0 is not an extremum.

123

124

Chapter 3

Applications of Differentiation 4 x

37. f x  x 

35. f x  x2 3  3 fx 

2 3x1 3

fx  1 

f  x 

2 9x4 3

f  x 

Critical number: x  0

4 x2  4  2 x x2

8 x3

Critical numbers: x  ± 2

However, f  0 is undefined, so we must use the First Derivative Test. Since fx < 0 on  , 0 and fx > 0 on 0, , 0, 3 is a relative minimum.

f  2 < 0 Therefore, 2, 4 is a relative maximum. f  2 > 0 Therefore, 2, 4 is a relative minimum.

39. f x  cos x  x, 0 ≤ x ≤ 4 fx  sin x  1 ≤ 0 Therefore, f is non-increasing and there are no relative extrema. 41. f x  0.2x2x  33, 1, 4 (a) fx  0.2x5x  6x  32

(c)

y

f  x  x  34x  9.6x  3.6 2

 0.4x  310x  24x  9

2 1

(b) f  0 < 0 ⇒ 0, 0 is a relative maximum. f

6 5



x 2

> 0 ⇒ 1.2, 1.6796 is a relative minimum.

4

f is increasing when f > 0 and decreasing when f < 0. f is concave upward when f  > 0 and concave downward when f  < 0.

3, 0, 0.4652, 0.7049, 1.9348, 0.9049

1 1 sin 3x  sin 5x, 0,  3 5

(a) fx  cos x  cos 3x  cos 5x fx  0 when x 

f  x  0 when x 

  5 ,x ,x . 6 2 6  5 ,x , x 1.1731, x 1.9685 6 6

6 , 0.2667, 1.1731, 0.9638, 1.9685, 0.9637,

4

56, 0.2667

Note: 0, 0 and , 0 are not points of inflection since they are endpoints.

f

2

−2

2  < 0 ⇒ 2 , 1.53333 is a relative maximum.

Points of inflection:

y

(c)

f  x  sin x  3 sin 3x  5 sin 5x

(b) f 

1

f

Points of inflection:

43. f x  sin x 

f ′′

f′

2

π 4

π 2

f′

π

x

−4 −6 −8

f ′′

The graph of f is increasing when f > 0 and decreasing when f < 0. f is concave upward when f  > 0 and concave downward when f  < 0.

Section 3.4 f < 0 means f decreasing

y

45. (a)

Concavity and the Second Derivative Test

f increasing means concave upward

4 3

f > 0 means f increasing

y

(b)

f increasing means concave upward

4 3

2

2

1

1 x 1

3

2

x 1

4

47. Let f x  x4.

49.

3

2

4

y

f

f  x  12x2

2

f′

f  0  0, but 0, 0 is not a point of inflection.

f ′′

y

x

−2

6

1 −1

5 4 3 2 1 −3

−2

x

−1

51.

1

2

3

53.

y

f ′′

f′

y

f

4

4

2

x 2

2

(2, 0) (4, 0) x

2

2

4

55.

4

6

2

y

57.

y

3 2

f

1

(2, 0)

(4, 0) x

1 1 2

2

3

4

5

x 4

8 8

125

12

f ′′

f  is linear. f is quadratic. f is cubic. f concave upwards on  , 3, downward on 3, .

126

Chapter 3

Applications of Differentiation

59. (a) n  1:

n  2:

n  3:

n  4:

f x  x  2

f x  x  22

f x  x  23

f x  x  24

fx  1

fx  2x  2

fx  3x  22

fx  4x  23

f  x  0

f  x  2

f  x  6x  2

fx  12x  22

No inflection points

No inflection points

Inflection point: 2, 0

No inflection points:

Relative minimum: 2, 0

6

−9

9

Relative minimum: 2, 0

6

−9

6

9

6

Point of inflection −6

−9

9

−6

−6

−9

9

−6

Conclusion: If n ≥ 3 and n is odd, then 2, 0 is an inflection point. If n ≥ 2 and n is even, then 2, 0 is a relative minimum. (b) Let f x  x  2n, fx  nx  2n1, f x  nn  1x  2n2. For n ≥ 3 and odd, n  2 is also odd and the concavity changes at x  2. For n ≥ 4 and even, n  2 is also even and the concavity does not change at x  2. Thus, x  2 is an inflection point if and only if n ≥ 3 is odd. 61. f x  ax3  bx 2  cx  d Relative maximum: 3, 3 Relative minimum: 5, 1 Point of inflection: 4, 2 fx  3ax 2  2bx  c, f  x  6ax  2b



f 3  27a  9b  3c  d  3 98a  16b  2c  2 ⇒ 49a  8b  c  1 f 5  125a  25b  5c  d  1 f3  27a  6b  c  0, f  4  24a  2b  0 49a  8b  c  1

24a  2b 

27a  6b  c 

22a  2b  1

22a  2b a

1 2,

0

 1

b  6, c 

45 2 ,

2a

d  24

1 45 f x  2 x3  6x 2  2 x  24



0

1

Section 3.4

Concavity and the Second Derivative Test

127

63. f x  ax3  bx2  cx  d Maximum: 4, 1 Minimum: 0, 0 (a) fx  3ax2  2bx  c,

f  x  6ax  2b

f 0  0 ⇒ d  0

(b) The plane would be descending at the greatest rate at the point of inflection.

f 4  1 ⇒ 64a  16b  4c  1 f4  0 ⇒

48a  8b  c  0

f0  0 ⇒

c0

f  x  6ax  2b 

3 3 x   0 ⇒ x  2. 16 8

Two miles from touchdown.

1 3 Solving this system yields a  32 and b  6a  16 . 1 3 3 2 f x  32 x  16 x

65. D  2 x4  5L x3  3L 2x 2

C  0.5x 2  15x  5000

67.

D  8x3  15L x 2  6L 2x  x8x 2  15L x  6L 2  0 x  0 or x 





15 ± 33 15L ± 33L  L 16 16

x

15 16 33 L 0.578L.

S

5000t2 8  t2

dC 5000  0.5  2  0 when x  100 dx x



St 

80,000t 8  t22

S t 

80,0008  3t2 8  t23

C 5000  0.5x  15  x x

C  average cost per unit

By the Second Derivative Test, the deflection is maximum when

69.

C

By the First Derivative Test, C is minimized when x  100 units.

S t  0 for t  8 3 1.633. Sales are increasing at the greatest rate at t  1.633 years. 71.

4   22

f x  2sin x  cos x,

f

fx  2cos x  sin x,

f

f  x  2sin x  cos x,

P1

 0 4



−2



  22 4



  1   22  x  4 2 4

2

f

  22 f 4



P1x  22  0 x 

4

P2 −4



P1x  0 P2x  22  0 x 



P2x  22 x 

 4







2



 22  2 x 

 4



2



P2x  22 The values of f, P1, P2, and their first derivatives are equal at x   4. The values of the second derivatives of f and P2 are equal at x   4. The approximations worsen as you move away from x   4.

128 73.

Chapter 3

Applications of Differentiation

f x  1  x, fx   f  x  

f 0  1

1 , 21  x

f0  

1 , 41  x3 2

f  0  

5

P1

1 2

f −8

4

P2

1 4

−3

 21x  0  1  2x

P1x  1   P1x  

1 2

 21x  0  21 41x  0

P2x  1  

2

1

x x2  2 8

1 x P2x    2 4 P2x  

1 4

The values of f, P1, P2, and their first derivatives are equal at x  0. The values of the second derivatives of f and P2 are equal at x  0. The approximations worsen as you move away from x  0. 75. f x  x sin



fx  x  f  x   x

1x 

1

   sin1x    1x cos1x   sin1x 

1 1 cos x2 x



−1

   x1 cos1x   x1 cos1x    x1 sin1x   0

1 1 1 sin x x2 x

2

2

1

( π1 , 0) −1

3

1 

Point of inflection:

1 , 0

When x > 1 , f < 0, so the graph is concave downward. 77. Assume the zeros of f are all real. Then express the function as f x  ax  r1x  r2x  r3 where r1, r2, and r3 are the distinct zeros of f. From the Product Rule for a function involving three factors, we have fx  ax  r1x  r2  x  r1x  r3  x  r2x  r3 f  x  ax  r1  x  r2  x  r1  x  r3  x  r2  x  r3  a6x  2r1  r2  r3. Consequently, f  x  0 if x

2r1  r2  r3 r1  r2  r3   Average of r1, r2, and r3. 6 3

79. True. Let y  ax3  bx2  cx  d, a 0. Then y  6ax  2b  0 when x   b 3a, and the concavity changes at this point.

Section 3.5

Limits at Infinity

83. False. Concavity is determined by f .

81. False. f x  3 sin x  2 cos x fx  3 cos x  2 sin x 3 cos x  2 sin x  0 3 cos x  2 sin x 3 2

 tan x

Critical number: x  tan132  f tan1 32   3.60555 is the maximum value of y.

Section 3.5 1. f x 

Limits at Infinity

3x2 x2  2

x x2  2

3. f x 

5. f x 

4sin x x2  1

No vertical asymptotes

No vertical asymptotes

No vertical asymptotes

Horizontal asymptote: y  3

Horizontal asymptote: y  0

Horizontal asymptotes: y  0

Matches (f)

Matches (d)

Matches (b)

7. f x 

4x  3 2x  1

x

100

101

102

103

104

7

2.26

2.025

2.0025

2.0003

f x

10

105 106 2

− 10

10

2 − 10

lim f x  2

x→ 

9. f x 

6x

10

4x2  5

x

100

101

102

103

104

105

106

f x

2

2.98

2.9998

3

3

3

3

− 10

10

− 10

lim f x  3

x→ 

11. f x  5 

1 x2  1

6

x

100

101

102

103

104

105

106

f x

4.5

4.99

4.9999

4.999999

5

5

5

lim f x  5

x→ 

−1

8 0

129

130

Chapter 3

Applications of Differentiation

f x 5x3  3x2  10 10   5x  3  2 x2 x2 x

13. (a) hx 

lim hx  

x→ 

x2  2 0 x→  x3  1

15. (a) lim

(Limit does not exist)

x2  2 1 x2  1

(c) lim

x2  2  x1

x→ 

f x 5x3  3x2  10 3 10  5  3 x3 x3 x x

(b) hx 

(b) lim

x→ 

lim hx  5

x→ 

(Limit does not exist)

f x 5x3  3x2  10 5 10 3    2 4 x4 x4 x x x

(c) hx 

lim hx  0

x→ 

5  2x32 0 x→  3x2  4

19. lim

17. (a) lim

x→ 

2x  1 2  1x 2  0 2   lim  3x  2 x→ 3  2x 3  0 3

2 5  2x32  x→  3x32  4 3

(b) lim (c) lim

x→ 

21. lim

x →

5  2x32   3x  4

(Limit does not exist)

x 1x 0  lim  0 x2  1 x → 1  1x2 1

23.

lim

x →

5x 2 5x  lim   x  3 x → 1  3x

Limit does not exist.

25.

lim

x →

x x2

x

1 , x  x2

 lim

 lim

1

x →

1  1x

1 2 2x  1 x 27. lim  lim x→ x2  x x→ x2  x  x2



 lim

x→ 

 for x

x2

x →



2  1x x  (1x

< 0 we have x   x2 

 1

for x < 0, x   x2 

 2

29. Since 1x ≤ sin2xx ≤ 1x for all x  0, we have by the Squeeze Theorem, lim 

x →

1 sin2x 1 ≤ lim ≤ lim x → x → x x x

0 ≤ lim

x →

sin2x ≤ 0. x

Therefore, lim

x →

sin2x  0. x

31. lim

x →

1 0 2x  sin x

Section 3.5

33. (a) f x 



x x1

4



lim

y=1

y = −1

x 1 lim x → x  1 x →

Limits at Infinity

−6

6



x  1 x1

−4

Therefore, y  1 and y  1 are both horizontal asymptotes.

35. lim x sin x →

1 sin t  lim 1 x t→0 t

Let x  1t.

37.



x x 3 lim  x  x2  3   x  x2  3   x → x →   2 lim

39. lim  x  x2  x   lim x →

x →

 lim

x →

41.

x f x

x 



x

x2  x

x

2

x x

lim

x →

2

101

102

103

104

105

106

1

0.513

0.501

0.500

0.500

0.500

0.500

x  x2  x x → 1 x →

 lim

x →



3 0 x  x2  3

x 1 1  lim  2 x  x2  x x → 1  1  1x

 lim

f x





100

x →

x

x 3

 x  x2  x

lim  x  xx  1   lim

43.

2



x  x2  x x  x2  x

8

−2

x x  x2  x 1 1  1  1x

1 2

100

101

102

103

104

105

106

0.479

0.500

0.500

0.500

0.500

0.500

0.500

Let x  1t. sint2 1 sint2 1 1 lim x sin  lim  lim  x → t →0 t →0 2 2x t t2 2

 

−1

1

−2

2

−1

131

132

Chapter 3

45. (a)

Applications of Differentiation

47. Yes. For example, let f x 

y 4 3

y

f′

2



1

8 x

−4

1

2

3

4 4

−3

2

−4

x

(b) lim f x  3

−4

lim fx  0

x →

−2

2

4

6

−2

x →

(c) Since lim f x  3, the graph approaches that of a x →

horizontal line, lim f x  0. x →

49. y 

2x 1x

y 3

Intercepts: 2, 0, 0, 2

2

−3 −2 −1

Symmetry: none Horizontal asymptote: y  1 since 2x 2x  1  lim lim . x → 1  x x → 1  x

x 1

2

3

4

5

−2 −3 −4 −5

Discontinuity: x  1 (Vertical asymptote) 51. y 

x2

x 4

53. y 

x2

x2 9

Intercept: 0, 0

Intercept: 0, 0

Symmetry: origin

Symmetry: y-axis

Horizontal asymptote: y  0

Horizontal asymptote: y  1 since

Vertical asymptote: x  ± 2

x →

y

x2

x2 x2  1  lim 2 . x → x  9 9

Relative minimum: 0, 0

5 4 3 2 1 −1

lim

y 4

x 2 3 4 5

3

−2 −3 −4 −5

2 1 −3 −2 −1

x −1 −2

1

2

3



6x2 . x  22  1

Section 3.5

55. y 

2x2 4

Limits at Infinity

57. xy2  4

x2

Domain: x > 0

Intercept: 0, 0

Intercepts: none

Symmetry: y-axis

Symmetry: x-axis

Horizontal asymptote: y  2

Horizontal asymptote: y  0 since

Vertical asymptote: x  ± 2

2

lim

y

x →

8

x

 0  lim  x →

2 x

.

Discontinuity: x  0 (Vertical asymptote)

6 4

y

2 −4

4

x

−2

4

2

6

3 2 1 −1 −1

x 1

2

3

4

5

−2 −3 −4

59. y 

2x 1x

61. y  2 

3 x2

Intercept: 0, 0

Intercepts:  ± 32, 0

Symmetry: none

Symmetry: y-axis

Horizontal asymptote: y  2 since

Horizontal asymptote: y  2 since

lim

x →

2x 2x  2  lim . x → 1  x 1x

lim

x →

Discontinuity: x  1 (Vertical asymptote)

2

lim

x →

y

y 4

1

3 x 1

2

3

4

2

5

1

−2

−4 −3 −2

−3

x 2

3

4

−4 −5 −6

63. y  3 

2 x

y



2 2 2 2 Intercept: y  0  3  ⇒  3 ⇒ x    , 0 x x 3 3

8 7 6 5 4 3 2 1



Symmetry: none Horizontal asymptote: y  3 Vertical asymptote: x  0

2  x3 . 2

Discontinuity: x  0 (Vertical asymptote)

2

−3 −2 −1

2  x3   2 

−4 −3 −2 −1

x 1 2 3 4 5

133

134

Chapter 3

65. y 

Applications of Differentiation

x3 x2  4

67. f x  5 

1 5x2  1  2 x x2

Domain:  , 2, 2, 

Domain:  , 0, 0, 

Intercepts: none

fx 

2 ⇒ No relative extrema x3

Symmetry: origin 6 ⇒ No points of inflection x4

Horizontal asymptote: none

f  x  

Vertical asymptotes: x  ± 2 (discontinuities)

Vertical asymptote: x  0

y

Horizontal asymptote: y  5

20 16 12 8 4 −5 −4 −3 −2 −1

7

y=5 1 2 3 4 5

−8 − 12 − 16 − 20

69. f x  fx   f  x  

x=0

x

−6

6 −1

x x2  4

x2  4  x2x x2  42

3

−4

 x2  4  0 for any x in the domain of f . x2  42

5

x = − 2 −3

x=2

x2  422x  x2  42x2  42x x2  42 2xx2  12  0 when x  0. x2  43

Since f  x > 0 on 2, 0 and f  x < 0 on 0, 2, then 0, 0 is a point of inflection. Vertical asymptotes: x  ± 2 Horizontal asymptote: y  0 x2 x2 71. f x  x2  4x  3  x  1x  3

x2  4x  3  x  22x  4 x2  4x  5 fx   2 0 x2  4x  32 x  4x  32 f  x  

x2  4x  322x  4  x2  4x  52x2  4x  32x  4 x2  4x  34 2x3  6x2  15x  14  0 when x  2. x2  4x  33

Since f  x > 0 on 1, 2 and f  x < 0 on 2, 3, then 2, 0 is a point of inflection. Vertical asymptote: x  1, x  3 Horizontal asymptote: y  0

2

x=3 −1

5

y=0 x=1 −2

Section 3.5 3x 73. f x   2 4x  1 fx  f  x 

Limits at Infinity

2

y= 3

3 ⇒ No relative extrema 4x2  132

−3

2

3

y= −3 2

36x  0 when x  0. 4x2  152

−2

Point of inflection: 0, 0 Horizontal asymptotes: y  ±

3 2

No vertical asymptotes

75. gx  sin

gx 

x x 2, 3 < x < 

2 cos

1.2

x x 2

y = sin(1)

x  22

3

Horizontal asymptote: y  1 Relative maximum:

( π2−π 2 , 1)

12 0

2

x  ⇒ x  5.5039 x2 2

2

No vertical asymptotes 77. f x 

x3  3x2  2 2 , gx  x  xx  3 xx  3

(a)

(c)

8

− 80

f=g −4

(b) f x  

− 70

x3  3x2  2 xx  3 x2x  3 2  xx  3 xx  3

x

2  gx xx  3

79. C  0.5x  500 C x

C  0.5  lim

x →

80

8 −2

C

70

500 x

0.5  500x   0.5

The graph appears as the slant asymptote y  x.

135

136

Chapter 3

Applications of Differentiation

83. (a) T1t  0.003t 2  0.677t  26.564

81. line: mx  y  4  0 y

(b)

90

5

T1 y = mx + 4

3 − 10

2

130 − 10

(3, 1)

1

x −2 −1 −1

1

2

3

4

(c)

90

T2

(a) d  

Ax1  By1  C  m3  11  4 A2  B2

m2  1

− 10

3m  3

m2  1

(b)

120 − 10

T2 

7

1451  86t 58  t

(d) T10  26.6 −6

T20  25.0

6 −1

(c) lim dm  3  lim dm m →

t→ 

m →

The line approaches the vertical line x  0. Hence, the distance approaches 3.

85. Answers will vary. See page 195.

Section 3.6

(e) lim T2 

86  86 1

(f) The limiting temperature is 86. T1 has no horizontal asymptote.

87. False. Let f x 

2x x2  2

. (See Exercise 2.)

A Summary of Curve Sketching

1. f has constant negative slope. Matches (D) 5. (a) fx  0 for x  2 and x  2

3. The slope is periodic, and zero at x  0. Matches (A) (c) f is increasing on 0, .

 f  > 0

f is negative for 2 < x < 2 (decreasing function). f is positive for x > 2 and x < 2 (increasing function). (b) f x  0 at x  0 (Inflection point). f  is positive for x > 0 (Concave upwards). f  is negative for x < 0 (Concave downward).

(d) fx is minimum at x  0. The rate of change of f at x  0 is less than the rate of change of f for all other values of x.

Section 3.6

7. y  y 

x2

x2 3

A Summary of Curve Sketching

y

y=1

6x  0 when x  0. x2  32

1

181  x2  0 when x  ± 1. y  2 x  33

1,

1 4

1 4

1,,

x 4

2

(0, 0))

4

Horizontal asymptote: y  1 y   < x < 1 1 4

x  1 1 < x < 0 x0

0

0 < x < 1 1 4

x1



1 < x <

9. y 

y

Conclusion



Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

1 3 x2

y   y 

y 

11. y 

1 < 0 when x  2. x  22

2 x  23

No relative extrema, no points of inflection

73, 0, 0, 27

Intercepts:

Vertical asymptote: x  2 Horizontal asymptote: y  3 y

x

2x x2  1

y 

2x2  1 < 0 if x  ± 1. x2  12

y 

4xx2  3  0 if x  0. x2  13

Inflection point: 0, 0 Intercept: 0, 0 Vertical asymptote: x  ± 1 Horizontal asymptote: y  0 Symmetry with respect to the origin

2

x

1

7 , 0 3

y

x

1

4

x 4

y

0

2

x 2

4

0,,

7 2

y

3

(0, 0)

4

137

138

Chapter 3

13. gx  x  gx  1  g x 

Applications of Differentiation

4 x2  1 8x x4  2x2  8x  1   0 when x  0.1292, 1.6085 2 2 x  1 x2  12

3 8  1  0 when x  ± x2  13 3

3x2

4

3 , 2.423 3 )1.6085, 2.724) ) 1.3788, 0) x 3

2

1

g 0.1292 < 0, therefore, 0.1292, 4.064 is relative maximum.

2

3

2

y

g 1.6085 > 0, therefore, 1.6085, 2.724 is a relative minimum. Points of inflection:

)0.1292, 4.064) 3 , 3.577 3

y

)0, 4)

x

 33, 2.423,  33, 3.577 



Intercepts: 0, 4, 1.3788, 0 Slant asymptote: y  x

15. f x 

x2  1 1 x x x

fx  1 

y 4

1  0 when x  ± 1. x2

2 f  x  3  0 x

y=x

2

(1, 2) −4

x

−2

2

x=0

−4

Relative maximum: 1, 2

4

(−1, −2)

Relative minimum: 1, 2 Vertical asymptote: x  0 Slant asymptote: y  x

17. y 

x2  6x  12 4 x2 x4 x4

y  1 

4 x  42

y

x

4

8 6

(6, 6)

4

 y 

x  2x  6  0 when x  2, 6. x  42 8 x  43

y < 0 when x  2. Therefore, 2, 2 is a relative maximum. y > 0 when x  6. Therefore, 6, 6 is a relative minimum. Vertical asymptote: x  4 Slant asymptote: y  x  2

(0, −3)

x

y

2

2 x

6

8

(2, −2)

10

Section 3.6

A Summary of Curve Sketching

19. y  xx  4,

y

Domain:  , 4

y  y 

( 83 ,

4

16 3 3

2

8  3x 8  0 when x  and undefined when x  4. 3 24  x

(0, 0)

(4, 0) x

−2

2

4

3x  16 16  0 when x  and undefined when x  4. 44  x3 2 3

Note: x 

16 3

is not in the domain. y

y

Conclusion





Increasing, concave down

0



Relative maximum





Decreasing, concave down

Undefined

Undefined

y  < x < x

8 3

8 3

16 33

8 < x < 4 3 x4

0

21. hx  x9  x2

Endpoint

Domain: 3 ≤ x ≤ 3

y

9  2x2 3 32 hx   0 when x  ± ± 9  x2 2 2

−5 −4

(

5 4 3 2 1

(− 3, 0)

x2x2  27 h x   0 when x  0 9  x23 2

(0, 0)

)

(3, 0)

1 2 3 4 5

(



32 9

3 2, 9 2 2

x

−2 −1

 2 , 2 3 2 9 Relative minimum:  ,  2 2 Relative maximum:

3 2, 9 − 2 2

)

−5



Intercepts: 0, 0, ± 3, 0 Symmetric with respect to the origin Point of inflection: 0, 0 23. y  3x2 3  2x y  2x1 3  2 

y

21  x1 3 x1 3

5

 0 when x  1 and undefined when x  0. y 

(1, 1)

2 < 0 when x  0. 3x4 3 y

 < x < 0 x0

0

0 < x < 1 x1 1 < x <

1



(

( 278 , 0 ) x

(0, 0) 2

y

y





Undefined

Undefined





Increasing, concave down

0



Relative maximum





Decreasing, concave down

Conclusion Decreasing, concave down Relative minimum

1

2

3

5

139

140

Chapter 3

Applications of Differentiation

25. y  x3  3x2  3

y

y  3x2  6x  3xx  2  0 when x  0, x  2

4

(−0.879, 0)

(0, 3)

y  6x  6  6x  1  0 when x  1 (1, 1)

y  < x < 0 x0

3

0 < x < 1 x1

1

1 < x < 2 x2 2 < x <

1



y

y

Conclusion





Increasing, concave down

0



Relative maximum





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

(2.532, 0) x

2

4

(2, (1.347, 0)

2

27. y  2  x  x3

1)

y

5

y  1  3x2

4

No critical numbers (0, 2)

y  6x  0 when x  0.

1

(1, 0) x

y  < x < 0 x0 0< x <

2



y

y





3

2

1

2

3

Conclusion Decreasing, concave up



0

Point of inflection





Decreasing, concave down

29. f x  3x3  9x  1

y

(−1.785, 0) 8 ( 1, 7)

fx  9x2  9  9x2  1  0 when x  ± 1 f  x  18x  0 when x  0 f x   < x < 1 x  1

7

1 < x < 0 x0

1

0 < x < 1 x1 1 < x <

5



fx

f  x

(0, 1) (1.674, 0)

Conclusion





Increasing, concave down

0



Relative maximum





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

x 3

1

1

2

3

2 4 6

(1, 5) (0.112, 0)

Section 3.6

A Summary of Curve Sketching

31. y  3x4  4x3

y

y  12x3  12x2  12x2x  1  0 when x  0, x  1. y  36x2  24x  12x3x  2  0 when x  0, x   23 . y   < x < 1 x  1

1

1 < x <

 23

x   23

16

 27

 23 < x < 0 x0

0

0 < x <



y

y





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

0

0

Point of inflection





Increasing, concave up

2

1

(− 43 , 0)

Conclusion

(0, 0) 1

fx  f  x 

12x 2



12x 2

y

 16  4x  1x  2  0 when x  1, x  2.

15

 24x  12xx  2  0 when x  0, x  2. fx

f  x





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

0

0

Point of inflection





Increasing, concave up

  < x < 1 x  1

11

1 < x < 0 x0

0

0 < x < 2 x2 2 < x <

20

2

f x

(− 23 , − 1627 (

(−1, −1)

33. f x  x4  4x3  16x 4x3

16



Conclusion

35. y  x5  5x

(2, 16)

10 5

(0, 0)

−3

y 4

1 < x < 0 0

0 < x < 1 1 < x <

4



3

4

y

  < x < 1

x1

2

(−1.679, 0)

)

4 5, 0

6

( 1, 4)

4

y  20x3  0 when x  0.

x0

x

1

(−1, −11)

(

y  5x4  5  5x4  1  0 when x  ± 1.

x  1

x

−2

(0, 0) 2

1

1

y

y

Conclusion

2





Increasing, concave down

4

0



Relative maximum





Decreasing, concave down

6



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

( 4 5, 0 )

(1,

2

4)

x

141

142

Chapter 3



Applications of Differentiation



37. y  2x  3 y 

y

22x  3 3 undefined at x  . 2x  3 2



4



(0, 3)

3

y  0

2 1

y

y  < x <

3 2



x  32 3 2

0

< x <

Undefined





Conclusion

x

Decreasing

Increasing

1 sin 3x, 0 ≤ x ≤ 2 18 1 3 y  cos x  cos 3x  0 when x  , . 6 2 2

y 2 1

1 5 7 11 . y  sin x  sin 3x  0 when x  0, , , , , 2 6 6 6 6

19 , 2 18

Relative minimum:

32 ,  19 18 

Inflection points:

−1

π 2

π

x 3π 2

−2





4

Relative minimum

39. y  sin x 

Relative maximum:

3

3 , 0 2

 6 , 94, 56 , 49,  , 0, 76 ,  49, 116 ,  94

41. y  2x  tan x, 

< x < 2 2

43. y  2csc x  sec x, 0 < x <

2

y  2  sec2 x  0 when x  ± . 4

y  2sec x tan x  csc x cot x  0 ⇒ x  4

y  2sec2 x tan x  0 when x  0.

Relative minimum:

Relative maximum:

 4 , 2  1

Relative minimum:

 4 , 1  2 

Inflection point: 0, 0

Vertical asymptotes: x  ± 2

Vertical asymptotes: x  0, x  y 16 12 8 4

y −4

2 1

− π 2

−1 −2

π 4

π 2

x

 4 , 42

4

2

x

2

Section 3.6

45. gx  x tan x, 

3 3 < x < 2 2

gx 

x  sin x cos x  0 when x  0 cos2 x

g x 

2cos x  x sin x cos3 x

Vertical asymptotes: x  

47. f x 

A Summary of Curve Sketching

20x 1 19x2  1   x 1 x xx2  1 2

10

− 15

15

− 10

3 3 , , , 2 2 2 2

x  0 vertical asymptote

Intercepts:  , 0, 0, 0,  , 0

y  0 horizontal asymptote

Symmetric with respect to y-axis.

Minimum: 1.10, 9.05 Maximum: 1.10, 9.05

 2  and  2 , 32 

Increasing on 0,

Points of inflection: 1.84, 7.86, 1.84, 7.86

Points of inflection: ± 2.80, 0 y 10 8 6 4 2 −π

49. y 

π 4

−2 −4 −6 −8 − 10

π

3π 2

x

x

51. f is cubic.

x2  7

f is quadratic.

2

f is linear. −4

4

y

f ′′

f −2

0, 0 point of inflection

x 2

2 1

y  ± 1 horizontal asymptotes

53.

f′

y

2

y

4

f ′′

4

f 2 x −4

−2

2

4

x −4

−2

2

−2 −4

(any vertical translate of f will do)

−4

4

143

144

Chapter 3

Applications of Differentiation

y

55.

y

4 2

4

f

2

f ′′

x −4

x −8

8

−4

4

−2

−2

−4

−4

8

(any vertical translate of f will do)

57. Since the slope is negative, the function is decreasing on 2, 8, and hence f 3 > f 5.

59. f x 

4x  12  4x  5

x2

Vertical asymptote: none Horizontal asymptote: y  4 9

−6

9 −1

The graph crosses the horizontal asymptote y  4. If a function has a vertical asymptote at x  c, the graph would not cross it since f c is undefined. 61. hx  

6  2x 3x

63. f x  



23  x 2, if x  3  3x Undefined, if x  3

The rational function is not reduced to lowest terms.

x2  3x  1 3  x  1  x2 x2

3

−3

6

3 −3

−2

The graph appears to approach the slant asymptote y  x  1.

4 −1

hole at 3, 2

65. f x  (a)

cos2 x , 0, 4 x2  1 (b) fx 

1.5

0

4

− 0.5

On 0, 4 there seem to be 7 critical numbers: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

cos xx cos x  2 x2  1sin x 0 x2  13 2

1 3 5 7 Critical numbers  , 0.97, , 1.98, , 2.98, . 2 2 2 2 The critical numbers where maxima occur appear to be integers in part (a), but approximating them using f shows that they are not integers.

Section 3.7 67. Vertical asymptote: x  5

71. f x 

Slant asymptote: y  3x  2

1 x5

y  3x  2 



(b) As b varies, the position of the vertical asymptote changes: x  b. Also, the coordinates of the minimum a > 0 or maximum a < 0 are changed.

3xn x4  1

(a) For n even, f is symmetric about the y-axis. For n odd, f is symmetric about the origin. (b) The x-axis will be the horizontal asymptote if the degree of the numerator is less than 4. That is, n  0, 1, 2, 3.

(d) There is a slant asymptote y  3x if n  5: 3x 3x5  3x  4 . x4  1 x 1 (e)

(c) n  4 gives y  3 as the horizontal asymptote.

75. (a)

2750

1

8 0

(b) When t  10, N10  2434 bacteria. (c) N is a maximum when t  7.2 (seventh day). (d) Nt  0 for t  3.2 (e) lim Nt  t→ 

Section 3.7 1. (a)

1 3x2  13x  9  x5 x5

ax x  b2

(a) The graph has a vertical asymptote at x  b. If a > 0, the graph approaches  as x → b. If a < 0, the graph approaches   as x → b. The graph approaches its vertical asymptote faster as a → 0.

73. f x 

145

69. Vertical asymptote: x  5

Horizontal asymptote: y  0 y

Optimization Problems

13,250  1892.86 7

Optimization Problems

First Number, x

Second Number

Product, P

10

110  10

10110  10  1000

20

110  20

20110  20  1800

30

110  30

30110  30  2400

40

110  40

40110  40  2800

50

110  50

50110  50  3000

60

110  60

60110  60  3000

—CONTINUED—

n

0

1

2

3

4

5

M

1

2

3

2

1

0

N

2

3

4

5

2

3

146

Chapter 3

Applications of Differentiation

1. —CONTINUED— (b)

First Number, x

Second Number

Product, P

10

110  10

10110  10  1000

20

110  20

20110  20  1800

30

110  30

30110  30  2400

40

110  40

40110  40  2800

50

110  50

50110  50  3000

60

110  60

60110  60  3000

70

110  70

70110  70  2800

80

110  80

80110  80  2400

90

110  90

90110  90  1800

100

110  100

100110  100  1000

The maximum is attained near x  50 and 60. (c) P  x110  x  110x  x2 (d)

(e)

3500

(55, 3025)

dP  110  2x  0 when x  55. dx d 2P  2 < 0 dx 2

0

120 0

The solution appears to be x  55. 3. Let x and y be two positive numbers such that xy  192. Sxyx

192 x

192 dS  1  2  0 when x  192. dx x d 2S 384  3 > 0 when x  192. dx2 x S is a minimum when x  y  192. 7. Let x be the length and y the width of the rectangle. 2x  2y  100 y  50  x A  xy  x50  x dA  50  2x  0 when x  25. dx d 2A  2 < 0 when x  25. dx2 A is maximum when x  y  25 meters.

P is a maximum when x  110  x  55. The two numbers are 55 and 55.

5. Let x be a positive number. Sx

1 x

dS 1  1  2  0 when x  1. dx x 2 d 2S  3 > 0 when x  1. dx2 x The sum is a minimum when x  1 and 1x  1.

9. Let x be the length and y the width of the rectangle. xy  64 y

64 x

P  2x  2y  2x  2

64x  2x  128x

dP 128  2  2  0 when x  8. dx x d 2P 256  3 > 0 when x  8. dx2 x P is minimum when x  y  8 feet.

Section 3.7 11. d  x  42   x  02

 x4  4x  174

Since d is smallest when the expression inside the radical is smallest, you need only find the critical numbers of

Since d is smallest when the expression inside the radical is smallest, you need only find the critical numbers of

f x  x2  7x  16.

f x  x4  4x  17 4 .

fx  2x  7  0

fx  4x3  4  0

x  72

x1

By the First Derivative Test, the point nearest to 4, 0 is  72, 72 .

By the First Derivative Test, the point nearest to  2, 12  is 1, 1. y

y 4

4

3

3

( x, x )

2

2

3

(2, 12(

d

x

x 2

( x, x 2 )

1

d

1

1

147

13. d  x  22  x2  12 2

 x2  7x  16

15.

Optimization Problems

−2

(4, 0)

dQ  kxQ0  x  kQ0x  kx2 dx

−1

1

2

17. xy  180,000 (see figure)



S  x  2y  x 

d 2Q  kQ0  2kx dx2



360,000 where S is the length x

of fence needed.

 kQ0  2x  0 when x 

Q0 . 2

360,000 dS 1  0 when x  600. dx x2

d 3Q Q  2k < 0 when x  0. dx3 2

d 2S 720,000  > 0 when x  600. dx2 x3

dQdx is maximum when x  Q02.

S is a minimum when x  600 meters and y  300 meters.

y

x

19. (a) A  4area of side  2area of Top

(b) V  lengthwidthheight

(a) A  4311  233  150 square inches

(a) V  3311  99 cubic inches

(b) A  455  255  150 square inches

(b) V  555  125 cubic inches

(c) A  43.256  266  150 square inches

(c) V  663.25  117 cubic inches

(c) S  4xy  2x 2  150 ⇒ y  V  x 2y  x 2

150  2x 2 4x

x x

150 4x 2x  752 x  21 x 2

75 3 2 V   x  0 ⇒ x  ±5 2 2

y

3

x x

By the First Derivative Test, x  5 yields the maximum volume. Dimensions: 5  5  5. (A cube!)

148

Chapter 3

Applications of Differentiation s 2

V  xs  2x2, 0 < x <

21. (a)

dV  2xs  2x2  s  2x2 dx s s  s  2xs  6x  0 when x  , s2 is not in the domain. 2 6 d 2V  24x  8s dx2 s d 2V < 0 when x  . dx2 6 V

5 2s 3 is maximum when x  . 27 6

2 2 (b) If the length is doubled, V  27 2s3  8 27 s3. Volume is increased by a factor of 8.

23.

16  2y  x 

2x

32  4y  2x  x y

32  2x  x 4

A  xy 

x 2 2

x 2

  32  2x4  x x  2

y

x2 8

x

1  8x  x 2  x 2  x 2 2 4 8 dA 8x x x8x 1 dx 2 4 4



8 32  . 1   4 4 

 0 when x  d 2A  1 dx 2 4



y

< 0 when x  4 32 

32  2 324    324   16  4 4

The area is maximum when y 

25. (a)



32 16 feet and x  feet. 4 4

02 y2  01 x1 y2

(b)

2 x1

L  x 2  y 2  

10

x

2

—CONTINUED—

4

(2.587, 4.162)

x  2  x 2 1 2

2

8 4  , x > 1 x  1 x  12

0

10 0

L is minimum when x  2.587 and L  4.162.

Section 3.7

Optimization Problems

25. —CONTINUED—





1 1 2 x (c) Area  Ax  xy  x 2  x 2 2 x1 x1 Ax  1 

x  1  x 1 1 0 x  12 x  12

x  12  1 x  1  ±1 x  0, 2 (select x  2) Then y  4 and A  4. Vertices: 0, 0, 2, 0, 0, 4 27.

see figure

A  2xy  2x25  x2

y

 252x x  225  x

1 dA  2x dx 2 2

8

2

6

2

25252xx  0 when x  y  5 2 2  3.54.

±

Width:

(

x

2

−6 −4 −2 −2



2

4

6

−4



52 52 52 ,0 , ± , . 2 2 2 52 ; Length: 52 2

29. xy  30 ⇒ y 

30 x



x+2 x

30 2 A  x  2 x



see figure

dA 30 30 2x2  30  x  2  2   0 when x  30. 2 dx x x x2



y

25 − x 2



2

By the First Derivative Test, the inscribed rectangle of maximum area has vertices



( x,

30 30





y

y+2

 30

By the First Derivative Test, the dimensions x  2 by y  2 are  2  30  by  2  30  (approximately 7.477 by 7.477). These dimensions yield a minimum area. 31. V  r 2h  22 cubic inches or h  (a)

22 r2

Radius, r

Height

0.2

22 0.22

2 0.2 0.2 

0.4

22 0.42

2 0.4 0.4 

0.6

22 0.62

2 0.6 0.6 

0.8

22 0.82

2 0.8 0.8 

—CONTINUED—

Surface Area



22  220.3 0.22



22  111.0 0.42



22  75.6 0.62



22  59.0 0.82



149

150

Chapter 3

Applications of Differentiation

31. —CONTINUED— (c) S  2 r 2  2 rh

(b) Radius, r

Height

0.2

22 0.22

2 0.2 0.2 

0.4

22 0.42

2 0.4 0.4 



Surface Area

 2 rr  h  2 r r 



22  220.3 0.22



22  111.0 0.42

(d)



22 44  2 r 2  r2 r

100

(1.52, 43.46) −1

4 −10



0.6

22 0.62

2 0.6 0.6 

0.8

22 0.82

22 2 0.8 0.8   59.0 0.82





22  50.3 1.0 2



22  45.7 1.22



22  43.7 1.42



22  43.6 1.62



22  44.8 1.82



22  47.1 2.02

22 1.02

2 1.0 1.0 

1.2

22 1.22

2 1.2 1.2 

1.4

22 1.42

2 1.4 1.4 

1.6

22 1.62

2 1.6 1.6 

1.8

22 1.82

2 1.8 1.8 

2.0

22 2.02

2 2.0 2.0 

1.0

22  75.6 0.62



The minimum seems to be 43.46 for r  1.52. (e)

44 dS 3  4 r  2  0 when r   11  1.52 in. dr r 22  3.04 in. r2 Note: Notice that 22 1113 22   2 13  2r. h 2 23 r 11  h





The minimum seems to be about 43.6 for r  1.6. 33. Let x be the sides of the square ends and y the length of the package. P  4x  y  108 ⇒ y  108  4x V  x 2y  x 2108  4x  108x 2  4x3 dV  216x  12x2 dx  12x18  x  0 when x  18. d 2V  216  24x  216 < 0 when x  18. dx2 The volume is maximum when x  18 inches and y  108  418  36 inches.





Section 3.7

35.

Optimization Problems

151

1 1 V  x 2h  x 2 r  r 2  x2 see figure 3 3 x3 x dV 1   2x r  r2  x2    2r2  2rr2  x2  3x2  0 dx 3 r2  x2 3r2  x2



2r 2  2rr 2  x2  3x2  0

(0, r)

2rr 2  x2  3x2  2r 2 h

4r 2r 2  x2  9x4  12x 2 r 2  4r4

x  0,

r

x

0  9x4  8x2r 2  x29x2  8r 2 22r 3

(x, −

r 2 − x2

(

By the First Derivative Test, the volume is a maximum when x

4r 22r and h  r  r 2  x 2  . 3 3

Thus, the maximum volume is

 4r3  3281 r

1 8r 2 V 3 9

3

cubic units.

37. No, there is no minimum area. If the sides are x and y, then 2x  2y  20 ⇒ y  10  x. The area is Ax  x10  x  10x  x2. This can be made arbitrarily small by selecting x  0. 4 V  12  r 3  r 2h 3

39.

h

41. Let x be the length of a side of the square and y the length of a side of the triangle.

12  43 r 3 12 4   r r2 r2 3

4x  3y  10



12 4  r S  4 r 2  2 rh  4 r 2  2 r r 2 3



1 3 A  x2  y y 2 2





24 8 2 4 2 24  r  r   4 r 2  r 3 3 r 24 dS 8 3 9  1.42 cm.  r  2  0 when r   dr 3 r 48 d 2S 8 3 9 cm.   3 > 0 when r   dr2 3 r

10  3y2 3 2  y 16 4

3 dA 1  10  3y3  y0 dy 8 2

30  9y  43y  0 y

3 9 

The surface area is minimum when r  cm and h  0. The resulting solid is a sphere of radius r  1.42 cm.

30 9  43

d 2A 9  43  > 0 dy 2 8 A is minimum when

r h

y

30 103 . and x  9  43 9  43

152

Chapter 3

Applications of Differentiation

43. Let S be the strength and k the constant of proportionality. Given h2  w2  242, h2  242  w 2,

45.

R

v02 sin 2

g

3 dR 2v02  cos 2  0 when  , . d

g 4 4

S  kwh2 S  kw576  w2  k576w  w3 dS  k576  3w3  0 when w  83, h  86. dw d 2S  6k w < 0 when w  83. dw 2

d 2R 4v 2   0 sin 2 < 0 when  . d 2 g 4 By the Second Derivative Test, R is maximum when  4.

These values yield a maximum.

47. sin  tan  I

h h ⇒s , 0 < < s sin 2 h 2 tan ⇒ h  2 tan ⇒ s   2 sec 2 sin

k sin k sin k   sin cos2 s2 4 sec2 4

α

α

dI k  sin 2 sin cos   cos2 cos  d 4 

k cos cos 2  2 sin2 4



k cos 1  3 sin2 4

 0 when 

s

h

4 ft

3 1 , , or when sin  ± . 2 2 3

Since is acute, we have sin 

1 3

⇒ h  2 tan  2

12  2 feet.

Since d 2Id 2  k4 sin 9 sin2  7 < 0 when sin  13, this yields a maximum.

49.

S  x2  4, L  1  3  x2 Time  T 

x2  4

2



x2  6x  10

4

dT x x3   0 dx 2x2  4 4x2  6x  10

S=

2 x

x2 + 4 3−x 1

L=

1 + (3 − x 2(

Q

x2 9  6x  x2  x2  4 4x2  6x  10 x4  6x3  9x2  8x  12  0 You need to find the roots of this equation in the interval 0, 3 . By using a computer or graphics calculator, you can determine that this equation has only one root in this interval x  1. Testing at this value and at the endpoints, you see that x  1 yields the minimum time. Thus, the man should row to a point 1 mile from the nearest point on the coast.

Section 3.7

51.

T

x2  4

v1



Optimization Problems

x2  6x  10

v2

dT x x3   0 dx v1x2  4 v2x2  6x  10

θ1

2

3−x

x

1

Since

θ2

x x2  4

 sin 1 and

x3 x2  6x  10

Q

 sin 2

we have sin 1 sin 2 sin 1 sin 2  0⇒  . v1 v2 v1 v2 Since d 2T 4 1   > 0 dx2 v1x2  432 v2x2  6x  1032 this condition yields a minimum time. 53. f x  2  2 sin x

(a) Distance from origin to y-intercept is 2. Distance from origin to x-intercept is 2  1.57.

y

(b) d  x2  y2  x2  2  2 sin x2

3

3 2 1



π 4

−1

π 4

π 2

x

(0.7967, 0.9795)

− 4

2

−1

Minimum distance  0.9795 at x  0.7967. (c) Let f x  d 2x  x 2  2  2 sin x2. fx  2x  22  2 sin x2 cos x Setting fx  0, you obtain x  0.7967, which corresponds to d  0.9795. 55. F cos  kW  F sin 

2 k +1

kW F cos  k sin

dF kWk cos  sin   0 d

cos  k sin 2 k cos  sin ⇒ k  tan ⇒  arctan k Since cos  k sin 

1 k2   k2  1,  1 k2  1

k2

the minimum force is F

kW kW  . cos  k sin k2  1

1

θ

k

153

154

Chapter 3

57. (a)

Applications of Differentiation (b)

Base 1

Base 2

Altitude

Area

 22.1

8

8  16 cos 10

8 sin 10

 22.1

8 sin 20

 42.5

8

8  16 cos 20

8 sin 20

 42.5

8  16 cos 30

8 sin 30

 59.7

8

8  16 cos 30

8 sin 30

 59.7

8

8  16 cos 40

8 sin 40

 72.7

8

8  16 cos 40

8 sin 40

 72.7

8

8  16 cos 50

8 sin 50

 80.5

8

8  16 cos 50

8 sin 50

 80.5

8

8  16 cos 60

8 sin 60

 83.1

8

8  16 cos 60

8 sin 60

 83.1

8

8  16 cos 70

8 sin 70

 80.7

8

8  16 cos 80

8 sin 80

 74.0

8

8  16 cos 90

8 sin 90

 64.0

Base 1

Base 2

Altitude

Area

8

8  16 cos 10

8 sin 10

8

8  16 cos 20

8

The maximum cross-sectional area is approximately 83.1 square feet. (c) A  a  b

h 2

(d)

 8  8  16 cos 

8 sin

2

 64cos  cos2  sin2   642 cos2  cos  1

 641  cos sin , 0 < < 90 (e)

dA  641  cos  cos  64 sin sin

d

 642 cos  1cos  1

100

(60°, 83.1)

 0 when  60 , 180 , 300 . The maximum occurs when  60 .

0

90 0

59. C  100

x  ,1 ≤ x 200 x x  30 2



C  100 

400 30  x3 x  302



Approximation: x  40.45 units, or 4045 units 61.

S1  4m  12  5m  62  10m  32 64 dS1  24m  14  25m  65  210m  310  282m  128  0 when m  . dm 141 Line: y 

           

S 4 

63. S3 

64 x 141





64 64 64 1  5  6  10 3 141 141 141

256 320 640 858 1  6  3   6.1 mi 141 141 141 141

4m  1  5m  6  10m  3

m2

1

m2

1

m2

S3

1

30

Using a graphing utility, you can see that the minimum occurs when x  0.3. Line: y  0.3x



20

10

 

 



40.3  1  50.3  6  100.3  3 S3   4.5 mi. 0.32  1

(0.3, 4.5) m 1

2

3

Section 3.8

Section 3.8

Newton’s Method

1. f x  x2  3 fx  2x x1  1.7

n

xn

f xn 

fxn 

f xn  fxn 

1

1.7000

 0.1100

3.4000

 0.0324

1.7324

2

1.7324

0.0012

3.4648

0.0003

1.7321

3. f x  sin x fx  cos x x1  3

n

xn

1

3.0000

2

3.1425

5. f x  x3  x  1 fx  3x2  1 Approximation of the zero of f is 0.682.

xn 

f xn  fxn 

fxn 

f xn  fxn 

0.1411

0.9900

 0.1425

3.1425

 0.0009

1.0000

0.0009

3.1416

f xn 

xn 

f xn  fxn 

n

xn

f xn 

fxn 

f xn  fxn 

1

0.5000

 0.3750

1.7500

 0.2143

0.7143

2

0.7143

0.0788

2.5307

0.0311

0.6832

3

0.6832

0.0021

2.4003

0.0009

0.6823

n

xn

f xn 

fxn 

f xn  fxn 

1

1.2000

0.1416

2.3541

0.0602

1.1398

2

1.1398

 0.0181

3.0118

 0.0060

1.1458

3

1.1458

 0.0003

2.9284

 0.0001

1.1459

n

xn

f xn 

fxn 

f xn  fxn 

1

1.5000

0.3750

6.7500

0.0556

7. f x  3x  1  x fx 

Newton’s Method

3 1 2x  1

Approximation of the zero of f is 1.146.

xn 

xn 

f xn  fxn 

f xn  fxn 

Similarly, the other zero is approximately 7.854. 9. f x  x3  3 fx 

3x2

Approximation of the zero of f is 1.442.

1.4444

1.4444

0.0134

6.2589

0.0021

1.4423

3

1.4423

0.0003

6.2407

0.0001

1.4422

fx  3x2  7.8x  4.79

n

xn

f xn 

fxn 

f xn  fxn 

1

0.5000

0.3360

1.6400

0.2049

0.7049

2

0.7049

0.0921

0.7824

0.1177

0.8226

3

0.8226

0.0231

0.4037

0.0573

0.8799

4

0.8799

0.0045

0.2495

0.0181

0.8980

5

0.8980

0.0004

0.2048

0.0020

0.9000

6

0.9000

0.0000

0.2000

0.0000

0.9000

—CONTINUED—

f xn  fxn 

2

11. f x  x3  3.9x2  4.79x  1.881

Approximation of the zero of f is 0.900.

xn 

xn 

f xn  fxn 

155

156

Chapter 3

Applications of Differentiation

11. —CONTINUED—

n

xn

f xn 

fxn 

f xn  fxn 

1

1.1

0.0000

0.1600

0.0000

xn 

f xn  fxn 

1.1000

Approximation of the zero of f is 1.100. n

xn

f xn 

fxn 

f xn  fxn 

1

1.9

0.0000

0.8000

0.0000

xn 

f xn  fxn 

1.9000

Approximation of the zero of f is 1.900. 13. f x  x  sinx  1 fx  1  cosx  1 Approximation of the zero of f is 0.489.

15. hx  f x  gx  2x  1  x  4

n

xn

f xn 

fxn 

f xn  fxn 

1

0.5000

0.0206

1.8776

0.0110

0.4890

2

0.4890

0.0000

1.8723

0.0000

0.4890

hxn 

h xn  hxn 

0.6000

0.0552

1.7669

0.0313

0.5687

0.5687

0.0001

1.7661

0.0000

0.5687

n

xn

h xn 

hxn 

h xn  hxn 

1

4.5000

0.1373

21.5048

0.0064

4.4936

2

4.4936

0.0039

20.2271

0.0002

4.4934

xn

1 2

hx  1  sec2 x Point of intersection of the graphs of f and g occurs when x  4.493.

Point of intersection of the graphs of f and g occurs when x  0.569. 17. hx  f x  gx  x  tan x

19. f x  x2  a  0

21. xi1 

fx  2x xi2  a xi1  xi  2xi 

23. xi1 

2xi 2  xi2  a xi2  a xi a    2xi 2xi 2 2xi 3xi4  6 4xi3

i

1

2

3

4

xi

1.5000

1.5694

1.5651

1.5651

4  6  1.565

f xn  fxn 

h xn 

n

1 hx  2  2x  4

xn 

xn 

xn 

h xn  hxn 

h xn  hxn 

xi2  7 2xi

i

1

2

3

4

5

xi

2.0000

2.7500

2.6477

2.6458

2.6458

7  2.646

Section 3.8 25. f x  1  cos x

Newton’s Method

157

fx  sin x

n

xn

f xn 

fxn 

f xn  fxn 

Approximation of the zero: 3.141

1

3.0000

0.0100

0.1411

0.0709

3.0709

2

3.0709

0.0025

0.0706

0.0354

3.1063

3

3.1063

0.0006

0.0353

0.0176

3.1239

4

3.1239

0.0002

0.0177

0.0088

3.1327

5

3.1327

0.0000

0.0089

0.0044

3.1371

6

3.1371

0.0000

0.0045

0.0022

3.1393

7

3.1393

0.0000

0.0023

0.0011

3.1404

8

3.1404

0.0000

0.0012

0.0006

3.1410

27. y  2x3  6x2  6x  1  f x

29. y  x3  6x2  10x  6  f x

y  6x2  12x  6  fx

y  3x2  12x  10  fx

x1  1

x1  2

fx  0; therefore, the method fails.

x2  1

n

xn

f xn 

fxn 

1

1

1

0

xn 

f xn  fxn 

x3  2 x4  1 and so on. Fails to converge y

31. Answers will vary. See page 222. Newton’s Method uses tangent lines to approximate c such that f c  0.

1

First, estimate an initial x1 close to c (see graph). Then determine x2 by x2  x1 

−1

f x1 . fx1

Calculate a third estimate by x3  x2 



x a 3

f(x)

x1

x2 c

2

b

x

−1 −2

f x2 . fx2



Continue this process until xn  xn1 is within the desired accuracy. Let xn1 be the final approximation of c.

33. Let gx  f x  x  cos x  x gx  sin x  1. The fixed point is approximately 0.74.

n

xn

g xn 

gxn 

g xn  gxn 

1

1.0000

0.4597

1.8415

0.2496

2

0.7504

0.0190

1.6819

0.0113

0.7391

3

0.7391

0.0000

1.6736

0.0000

0.7391

xn 

g xn  gxn 

0.7504

158

Chapter 3

Applications of Differentiation

35. f x  x3  3x2  3, fx  3x2  6x (a)

(b) x1  1

4

f x1  1.333 fx1

x2  x1  −4

5

Continuing, the zero is 1.347. −2

(d)

y

3x

1 (c) x1  4

4

y

f

x2  x1 

f x1  2.405 fx1

3

Continuing, the zero is 2.532.

x 2

(e) If the initial guess x1 is not “close to” the desired zero of the function, the x-intercept of the tangent line may approximate another zero of the function.

1

y

4

1.313x

5

3.156

The x-intercepts correspond to the values resulting from the first iteration of Newton’s Method.

37. f x 

1 a0 x

fx  

1 x2

xn1  xn 

1xn  a 1  xn  xn2  a  xn  xn  xn2a  2xn  xn2a  xn2  axn 1xn2 xn





39. f x  x cos x, 0, 

y

fx  x sin x  cos x  0

1

)0.860, 0.561)

Letting F x  fx, we can use Newton’s Method as follows.

x 2

Fx  2 sin x  x cos x

1

n

xn

F xn 

Fxn 

F xn  Fxn 

1

0.9000

0.0834

2.1261

0.0392

0.8608

2

0.8608

0.0010

2.0778

0.0005

0.8603

Approximation to the critical number: 0.860

xn 

F xn  Fxn 

2 3

Section 3.8

Newton’s Method

41. y  f x  4  x2, 1, 0

y

d  x  12  y  02  x  12  4  x22  x4  7x2  2x  17

5

d is minimized when D  x4  7x2  2x  17 is a minimum.

2 1

gx  12x2  14 g xn  gxn 

2.0000

34.0000

0.0588

1.9412

1.9412

0.0830

31.2191

0.0027

1.9385

1.9385

 0.0012

31.0934

0.0000

1.9385

1

2.0000

2 3

(1, 0) x

−3

gxn 

xn

(1.939, 0.240)

3

gx  D  4x3  14x  2

n

159

g xn 

xn 

−1 −1

1

3

g xn  gxn 

x  1.939 Point closest to 1, 0 is  1.939, 0.240. Minimize: T 

43.

T T 

Distance rowed Distance walked  Rate rowed Rate walked x2  4

3



x 3x2  4

x2  6x  10



4 x3 4x2  6x  10

0

4xx2  6x  10  3x  3x2  4 16x2x2  6x  10  9x  32x2  4 7x4  42x3  43x2  216x  324  0 Let f x  7x4  42x3  43x2  216x  324 and fx  28x3  126x2  86x  216. Since f 1  100 and f 2  56, the solution is in the interval 1, 2. f xn  fxn 

f xn  fxn 

f xn 

fxn 

1.7000

19.5887

135.6240

0.1444

1.5556

1.5556

 1.0480

150.2780

 0.0070

1.5626

1.5626

0.0014

49.5591

0.0000

1.5626

n

xn

1 2 3

xn 

Approximation: x  1.563 miles 2,500,000  76x3  4830x2  320,000

45.

76x3  4830x2  2,820,000  0 Let f x  76x3  4830x2  2,820,000 fx  228x2  9660x. From the graph, choose x1  40. f xn  fxn 

f xn  fxn 

n

xn

f xn 

fxn 

1

40.0000

 44000.0000

21600.0000

2.0370

37.9630

2

37.9630

17157.6209

38131.4039

0.4500

38.4130

3

38.4130

780.0914

34642.2263

0.0225

38.4355

4

38.4355

2.6308

34465.3435

0.0001

38.4356

xn 

The zero occurs when x  38.4356 which corresponds to $384,356.

160

Chapter 3

Applications of Differentiation

47. False. Let f x  x2  1x  1. x  1 is a discontinuity. It is not a zero of f x. This statement would be true if f x  pxqx is given in reduced form. 49. True 51. f x  14 x3  3x2  34 x  2

y

3 3 fx  4 x2  6x  4

60 40

Let x1  12.

20 x

n

xn

f xn 

fxn 

f xn  fxn 

1

12.0000

7.0000

36.7500

0.1905

11.8095

2

11.8095

0.2151

34.4912

0.0062

11.8033

3

11.8033

0.0015

34.4186

0.0000

11.8033

xn 

−10 −5

f xn  fxn 

5

15

20

Approximation: x  11.803

Section 3.9

Differentials

1. f x  x2

x f x 

fx  2x Tangent line at 2, 4: y  f 2  f2x  2

x2

T x  4x  4

1.9

1.99

2

3.6100

3.9601

3.6000

3.9600

2.01

2.1

4

4.0401

4.4100

4

4.0400

4.4000

y  4  4x  2 y  4x  4 3. f x  x5

1.99

2

2.01

fx  5x4

x f x  x5

24.7610

1.9

31.2080

32

32.8080

40.8410

2.1

Tangent line at 2, 32: y  f 2  f2x  2

T x  80x  128

24.0000

31.2000

32

32.8000

40.0000

y  32  80x  2 y  80x  128 5. f x  sin x fx  cos x Tangent line at 2, sin 2: y  f 2  f2x  2

x

1.9

1.99

2

2.01

2.1

f x  sin x

0.9463

0.9134

0.9093

0.9051

0.8632

T x  cos 2x  2  sin 2

0.9509

0.9135

0.9093

0.9051

0.8677

y  sin 2  cos 2x  2 y  cos 2x  2  sin 2 1 3 7. y  f x  2 x3, fx  2 x2, x  2, x  dx  0.1

y  f x  x  f x  f 2.1  f 2  0.6305

dy  fxdx  f20.1  60.1  0.6

Section 3.9

Differentials

9. y  f x  x4  1, fx  4x3, x  1, x  dx  0.01 y  f x  x  f x

11.

dy  fx dx

 f 0.99  f 1

 f10.01

 0.994  1  14  1  0.0394

 40.01  0.04

13. y 

y  3x2  4 dy  6x dx

dy 

15. y  x 1  x2



dy  x

19.

y

17.



dy    sin

3 dx 2x  12

y  2x  cot2 x dy  2  2 cot x csc2 xdx



x 1  2x2  1  x2 dx  dx 2 1  x 1  x2

6x  1 1 cos 3 2

x1 2x  1

 2  2 cot x  2 cot3 xdx



6x2 1 dx

21. (a) f 1.9  f 2  0.1  f 2  f20.1

23. (a) f 1.9  f 2  0.1  f 2  f20.1  1   12 0.1  1.05

 1  10.1  0.9 (b) f 2.04  f 2  0.04  f 2  f20.04

(b) f 2.04  f 2  0.04  f 2  f20.04  1   2 0.04  0.98

 1  10.04  1.04 25. (a) g2.93  g3  0.07  g3  g30.07 8

 12

1

27. (a) g2.93  g3  0.07  g3  g30.07

0.07  8.035

 8  00.07  8 (b) g3.1  g3  0.1  g3  g30.1

(b) g3.1  g3  0.1  g3  g30.1 8 29.

A  x2

 8  00.1  8 A  r 2 r  14

x  dx 

1 ± 64

r  dr  ± 14

dA  2x dx A  dA  212 

0.1  7.95 31.

x  12

3 ±8

 12

1 ± 64



square inches

A  dA  2 r dr   28 ± 14   ± 7 square inches

161

162

Chapter 3

33. (a)

Applications of Differentiation

x  15 centimeter

35.

x  dx  ± 0.05 centimeters A

r  dr  ± 0.02 inches

x2

4 (a) V   r 3 3

dA  2x dx  215± 0.05

dV  4 r 2 dr  462± 0.02  ± 2.88 cubic inches

 ± 1.5 square centimeters

(b) S  4 r 2

Percentage error:

dS  8r dr  86± 0.02  ± 0.96 square inches

± 1.5 2 dA   0.00666. . .  % A 152 3

(b)

r  6 inches

4 r 2 dr 3dr dV (c) Relative error: V  43 r 3  r

dA 2x dx 2 dx  2  ≤ 0.025 A x x



0.025 dx ≤  0.0125  1.25% x 2

3 0.02  0.01  1% 6

dS 8 r dr 2dr Relative error: S  4 r 2  r 

20.02 2  0.000666 . . .  % 6 3

37. V   r 2h  40 r 2, r  5 cm, h  40 cm, dr  0.2 cm V  dV  80 r dr  8050.2  80 cm3 (b) 0.0025360024  216 seconds

39. (a) T  2 Lg dT 

 3.6 minutes

 dL g Lg

Relative error: dT  dL g Lg   T 2 Lg 

dL 2L



1 relative error in L 2



1 0.005  0.0025 2

Percentage error:

1 dT 100  0.25%  % T 4

41.  2645  26.75 h

d  ± 15  ± 0.25 (a)

h  9.5 csc

b

dh  9.5 csc cot d dh  cot d h



9.5

θ

dh  cot 26.750.25 h

Converting to radians, cot 0.46690.0044  0.0087  0.87% in radians.

(b)



dh  cot d ≤ 0.02 h 0.02 0.02 tan d ≤  cot  d 0.02 tan 26.75 0.02 tan 0.4669 ≤  26.75 0.4669  0.0216  2.16% in radians

Review Exercises for Chapter 3

43. r 

v02 sin 2 32

45. Let f x  x, x  100, dx  0.6. f x  x  f x  f x dx

v0  2200 ftsec

 changes from 10 to 11 dr 

 x 

22002 cos 2 d 16

  10

f x  x  99.4

 180 

d  11  10

1 dx 2x

 100 

1 0.6  9.97 2100

Using a calculator: 99.4  9.96995

 180

r  dr 

22002 20 cos 16 180

  180   4961 feet

 4961 feet 49. Let f x  x, x  4, dx  0.02, f x  1 2x .

4 x, x  625, dx  1. 47. Let f x   4 x  f x  x  f x  f x d x  

Then

1 dx 44x3

f 4.02  f 4  f 4 dx

1 4 624   4 625  f x  x   1 4 625 3 4  5

4.02  4 

1 1 0.02  2  0.02. 4 24

1  4.998 500

4 624  4.9980. Using a calculator, 

51. In general, when  x → 0, dy approaches y. 53. True

55. True

Review Exercises for Chapter 3 1. A number c in the domain of f is a critical number if f c  0 or f is undefined at c.

y 4

f ′(c) is 3 undefined.

f ′(c) = 0

x −4 −3

−1 −2 −3 −4

3. gx  2x  5 cos x, 0, 2

18

(6.28, 17.57)

g x  2  5 sin x 2

 0 when sin x  5 . Critical numbers: x  0.41, x  2.73 Left endpoint: 0, 5 Critical number: 0.41, 5.41 Critical number: 2.73, 0.88 Minimum Right endpoint: 2, 17.57 Maximum

(2.73, 0.88) − 4

2 −1

1

2

4

163

164

Chapter 3

Applications of Differentiation

5. Yes. f 3  f 2  0. f is continuous on 3, 2 , differentiable on 3, 2.





7. f x  3  x  4 y

(a)

f x  x  33x  1  0 for x  13.

6 4

c  13 satisfies f c  0.

2 x

−2

2

4

6

10

−4 −6

f 1  f 7  0 (b) f is not differentiable at x  4.

9.

f x  x23, 1 ≤ x ≤ 8

f x  x  cos x, 

11.

2 f x  x13 3

f x  1  sin x f b  f a 2   2  1 ba 2   2

f b  f a 4  1 3   ba 81 7

f c  1  sin c  1

2 3 f c  c13  3 7 c

13.

149

3

  ≤ x ≤ 2 2



c0

2744  3.764 729

f x  Ax2  Bx  C f x  2Ax  B f x2  f x1 Ax22  x12  Bx2  x1  x2  x1 x2  x1  Ax1  x2  B f c  2Ac  B  Ax1  x2  B 2Ac  Ax1  x2 c

x1  x2  Midpoint of x1, x2

2

15. f x  x  12x  3 f x  x  1 1  x  32x  1 2

 x  13x  7 7 Critical numbers: x  1 and x  3

17. hx  xx  3  x32  3x12 Domain: 0,  3 3 h x  x12  x12 2 2 3 3x  1  x12x  1  2 2x Critical number: x  1

Interval:

 < x < 1

1 < x <

7 3

7 3

< x <



Sign of f x:

f x > 0

f x < 0

f x > 0

Conclusion:

Increasing

Decreasing

Increasing



Interval:

0 < x < 1

Sign of h x:

h x < 0

h x > 0

Conclusion:

Decreasing

Increasing

1 < x <

Review Exercises for Chapter 3 19. ht  14t 4  8t

Test Interval: < t < 2

h t  t 3  8  0 when t  2. Relative minimum: 2, 12

165



2 < t <

Sign of h t:

h t < 0

h t > 0

Conclusion:

Decreasing

Increasing

1 1 cos12t  sin12t 3 4

21. y 

v  y  4 sin12t  3 cos12t (a) When t 

 1 , y  inch and v  y  4 inches/second. 8 4

(b) y  4 sin12t  3 cos12t  0 when

sin12t 3 3   ⇒ tan12t   . cos12t 4 4

3 4 Therefore, sin12t   and cos12t  . The maximum displacement is 5 5 y (c) Period:

1345  41  53  125 inch. 2   12 6 1 6  6 

Frequency:

23. f x  x  cos x, 0 ≤ x ≤ 2 f x  1  sin x f x  cos x  0 when x  Points of inflection:

 3 , . 2 2

Test Interval: Sign of f x: Conclusion:

 3 < x < 2 2

3 < x < 2 2

f x < 0

f x > 0

f x < 0

Concave downward

Concave upward

Concave downward

0 < x <

 2

2 , 2 , 32, 32

25. gx  2x21  x2

y

g x  4x2x2  1 Critical numbers: x  0, ±

(−

1 2

1, 1 2 2

)

1

−2

g x  4  24x

(

1, 1 2 2

)

(0, 0)

2

x

−1

2

−2

g 0  4 > 0

Relative minimum at 0, 0

 

1 1 Relative maximums at ± , 2 2

y

27. 6

(5, f(5))

5 4

(3, f(3))

2 1 −1

 29. The first derivative is positive and the second derivative is negative. The graph is increasing and is concave down.

7

3

−3



1 g ±  8 < 0 2

(6, 0) (0, 0) 2 3 4 5

x 7

166

Chapter 3

Applications of Differentiation

31. (a) D  0.0034t4  0.2352t3  4.9423t2  20.8641t  94.4025 (b)

369

0

29 0

(c) Maximum at 21.9, 319.5 1992 Minimum at 2.6, 69.6 1972 (d) Outlays increasing at greatest rate at the point of inflection 9.8, 173.7 1979

33. lim

x →

2x2 2 2  lim   5 x → 3  5x2 3

35. lim

2x  3 x4

39. f x 

3x2

37. hx 

Discontinuity: x  4 lim

x →

x →

5 cos x  0, since 5 cos x ≤ 5. x



3 2 x

Discontinuity: x  0

2x  3 2  3x  lim 2 x → 1  4x x4

lim

x →

3x  2  2

Vertical asymptote: x  4

Vertical asymptote: x  0

Horizontal asymptote: y  2

Horizontal asymptote: y  2

41. f x  x3 



243 x

43. f x 

x1 1  3x2

Relative minimum: 3, 108

Relative minimum: 0.155, 1.077

Relative maximum: 3, 108

Relative maximum: 2.155, 0.077 0.2

200

−2

−5

5

5

− 1.4

− 200

Vertical asymptote: x  0

Horizontal asymptote: y  0

45. f x  4x  x2  x4  x Domain:  , ; Range:  , 4 f x  4  2x  0 when x  2. f x  2 Therefore, 2, 4 is a relative maximum. Intercepts: 0, 0, 4, 0

y

5

)2, 4)

4 3 2 1

x 1

2

3

5

Review Exercises for Chapter 3 47. f x  x16  x2, Domain: 4, 4 , Range: 8, 8

y

2

2, 8

8

Domain: 4, 4 ; Range: 8, 8

6 4

16  2x2 f x   0 when x  ± 22 and undefined when x  ± 4. 16  x2 f x 

2xx2  24 16  x232

2

(− 4, 0)

(4, 0) x

8

6

2

2

4

6

8

(0, 0)

8

2

2,

8

f  22  > 0

Therefore,  22, 8 is a relative minimum. f  22  < 0

Therefore,  22, 8 is a relative maximum. Point of inflection: 0, 0 Intercepts: 4, 0, 0, 0, 4, 0 Symmetry with respect to origin 49. f x  x  13x  32

y

Domain:  , ; Range:  , 

4

f x  x  12x  35x  11  0 when x  1,

11 , 3. 5

f x  4x  15x2  22x  23  0 when x  1,

( 115 , 1.11(

(1, 0)

(2.69, 0.46) (3, 0)

2

x

−2

4 −2

11± 6 . 5

6

(1.71, 0.60)

−4

f 3 > 0 Therefore, 3, 0 is a relative minimum. f

115 < 0

Therefore,

is a relative maximum. 115, 3456 3125 

Points of inflection: 1, 0,

11 5

6

 11 5

, 0.60 ,

6



, 0.46

Intercepts: 0, 9, 1, 0, 3, 0 51. f x  x13x  323

y

Domain:  , ; Range:  , 

4 3

x1 f x   0 when x  1 and undefined when x  3, 0. x  313x23 2 f x  53 is undefined when x  0, 3. x x  343 3 4 is By the First Derivative Test 3, 0 is a relative maximum and  1,    a relative minimum. 0, 0 is a point of inflection.

Intercepts: 3, 0, 0, 0

2 1

) 3, 0)

)0, 0) x

5

4

2

) 1,

1

1

1.59) 3

2

167

168

Chapter 3

Applications of Differentiation

x1 x1

53. f x 

x

1

y

Domain:  , 1, 1, ; Range:  , 1, 1,  f x 

2 < 0 if x 1. x  12

f x 

4 x  13

4

y

1 2

x 2

2

4

2

Horizontal asymptote: y  1 Vertical asymptote: x  1 Intercepts: 1, 0, 0, 1 55. f x 

4 1  x2

y 5

Domain:  , ; Range: 0, 4

8x  0 when x  0. f x  1  x22 3 81  3x2 .  0 when x  ± f x  1  x23 3

(0, 4)

4

(−

3,3 3

(

(

3,3 3

1

2

(

2 1 −3

−2 −1

x −1

3

f 0 < 0 Therefore, 0, 4 is a relative maximum. Points of inflection:  ± 33, 3 Intercept: 0, 4 Symmetric to the y-axis Horizontal asymptote: y  0

57. f x  x3  x 

y

4 x

10

Domain:  , 0, 0, ; Range:  , 6 , 6,  f x  3x2  1  f x  6x 

4  x2

3x4

 4  0 when x  ± 1. x2 x2

8 6x4  8  0 x3 x3

f 1 < 0 Therefore, 1, 6 is a relative maximum. f 1 > 0 Therefore, 1, 6 is a relative minimum. Vertical asymptote: x  0 Symmetric with respect to origin

5

(1, 6) x

2

1

(−1, −6) −5

1

x

2

0

Review Exercises for Chapter 3





59. f x  x2  9

y

Domain:  , ; Range: 0,  f x 

2xx2  9  0 when x  0 and is undefined when x  ± 3. x2  9



10



5

2x2  9 is undefined at x  ± 3. f x  2 x 9



)0, 9)



) 3, 0)

)3, 0) x

4

f 0 < 0

2

2

4

Therefore, 0, 9 is a relative maximum. Relative minima: ± 3, 0 Points of inflection: ± 3, 0 Intercepts: ± 3, 0, 0, 9 Symmetric to the y-axis 61. f x  x  cos x

y

)2 , 2

Domain: 0, 2 ; Range: 1, 1  2

3 3 , 2 2

f x  1  sin x ≥ 0, f is increasing. f x  cos x  0 when x  Points of inflection:



1)

2

 3 , . 2 2

  3 3 , , , 2 2 2 2



)0, 1)

, 2 2 x

2



Intercept: 0, 1 63. x2  4y2  2x  16y  13  0 (a) x 2  2x  1  4y 2  4y  4  13  1  16

y

x  1  4y  2  4 x  12 y  22  1 4 1 The graph is an ellipse: 2

2

4

(1, 3) 3 2 1

Maximum: 1, 3

(1, 1) x −1

Minimum: 1, 1

1

2

3

(b) x2  4y2  2x  16y  13  0 2x  8y

dy dy  2  16  0 dx dx dy 8y  16  2  2x dx dy 2  2x 1x   dx 8y  16 4y  8

The critical numbers are x  1 and y  2. These correspond to the points 1, 1, 1, 3, 2, 1, and 2, 3. Hence, the maximum is 1, 3 and the minimum is 1, 1.

169

170

Chapter 3

Applications of Differentiation

65. Let t  0 at noon.

(100 − 12t, 0) (0, 0)

L  d 2  100  12t2  10t2  10,000  2400t  244t 2

A

(100, 0)

d

300 dL  2400  488t  0 when t   4.92 hr. dt 61

B (0, −10t)

Ship A at 40.98, 0; Ship B at 0, 49.18 d 2  10,000  2400t  244t 2  4098.36 when t  4.92  4:55 P.M.. d  64 km 67. We have points 0, y, x, 0, and 1, 8. Thus,

y

08 8x y8  or y  . m 01 x1 x1

(0, y)

10

(1, 8)

8 6

Let f x  L 2  x 2 

x 8x 1 . 2

4 2



x f x  2x  128 x1 x



(x, 0)

x  1  x 0 x  12

x 2

4

6

8

10

64x 0 x  13

x x  13  64  0 when x  0, 5 minimum. Vertices of triangle: 0, 0, 5, 0, 0, 10 69.

A  Average of basesHeight 

x 2 s

3s2  2sx  x2

2

s

see figure

s

dA 1 s  xs  x   3s2  2sx  x2 dx 4 3s2  2sx  x2



x−s 2

22s  xs  x  0 when x  2s. 43s2  2sx  x2 A is a maximum when x  2s. 71. You can form a right triangle with vertices 0, 0, x, 0 and 0, y. Assume that the hypotenuse of length L passes through 4, 6. 60 6x y6  or y  04 4x x4

Let f x  L2  x2  y2  x 2  f x  2x  72

x 6x 4 . 2

0 x x 4 x 4  4 2

3 x x  43  144  0 when x  0 or x  4   144.

L  14.05 feet

s

x−s 2 x



m

3s 2 + 2sx − x 2 2

Review Exercises for Chapter 3 csc  

73. csc

L1 or L1  6 csc  6

2    9 or L L2

2

 9 csc

see figure

L1 θ

2  

L2

θ 9

L  L1  L2  6 csc   9 csc

171

6

(π2 − θ(

2    6 csc   9 sec 

dL  6 csc  cot   9 sec  tan   0 d tan3  

3 2  2 ⇒ tan   3 3 3

sec   1  tan2   csc   L6

1  23

23



323  223

313

sec  323  223  tan  213

323  22312 323  22312 9  3323  22332 ft  21.07 ft Compare to Exercise 72 using a  9 and b  6. 13 2 313

75. Total cost  Cost per hourNumber of hours T

v 110 11v 550  5   600 v  60 v 2

dT 11 550 11v 2  33,000   2  dv 60 v 60v 2  0 when v  3000  1030  54.8 mph. d 2T 1100  3 > 0 when v  1030 so this value yields a minimum. dv 2 v 77. f x  x3  3x  1 From the graph you can see that f x has three real zeros. f x  3x2  3 f xn 

f xn 

f xn  f xn 

1.5000

0.1250

3.7500

0.0333

1.5333

2

1.5333

0.0049

4.0530

0.0012

1.5321

n

xn

f xn 

f xn 

f xn  f xn 

1

0.5000

0.3750

2.2500

 0.1667

0.3333

2

0.3333

 0.0371

2.6667

0.0139

0.3472

3

0.3472

 0.0003

2.6384

0.0001

0.3473

n

xn

f xn 

f xn 

f xn  f xn 

1

 1.9000

0.1590

7.8300

0.0203

1.8797

2

1.8797

0.0024

7.5998

0.0003

1.8794

n

xn

1

xn 

f xn  f xn 

xn 

xn 

f xn  f xn 

f xn  f xn 

The three real zeros of f x are x  1.532, x  0.347, and x  1.879.

C H A P T E R 3 Applications of Differentiation Section 3.1

Extrema on an Interval

. . . . . . . . . . . . . . 378

Section 3.2

Rolle’s Theorem and the Mean Value Theorem

Section 3.3

Increasing and Decreasing Functions and the First Derivative Test . . . . . . . . . . . . . . 387

Section 3.4

Concavity and the Second Derivative Test . . . . 394

Section 3.5

Limits at Infinity

Section 3.6

A Summary of Curve Sketching

Section 3.7

Optimization Problems . . . . . . . . . . . . . . 419

Section 3.8

Newton’s Method . . . . . . . . . . . . . . . . . 429

Section 3.9

Differentials . . . . . . . . . . . . . . . . . . . . 434

. 381

. . . . . . . . . . . . . . . . . 402 . . . . . . . . . 410

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 437 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . 445

C H A P T E R 3 Applications of Differentiation Section 3.1

Extrema on an Interval

Solutions to Even-Numbered Exercises

2. f x  cos

x 2

4.

f x  3x x  1

12 x  1 

fx  3x

 x fx   sin 2 2

12

x  1 3

3   x  112x  2x  1 2

f0  0 f2  0

3   x  1123x  2 2

 32  0

f 

6. Using the limit definition of the derivative,



lim

f x  f 0 4  x   4  lim 1 x→0 x0 x

lim

f x  f 0 4  x   4  lim  1 x→0 x0 x0

x→0

x→0

8. Critical number: x  0. x  0: neither



f0 does not exist, since the one-sided derivatives are not equal. 10. Critical numbers: x  2, 5

12. gx  x2x2  4  x4  4x2

x  2: neither

gx  4x3  8x  4xx2  2

x  5: absolute maximum

Critical numbers: x  0, x  ± 2

14. f x  fx 

4x x2  1

x2  14  4x2x 41  x2  2 x2  12 x  12

Critical numbers: x  ± 1

16. f   2 sec   tan , 0 <  < 2 f  2 sec  tan   sec2   sec 2 tan   sec  sin 

cos   cos 

 sec  2

1

 sec2 2 sin   1 On 0, 2, critical numbers:  

378

7 11 , 6 6

Section 3.1

18. f x  fx 

2x  5 , 0, 5 3

20. f x  x2  2x  4, 1, 1 fx  2x  2  2x  1

2 ⇒ No critical numbers 3

Left endpoint:

Extrema on an Interval

Left endpoint: (1, 5 Minimum Right endpoint: 1, 1 Maximum

0, 53 Minimum

Right endpoint: 5, 5 Maximum 22. f x  x3  12x, 0, 4

3 24. gx  x, 1, 1

fx  3x2  12  3x2  4

gx 

Left endpoint: 0, 0

Left endpoint: 1, 1 Minimum

Critical number: 2, 16 Minimum

Critical number: 0, 0

Right endpoint: 4, 16 Maximum

Right endpoint: 1, 1 Maximum

Note: x  2 is not in the interval.





26. y  3  t  3 , 1, 5

28. ht 

From the graph, you see that t  3 is a critical number. 4

−1

1 3x23

ht 

t , 3, 5 t2 2 t  22

Left endpoint: 3, 3 Maximum

5

Right endpoint: −4

5, 53 Minimum

Left endpoint: 1, 1 Minimum Right endpoint: 5, 1 Critical number: 3, 3 Maximum

30. g x  sec x,

 6 , 3

32. y  x2  2  cos x, 1, 3 y  2x  sin x

gx  sec x tan x Left endpoint:



Right endpoint:

 2   ,

 , 1.1547 6 3 6

 

3 , 2 Maximum



Left endpoint: 1, 1.5403 Right endpoint: 3, 7.99 Maximum Critical number: 0, 3 Minimum

Critical number: 0, 1 Minimum 34. (a) Minimum: 4, 1 Maximum: 1, 4

36. (a) Minima: 2, 0 and 2, 0 Maximum: 0, 2

(b) Maximum: 1, 4

(b) Minimum: 2, 0

(c) Minimum: 4, 1

(c) Maximum: 0, 2

(d) No extrema

(d) Maximum:  1, 3 

379

380

Chapter 3

38. f x 

Applications of Differentiation

22  3x,x ,

1 ≤ x < 3 3 ≤ x ≤ 5

2

2 , 0, 2 2x Left endpoint: 0, 1 Minimum

40. f x 

Left endpoint: 1, 1 Maximum

3

Right endpoint: 5, 13 Minimum 3

(1, 1)

−3

12

(0, 1)

−1

(3, − 7)

5

−1

(5, − 13) −15

42. (a)

Maximum:

3

(2, ) 8 3

0

2, 83

Minimum: 0, 0, 3, 0 3

0

4 (b) f x  x 3  x, 0, 3 3 fx 





4 1 x 3  x121  3  x121 3 2



4 1  3  x12 x  23  x 3 2 

44. f x 



1 1 , ,3 x2  1 2

fx 

2x x2  12

f x 

21  3x2 x2  13

fx 

24x  24x3 x2  14

Setting f  0, we have x  0, ± 1. 1

f 1  2 is the maximum value.

26  3x 62  x 22  x   3  x 3 3  x 3 3  x

Critical number: x  2 f 0  0 Minimum f 3  0 Minimum f 2 

8 3

Maximum:

46.

f x  f x  f 4x  f 5x 

2, 38

1 , 1, 1 x2  1 24x  24x3 See Exercise 44. x2  14

48. Let f x  1x. f is continuous on 0, 1 but does not have a maximum. f is also continuous on 1, 0 but does not have a minimum. This can occur if one of the endpoints is an infinite discontinuity.

245x4  10x2  1 x2  15 240x

 x2  16 3x4

10x2

y 2

 3

f 40  24 is the maximum value.

1

−2

x

−1

1 −1

2

Section 3.2 y

50. 5 4

Rolle’s Theorem and the Mean Value Theorem

52. (a) No

54. (a) No

(b) Yes

(b) Yes

381

f

3 2

x

−2 −1

1

2

3

4

5

6

−2 −3

56. x 

v 2 sin 2  3 , ≤  ≤ 32 4 4

C  2x 

58.

C1  300,002

d is constant. dt

C300  1600

dx d dx  by the Chain Rule dt d dt 

300,000 , 1 ≤ x ≤ 300 x

C  2 

v 2 cos 2 d 16 dt

300,000 0 x2

2x2  300,000 x2  150,000

In the interval 4, 34,   4, 34 indicate minimums for dxdt and   2 indicates a maximum for dxdt. This implies that the sprinkler waters longest when   4 and 34. Thus, the lawn farthest from the spinkler gets the most water.

x  10015  387 > 300 outside of interval C is minimized when x  300 units. Yes, if 1 ≤ x ≤ 400, then x  387 would minimize C.

60. f x  x

y 3

The derivative of f is undefined at every integer and is zero at any noninteger real number. All real numbers are critical numbers.

2 1 −2

x

−1

1

2

3

−2

64. False. Let f x  x2. x  0 is a critical number of f.

62. True. This is stated in the Extreme Value Theorem.

gx  f x  k  x  k2 x  k is a critical number of g.

Section 3.2

Rolle’s Theorem and the Mean Value Theorem 4. f x  xx  3

2. Rolle’s Theorem does not apply to f x  cotx2 over , 3 since f is not continuous at x  2.

x-intercepts: 0, 0, 3, 0 3 fx  2x  3  0 at x  . 2

6. f x  3xx  1 x-intercepts: 1, 0, 0, 0



1 x fx  3x x  112  3x  112  3x  112  x  1 2 2 fx  3x  112

32x  1  0 at x   32.



382

Chapter 3

Applications of Differentiation

8. f x  x2  5x  4, 1, 4

f x  x  3x  12, 1, 3

10.

f 1  f 4  0

f 1  f 3  0

f is continuous on 1, 4. f is differentiable on 1, 4.

f is continuous on 1, 3. f is differentiable on 1, 3. Rolle’s Theorem applies.

Rolle’s Theorem applies.

fx  x  32x  1  x  12

fx  2x  5 2x  5  0 ⇒ x  c value:

 x  12x  6  x  1

5 2

 x  13x  5

5 2

c value:



12. f x  3  x  3 , 0, 6

5 3

f x 

14.

x2  1 , 1, 1 x

f 0  f 6  0

f 1  f 1  0

f is continuous on 0, 6. f is not differentiable on 0, 6 since f3 does not exist. Rolle’s Theorem does not apply.

f is not continuous on 1, 1 since f 0 does not exist. Rolle’s Theorem does not apply.

16. f x  cos x, 0, 2 f 0  f 2  1 f is continuous on 0, 2. f is differentiable on 0, 2. Rolle’s Theorem applies.

f x  cos 2x,

18.



f  f

fx  sin x



c value: 

 12 , 6 

3   12 2



6  21

f 

  f 12 0



Rolle’s Theorem does not apply.

20.

f x  sec x,

 4 , 4 

  f  f  2 4 4



f is continuous on  4, 4. f is differentiable on  4, 4. Rolle’s Theorem applies.

22. f x  x  x13, 0, 1 f 0  f 1  0 f is continuous on 0, 1. f is differentiable on 0, 1. (Note: f is not differentiable at x  0.) Rolle’s Theorem applies. fx  1 

fx  sec x tan x sec x tan x  0

1

x0

3 x2  

c value: 0

x2  x c value:

1 3 x2 3

1 3 1 27

271 

3

9

1 0 3 x2 3

3

9

 0.1925

1

0

−1

1

Section 3.2

f x 

24.

x x  sin , 1, 0 2 6

f 1  f 0  0 f is continuous on 1, 0. f is differentiable on 1, 0. Rolle’s Theorem applies. 1  x fx   cos 0 2 6 6

x 3 cos  6  x

Rolle’s Theorem and the Mean Value Theorem

26. Cx  10

1x  x x 3

(a) C3  C6 

25 3



Cx  10 

(b)



1 3  0 x2 x  32

1 3  x2  6x  9 x2 2x2  6x  9  0

6 3 arccos Value needed in 1, 0.  

x

 0.5756 radian



c value: 0.5756

6 ± 63 3 ± 33  4 2

In the interval 3, 6: c 

0.02

−1

6 ± 108 4

3  33  4.098. 2

0

−0.01

28.



30. f x  x  3 , 0, 6

y

f is not differentiable at x  3.

f x

a

b

32. f x  xx2  x  2 is continuous on 1, 1 and differentiable on 1, 1. f 1  f 1  1 1  1 fx  3x2  2x  2  1

3x  1x  1  0 1 c 3

34. f x  x  1x is continuous on 12, 2 and differentiable on 12, 2. f 2  f 12 32  3  1  2  12 32 fx 

1  1 x2

x2  1 c1

383

384

Chapter 3

Applications of Differentiation

36. f x  x3 is continuous on 0, 1 and differentiable on 0, 1.

38. f x  2 sin x  sin 2x ferentiable on 0, .

f 1  f 0 1  0  1 10 1 fx  3x2  1 x±

f   f 0 0  0  0 0  fx  2 cos x  2 cos 2x  0 2cos x  2 cos2 x  1  0

3

3

In the interval 0, 1: c 

is continuous on 0,  and dif-

22 cos x  1cos x  1  0 3

3

.

1 2

cos x 

cos x  1

 5 , , 3 3

x In the interval 0, : c 

 . 3

40. f x  x  2 sin x on  ,  (c) fx  1  2 cos x  1

2

(a) tangent − 2

secant 2 tangent

f

− 2

 c± , 2

f

2  2  2

2   2  2

f 

(b) Secant line: slope 

cos x  0

f   f        1     2

y    1x  

Tangent lines: y 

2  2  1 x  2 yx2



y 

yx

  2 1 x 2 2







yx2 42. f x  x4  4x3  8x2  5, 0, 5, 5, 80 m

80  5  15 50

(a)

150

(c) First tangent line: y  f c  mx  c y  9.59  15x  0.67

tangent f

secant

0  15x  y  0.46

tangent 5

0 0

(b)

Secant line: y  5  15x  0 0  15x  y  5 fx  4x3  12x2  16x f 5  f 1  15 51 4c3  12c2  16c  15 0  4c3  12c2  16c  15 c  0.67 or c  3.79

Second tangent line: y  f c  mx  c y  131.35  15x  3.79 0  15x  y  74.5

Section 3.2



44. St  200 5  (a)

9 2t

Rolle’s Theorem and the Mean Value Theorem



S12  S0 2005  914  2005  92 450   12  0 12 7 St  200

(b)

2 9 t  450 7 2

1 1  2  t2 28 2  t  27 t  27  2  3.2915 months St is equal to the average value in April. 46. f a  f b and fc  0 where c is in the interval a, b. (a) gx  f x  k

gx  f x  k

(b)

(c)

ga  k  gb  k  f a

ga  gb  f a  k gx  fx ⇒ gc  0

gx  fx  k

gx  f k x g

ak  g bk  f a

gx  k fk x

Interval: a, b

gc  k  fc  0

Critical number of g: c

Interval: a  k, b  k Critical number of g: c  k

g

ck  k fc  0

Interval:

 ak, bk

Critical number of g:

c k

48. Let Tt be the temperature of the object. Then T0  1500 and T5  390 . The average temperature over the interval 0, 5 is 390  1500  222 Fhr. 50 By the Mean Value Theorem, there exists a time to, 0 < t0 < 5, such that Tt0  222. 2 x 50. f x  3 cos 2 ,



fx  6 cos

2x sin 2x 2

 3 cos (a)

2x sin 2x (b) f and f are both continuous on the entire real line.

7

−2

2

−7

(c) Since f 1  f 1  0, Rolle’s Theorem applies on 1, 1. Since f 1  0 and f 2  3, Rolle’s Theorem does not apply on 1, 2.

(d) lim fx  0 x→3

lim fx  0

x→3

385

386

Chapter 3

Applications of Differentiation

52. f is not continuous on 5, 5. Example: f x 

0,1x,

54. False. f must also be continuous and differentiable on each interval. Let

x0 x0

f x 

y

x3  4x . x2  1

f (x) = 1x

4 2

(5, 15) x 2

(− 5, − 15)

4

−5

56. True 58. Suppose f x is not constant on a, b. Then there exists x1 and x2 in a, b such that f x1  f x2. Then by the Mean Value Theorem, there exists c in a, b such that fc 

f x2  f x1  0. x2  x1

This contradicts the fact that fx  0 for all x in a, b. 60. Suppose f x has two fixed points c1 and c2. Then, by the Mean Value Theorem, there exists c such that fc 

f c2  f c1 c2  c1   1. c2  c1 c2  c1

This contradicts the fact that fx < 1 for all x. 62. Let f x  cos x. f is continuous and differentiable for all real numbers. By the Mean Value Theorem, for any interval a, b, there exists c in a, b such that f b  f a  fc ba cos b  cos a  sin c ba cos b  cos a  sin cb  a

cos b  cos a  sin c

b  a

cos b  cos a ≤ b  a since sin c

≤ 1.

Section 3.3

Section 3.3

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test

2. y   x  12

4. f x  x4  2x2

Increasing on:  , 1

Increasing on: 1, 0, 1, 

Decreasing on: 1, 

Decreasing on:  , 1, 0, 1

6. y  y 

x2 x1 xx  2 x  12

Critical numbers: x  0, 2

Discontinuity: x  1

Test intervals:   < x < 2

2 < x < 1

1 < x < 0

0 < x <



Sign of fx:

y > 0

y < 0

y < 0

y > 0

Conclusion:

Increasing

Decreasing

Decreasing

Increasing

Increasing on  , 2, 0,  Decreasing on 2, 1, 1, 0 8. hx  27x  x3 hx  27  3x2  33  x3  x hx  0 Critical numbers: x  ± 3 Test intervals:

  < x < 3

3 < x < 3

Sign of hx:

h < 0

h > 0

h < 0

Decreasing

Increasing

Decreasing

Conclusion:

3 < x <



Increasing on 3, 3 Decreasing on  , 3, 3,  10. y  x  y 

387

4 x

x  2x  2 x2

Critical numbers: x  ± 2

Discontinuity: 0

Test intervals:   < x < 2

2 < x < 0

0 < x < 2

2 < x <



Sign of y:

y > 0

y < 0

y < 0

y > 0

Conclusion:

Increasing

Decreasing

Decreasing

Increasing

Increasing:  , 2, 2,  Decreasing: 2, 0, 0, 2

388

Chapter 3

Applications of Differentiation

12. f x  x2  8x  10

14. f x   x2  8x  12

fx  2x  8  0

fx  2x  8  0

Critical number: x  4

Critical number: x  4

Test intervals: Sign of fx:

  < x < 4 4 < x <

Conclusion:



f < 0

f > 0

Decreasing

Increasing

Increasing on: 4, 

fx  3x2  12x  3xx  4 Critical numbers: x  0, 4 Test intervals:

 < x < 0

0 < x < 4

Sign of fx:

f > 0

f < 0

f > 0

Conclusion:

Increasing

Decreasing

Increasing

4 < x <



Increasing on  , 0, 4,  Decreasing on 0, 4 Relative maximum: 0, 15 Relative minimum: 4, 17 18. f x  x  22x  1 fx  3xx  2 Critical numbers: x  2, 0 Test intervals:

  < x < 2

2 < x < 0

Sign of fx:

f > 0

f < 0

f > 0

Conclusion:

Increasing

Decreasing

Increasing

Relative minimum: 0, 4

f > 0

f < 0

Conclusion:

Increasing

Decreasing

Relative maximum: 4, 4

16. f x  x3  6x2  15

Relative maximum: 2, 0

Sign of fx:

Decreasing on: 4, 

Relative minimum: 4, 6

Decreasing on: 2, 0

  < x < 4

Increasing on:  , 4

Decreasing on:  , 4

Increasing on:  , 2, 0, 

Test intervals:

0 < x <



4 < x <



Section 3.3

Increasing and Decreasing Functions and the First Derivative Test 22. f x  x23  4

20. f x  x4  32x  4 fx  4x3  32  4x3  8

2 2 fx  x13  13 3 3x

Critical number: x  2 Test intervals: Sign of fx: Conclusion:

389

Critical number: x  0

 < x < 2

2 < x <



f < 0

f > 0

Test intervals:

 < x < 0

Decreasing

Increasing

Sign of fx:

f < 0

f > 0

Conclusion:

Decreasing

Increasing

Increasing on: 2,  Decreasing on:  , 2

Increasing on: 0, 

Relative minimum: 2, 44

Decreasing on:  , 0



0 < x <

Relative minimum: 0, 4



24. f x  x  113



26. f x  x  3  1

1 fx  3x  123

fx 

Critical number: x  1

Critical number: x  3

Test intervals: Sign of fx: Conclusion:

 < x < 1

1 < x <



1, x > 3 x3  x3 1, x < 3





Test intervals:

f > 0

f > 0

Sign of fx:

Increasing

Increasing

Conclusion:



  < x < 3 Decreasing

Increasing

Increasing on: 3, 

No relative extrema

Decreasing on:  , 3 Relative minimum: 3, 1

fx 

x x1

x  11  x1 1  x  12 x  12

Discontinuity: x  1 Test intervals: Sign of fx: Conclusion:

  < x < 1



f > 0

f > 0

Increasing

Increasing

Increasing on:  , 1, 1,  No relative extrema

1 < x <



f > 0

Increasing on:  , 

28. f x 

3 < x <

f < 0

390

Chapter 3

30. f x 

Applications of Differentiation

x3 1 3   2 x2 x x

fx  

1 6  x  6   x2 x3 x3

Critical number: x  6 Discontinuity: x  0 Test intervals: Sign of fx:

  < x < 6

6 < x < 0

f < 0

f > 0

f < 0

Decreasing

Increasing

Decreasing

Conclusion:

0 < x <



Increasing on: 6, 0 Decreasing on:  , 6, 0,  Relative minimum:

32. f x  fx 

6,  121 

x2  3x  4 x2

x  22x  3  x2  3x  41 x2  4x  10  x  22 x  22

Discontinuity: x  2  < x < 2

Test intervals: Sign of fx: Conclusion:

2 < x <



f > 0

f > 0

Increasing

Increasing

Increasing on:  , 2, 2,  No relative extrema 34. f x  sin x cos x 

1 sin 2x, 0 < x < 2 2

fx  cos 2x  0 Critical numbers: x 

 3 5 7 , , , 4 4 4 4

0 < x <

Test intervals:

 4

 3 < x < 4 4

3 5 < x < 4 4

5 7 < x < 4 4

7 < x < 2 4

Sign of fx:

f > 0

f < 0

f > 0

f < 0

f > 0

Conclusion:

Increasing

Decreasing

Increasing

Decreasing

Increasing

Increasing on: Decreasing on:

0, 4 , 34, 54, 74, 2 4 , 34, 54, 74

Relative maxima:

4 , 21, 54, 21

Relative minima:

34,  21, 74,  12

Section 3.3

36. f x  fx 

Increasing and Decreasing Functions and the First Derivative Test

sin x , 0 < x < 2 1  cos2x

Test intervals:

0 < x <

cos x2  sin2x 0 1  cos2x2

Sign of fx: Conclusion:

Critical numbers: x 

 3 , 2 2

0, 2 , 32, 2

Increasing on: Decreasing on:

2 , 32

 3 < x < 2 2

3 < x < 2 2

f > 0

f < 0

f > 0

Increasing

Decreasing

Increasing

 2

Relative maximum:

2 , 1

Relative minimum:

32, 1

38. f x  10 5  x2  3x  16 , 0, 5 (a) fx  

52x  3 x2  3x  16

(b)

y 15

f

12

6

f′

3 −1

(c) 

52x  3 0 x2  3x  16

x 3

1

−3

4

(d) Intervals:

3 Critical number: x  2

0, 23

32, 5

fx > 0

fx < 0

Increasing

Decreasing

f is increasing when f is positive and decreasing when f is negative.

40. f x 

x x  cos , 0, 4 2 2

(a) fx 

1 1 x  sin 2 2 2

(b)

y 8 6

f 4 2

f′ π

(c)

x 1 1  sin  0 2 2 2 sin

x 1 2 x   2 2

Critical number: x  







x

(d) Intervals:

0, 

, 4

fx > 0

fx > 0

Increasing

Increasing

f is increasing when f is positive.

391

392

Chapter 3

Applications of Differentiation 44. f x is a line of slope 2 ⇒ fx  2.

42. f t  cos2t  sin2t  2 sin2t  gt, 2 < t < 2 ft  4 sin t cos t  2 sin 2t

6

f symmetric with respect to y-axis zeros of f: ±

 4

−6

6 −2

Relative maximum: 0, 1

 2 , 1, 2 , 1

Relative minimum: 2

−3

3

−2

46. f is a 4th degree polynomial ⇒ f is a cubic polynomial.

48. f has positive slope y

y 6

4

f′

3 2

−6 −4 −2

x 2

4

f′

6

x

−3 −2 −1

1

2

3

−2

In Exercises 50–54, f  x > 0 on , 4, f  x < 0 on 4, 6 and f  x > 0 on 6, . gx  3f x  3

50.

52. gx  f x

54. gx  f x  10

gx  fx

gx  fx  10

g0  f0 > 0

g8  f2 < 0

gx  3fx g5  3f5 > 0

58. st  4.9sin t 2

56. Critical number: x  5 f4  2.5 ⇒ f is decreasing at x  4.

(a) vt  9.8sin t

(b) If   2, the speed is maximum,

f6  3 ⇒ f is increasing at x  6.

5, f 5 is a relative minimum. 60. C 



vt  9.8 t.

3t ,t ≥ 0 27  t3

(a)

t

0

0.5

1

1.5

2

2.5

3

Ct

0

0.055

0.107

0.148

0.171

0.176

0.167

The concentration seems greater near t  2.5 hours. (b)

(c) C 

0.25

 0

3 0

The concentration is greatest when t 2.38 hours.



speed  9.8 sin  t

27  t 33  3t3t 2 27  t 32 327  2t 3 27  t 32

3 C  0 when t  3 2 2.38 hours.

By the First Derivative Test, this is a maximum.

Section 3.3 62. P  2.44x  P  2.44 

Increasing and Decreasing Functions and the First Derivative Test

x2  5000, 0 ≤ x ≤ 35,000 20,000

Test intervals: Sign of P:

0 < x < 24,400

24,400 < x < 35,000

P > 0

P < 0

x 0 10,000

x  24,400 Increasing when 0 < x < 24,400 hamburgers. Decreasing when 24,400 < x < 35,000 hamburgers. 64. R  0.001T 4  4T  100 (a) R 

0.004T 3  4 0 2 0.001T 4  4T  100

(b)

125

T  10 , R 8.3666

−100

100 −25

The minimum resistance is approximately R 8.37 at T  10 . 66. f x  2 sin3x  4 cos3x 6

−



−6

The maximum value is approximately 4.472. You could use calculus by finding fx and then observing that the maximum value of f occurs at a point where fx  0. For instance, f0.154 0, and f 0.154  4.472. 68. (a) Use a cubic polynomial f x  a3x3  a2x2  a1x  a0. (b) fx  3a3 x 2  2a 2 x  a1

0, 0:

4, 1000:

0  a0

 f 0  0

0  a1

 f0  0

1000  64a3  16a2

 f 4  1000

0  48a3  8a2

 f4  0

(c) The solution is a0  a1  0, a2  f x  (d)

125 3 375 2 x  x. 4 2

1200

(4, 1000)

−3

(0, 0) −400

8

375 125 , a3  2 4

393

394

Chapter 3

Applications of Differentiation

70. (a) Use a fourth degree polynomial f x  a4 x4  a3 x3  a 2 x 2  a1x  a0. (b) fx  4a4x3  3a3x2  2a2x  a1

1, 2:

1, 4:

3, 4:

2  a4  a3  a2  a1  a0

 f 1  2

0  4a4  3a3  2a2  a1

 f1  0

4  a4  a3  a2  a1  a0

 f 1  4

0  4a4  3a3  2a2  a1

 f1  0

4  81a4  27a3  9a2  3a1  a0

 f 3  4

0  108a4  27a3  6a2  a1

 f3  0

(c) The solution is a0 

23 8 ,

a1 

 32 ,

a2 

1 4,

a3 

1 2,

a4   18

f x   18 x 4  12 x3  14 x2  32 x  23 8 . (d)

6

(−1 , 4)

(3, 4)

(1, 2)

−4

6 −2

74. True

72. False Let hx  f xgx where f x  gx  x. Then hx  x2 is decreasing on  , 0.

If f x is an nth-degree polynomial, then the degree of fx is n  1.

76. False. The function might not be continuous. 78. Suppose fx changes from positive to negative at c. Then there exists a and b in I such that fx > 0 for all x in a, c and fx < 0 for all x in c, b. By Theorem 3.5, f is increasing on a, c and decreasing on c, b. Therefore, f c is a maximum of f on a, b and thus, a relative maximum of f.

Section 3.4

Concavity and the Second Derivative Test

2. y  x3  3x2  2, y  6x  6 Concave upward:  , 1 Concave downward: 1, 

6. y 

1 2 3x5  40x3  135x, y  xx  2x  2 270 9

Concave upward:  , 2, 0, 2 Concave downward: 2, 0, 2, 

4. f x 

x2  1 6 , y  2x  1 2x  13

Concave upward:   ,  12  Concave downward:   12 ,  8. hx  x5  5x  2 hx  5x4  5 hx  20x3 Concave upward: 0,  Concave downward:  , 0

Section 3.4 10. y  x  2 csc x,  , 

fx  6x2  6x  12 f  x  12x  6

  2 cot xcsc x cot x

csc2 x

 2

csc3 x

 csc x



cot2 x

f  x  12x  6  0 when x  12.

Concave upward: 0, 

 < x <

Test interval

Concave downward:  , 0

Sign of f  x Conclusion Point of inflection:

14.

395

12. f x  2x3  3x2  12x  5

y  1  2 csc x cot x y  2 csc x

Concavity and the Second Derivative Test

1 2

1 2

< x <



f  x < 0

f  x > 0

Concave downward

Concave upward

 12 ,  132 

f x  2x4  8x  3 fx  8x3  8 f  x  24x 2  0 when x  0. However, 0, 3 is not a point of inflection since f  x ≥ 0 for all x. Concave upward on  , 

16. f x  x3x  4 fx  x3  3x2x  4  x2x  3x  4  4x2x  3 f  x  4x 2  8xx  3  4xx  2x  3  12xx  2  0 f  x  12xx  2  0 when x  0, 2. Test interval Sign of f  x Conclusion

 < x < 0

0 < x < 2

f  x > 0

f  x < 0

f  x > 0

Concave upward

Concave downward

Concave upward

2 < x <



Points of inflection: 0, 0, 2, 16 18. f x  xx  1, Domain: 1,  3x  2 1 fx  x x  112  x  1  2 2x  1 6x  1  3x  2x  112 3x  4 f  x   4x  1 4x  132 f  x > 0 on the entire domain of f (except for x  1, for which f  x is undefined). There are no points of inflection. Concave upward on 1,  20. f x 

x1 x

Domain: x > 0

x1 fx  32 2x 3x f  x  52 4x Point of inflection:

3, 43  3, 4 3 3 



3 < x <



Test intervals

0 < x < 3

Sign of f  x

f > 0

f < 0

Conclusion

Concave upward

Concave downward

396

Chapter 3

22. f x  2 csc

3x , 0 < x < 2 2

fx  3 csc f  x 

Applications of Differentiation

3x 3x cot 2 2





9 3x 3x 3x csc3 0 for any x in the domain of f.  csc cot2 2 2 2 2

Concave upward:

0, 23 , 43, 2 23, 43

Concave downward:

No points of inflection 24. f x  sin x  cos x, 0 ≤ x ≤ 2 fx  cos x  sin x f  x  sin x  cos x f  x  0 when x 

3 7 , . 4 4 0 < x <

Test interval: Sign of f  x: Conclusion:

3 4

3 7 < x < 4 4

7 < x < 2 4

f  x < 0

f  x > 0

f  x < 0

Concave downward

Concave upward

Concave downward

 3 < x < 2 2

3 3 < x < 2 2

Points of inflection:

34, 0 , 74, 0

26. f x  x  2 cos x, 0, 2 fx  1  2 sin x f  x  2 cos x f  x  0 when x 

 3 , 2 2  2

Test intervals:

0 < x <

Sign of f  x:

f < 0

f > 0

f < 0

Conclusion:

Concave downward

Concave upward

Concave downward

Points of inflection:

2 , 2 , 32, 32

28. f x  x2  3x  8

30. f x   x  52

fx  2x  3

fx  2x  5

f  x  2

f  x  2

3 Critical number: x   2

Critical number: x  5

f    32  > 0

f  5 < 0

Therefore,   2 ,  4  is a relative minimum. 3

41

Therefore, 5, 0 is a relative maximum.

Section 3.4 32. f x  x3  9x2  27x fx  3x 2  18x  27  3x  32 f  x  6x  3 Critical number: x  3 However, f  3  0, so we must use the First Derivative Test. fx ≥ 0 for all x and, therefore, there are no relative extrema.

Concavity and the Second Derivative Test

1 34. gx   x  22x  42 8 gx 

 x  4x  1x  2 2

3 g x  3  3x  x2 2 Critical numbers: x  2, 1, 4 g 2  9 < 0

2, 0 is a relative maximum. g 1  92 > 0

1, 10.125 is a relative minimum. g 4  9 < 0

4, 0 is a relative maximum. 36. f x  x2  1 fx 

38. f x 

x

fx 

x2  1

Critical number: x  0 1 f  x  2 x  132

x x1 1 x  12

There are no critical numbers and x  1 is not in the domain. There are no relative extrema.

f  0  1 > 0 Therefore, 0, 1 is a relative minimum. 40. f x  2 sin x  cos 2x, 0 ≤ x ≤ 2 fx  2 cos x  2 sin 2x  2 cos x  4 sin x cos x  2 cos x1  2 sin x  0 when x  f  x  2 sin x  4 cos 2x f

6 < 0

f

2 > 0

f

56 < 0

f

32 > 0

Relative maxima:

6 , 23 , 56, 23

Relative minima:

2 , 1 , 32, 3

  5 3 , , , . 6 2 6 2

397

398

Chapter 3

Applications of Differentiation

42. f x  x26  x2,  6, 6  (a) fx 

3x4  x2 6  x2

(c)

y

f

6

fx  0 when x  0, x  ± 2. f  x 

6x4  9x2  12 6  x232

f  x  0 when x  ±

x

−3

9  2

33

.

3

f'

f ''

−6

(b) f  0 > 0 ⇒ 0, 0 is a relative minimum. The graph of f is increasing when f > 0 and decreasing when f < 0. f is concave upward when f  > 0 and concave downward when f  < 0.

f  ± 2 < 0 ⇒  ± 2, 42  are relative maxima. Points of inflection: ± 1.2758, 3.4035 44. f x  2x sin x, 0, 2 (a) fx  2x cos x 

sin x 2x

(c)

y 4

Critical numbers: x 1.84, 4.82

f f'

2

cos x cos x sin x f  x   2x sin x    2x 2x 2x2x

2

f ''

−2

2cos x 4x2  1sin x   2x 2x2x 

x

π

−4

4x cos x  4x2  1sin x 2x2x

f is increasing when f > 0 and decreasing when f < 0. f is concave upward when f  > 0 and concave downward when f  < 0.

(b) Relative maximum: 1.84, 1.85 Relative minimum: 4.82, 3.09 Points of inflection: 0.75, 0.83, 3.42, 0.72 46. (a)

f < 0 means f decreasing

y 4

(b) 4

f decreasing means concave downward

3 2

f > 0 means f increasing

y

f decreasing means concave downward

3 2

1

1 x 1

2

3

x

4

48. (a) The rate of change of sales is increasing. S > 0

1

50.

2

4

3

y

f

3

f'

f ''

(b) The rate of change of sales is decreasing. S > 0, S < 0 (c) The rate of change of sales is constant. S  C, S  0 (d) Sales are steady. S  C, S  0, S  0 (e) Sales are declining, but at a lower rate. S < 0, S > 0 (f) Sales have bottomed out and have started to rise. S > 0

−2

x

−1

3 −1

Section 3.4 52.

Concavity and the Second Derivative Test

54.

y

399

y

3

2

f ''

2

1

f

1

(0, 0) x

−1

1

(2, 0) x

−1

3

1

3

−1 −2

f'

−3

56.

58. (a)

y

d 12

3 2

(0, 0)

(2, 0) x

−1

1

3

−1

t 10

(b) Since the depth d is always increasing, there are no relative extrema. fx > 0 (c) The rate of change of d is decreasing until you reach the widest point of the jug, then the rate increases until you reach the narrowest part of the jug’s neck, then the rate decreases until you reach the top of the jug. 3 x 60. (a) f x  

y 3

fx  13 x23

2

f  x   29 x53

1

(0, 0)

Inflection point: 0, 0

−6

(b) f  x does not exist at x  0.

−4

x

−2

2

4

6

−2 −3

62. f x  ax3  bx 2  cx  d Relative maximum: 2, 4 Relative minimum: 4, 2 Point of inflection: 3, 3 fx  3ax 2  2bx  c, f  x  6ax  2b



f 2  8a  4b  2c  d  4 56a  12b  2c  2 ⇒ 28a  6b  c  1 f 4  64a  16b  4c  d  2 f2  12a  4b  c  0, f4  48a  8b  c  0, f  3  18a  2b  0 28a  6b  c  1

18a  2b 

12a  4b  c 

16a  2b  1

16a  2b 1 2,

b

f x 

1 3 2x

a

 1

 92 , 

0

2a

c  12, d  6

9 2 2x

 12x  6



0

1

400

Chapter 3

Applications of Differentiation

64. (a) line OA: y  0.06x

slope: 0.06

line CB: y  0.04x  50

y

slope: 0.04

150

f x  ax3  bx 2  cx  d (−1000, 60) A

fx  3ax2  2bx  c

1000, 60:

C (0, 50)

60  10003a  10002b  1000c  d 0.06  10002 3a  2000b  c

1000, 90:

(1000, 90) B

100

−1000

O

x 1000

90  10003a  10002b  1000c  d 0.04  10002 3a  2000b  c

The solution to this system of 4 equations is a  1.25 108, b  0.000025, c  0.0275, and d  50. (b) y  1.25 108x3  0.000025x2  0.0275x  50

(c)

0.1

100 −1100

1100

− 0.1 −1100

1100 −10

(d) The steepest part of the road is 6% at the point A. 66. S 

5.755T 3 8.521T 2 0.654T    0.99987, 0 < T < 25 108 106 104

(a) The maximum occurs when T 4 and S 0.999999. (b)

(c) S20  0.9982

S

1.001 1.000 0.999 0.998 0.997 0.996 T

5

68. C  2x  C  2 

10

15

20

25

30

300,000 x

300,000  0 when x  10015 387 x2

By the First Derivative Test, C is minimized when x 387 units.

70. S  (a)

100t2 , t > 0 65  t2 100

0

35 0

(b) St  St 

13,000t 65  t22 13,00065  3t2  0 ⇒ t  4.65 65  t23

S is concave upwards on 0, 4.65, concave downwards on 4.65, 30. (c) St > 0 for t > 0. As t increases, the speed increases, but at a slower rate.

Section 3.4 72.

f x  2sin x  cos x,

Concavity and the Second Derivative Test

f 0  2

401

4

P2

f

fx  2cos x  sin x,

f0  2

f x  2sin x  cos x,

f  0  2

−6

6

P1

P1x  2  2x  0  21  x

−4

P1x  2 1 P2x  2  2x  0  2 2x  0 2  2  2x  x 2

P2x  2  2x P2x  2 The values of f, P1, P2, and their first derivatives are equal at x  0. The values of the second derivatives of f and P2 are equal at x  0. The approximations worsen as you move away from x  0. 74.

f x 

x , x1

f 2  2

3

 x  1 fx  , 2xx  12

32 f2    4 22

3x2  6x  1 f  x  32 , 4x x  13

23 232  f  2  16 82

P2x 

5 −1

32 32 52 x  2   x 4 4 2





32 1 232 x  2  x  22  2  32 x  2  232 x  22 4 2 16 4 32

32 4

P2x  2   P2x  

P2 f

−1



P1x  2   P1x  

P1

3







32 232  x  2 4 16

232 16

The values of f, P1, P2 and their first derivatives are equal at x  2. The values of the second derivatives of f and P2 are equal at x  2. The approximations worsen as you move away from x  2. 76. f x  xx  62  x3  12x2  36x fx  3x2  24x  36  3x  2x  6  0 f  x  6x  24  6x  4  0 Relative extrema: 2, 32 and 6, 0 Point of inflection 4, 16 is midway between the relative extrema of f.

402

Chapter 3

Applications of Differentiation

px  ax3  bx2  cx  d

78.

px  3ax2  2bx  c px  6ax  2b 6ax  2b  0 x

b 3a

The sign of px changes at x  b3a. Therefore, b3a, pb3a is a point of inflection.



p 







  



b b3 b2 b 2b3 bc d a  b c  d  3 2 3a 27a 9a 3a 27a 2 3a

When px  x3  3x2  2, a  1, b  3, c  0, and d  2. x0 

 3 1 31

y0 

233 30   2  2  0  2  0 2712 31

The point of inflection of px  x3  3x2  2 is x0, y0  1, 0. 80. False. f x  1x has a discontinuity at x  0. 82. True y  sinbx Slope: y  b cosbx b ≤ y ≤ b

Assume b > 0

84. False. For example, let f x  x  24.

Section 3.5 2. f x 

Limits at Infinity

2x x2  2

4. f x  2 

x4

x2 1

6. f x 

2x2  3x  5 x2  1

No vertical asymptotes

No vertical asymptotes

No vertical asymptotes

Horizontal asymptotes: y  ± 2

Horizontal asymptote: y  2

Horizontal asymptote: y  2

Matches (c)

Matches (a)

Matches (e)

8. f x  x f x

2x2 x1 100

101

102

1

18.18

198.02

lim f x  

x→ 

20

103 1998.02

(Limit does not exist.)

104 19,998

105 199,998

106 1,999,998

0 −2

10

Section 3.5

10. f x 

8x

Limits at Infinity

10

x2  3

x

101

102

103

104

105

106

107

f x

8.12

8.001

8

8

8

8

8

0

15 0

lim f x  8

x→ 

12. f x  4  x f x

3 x2  2

10

100

101

102

103

104

105

106

5

4.03

4.0003

4.0

4.0

4

4

0

15 0

lim f x  4

x→ 

14. (a) hx 

f x 5x2  3x  7 7   5x  3  x x x

lim hx  

x→ 

(b) hx 

f x  x2

(Limit does not exist) 5x2

16. (a) lim

x→ 

(b) lim

 3x  7 3 7 5  2 x2 x x

x→ 

(c) hx 

3  2x 2  3x  1 3

3  2x2   x→  3x  1

(c) lim

lim hx  5

x→ 

3  2x 0 3x3  1

(Limit does not exist)

f x 5x2  3x  7 5 7 3    2 3 x3 x3 x x x

lim hx  0

x→ 

18. (a) lim

x→ 

(b) lim

x→ 

5x32 0 4x2  1

5x32  x→  4x  1



22. lim 4 

26. lim

x→ 

3x3  2 3 1   9x3  2x2  7 9 3

24. lim

12x  x4    

x→ 

5x32 5  4x 32  1 4

(c) lim

x→ 

20. lim

(Limit does not exist)



3 404 x

x x2  1

 lim

x→

 lim

x→

x→ 

1



x2  1 x2



1 x  (1x

for x <  1

0, x   x2 

2

(Limit does not exist)

403

404

28.

Chapter 3

lim

x →

Applications of Differentiation

3x  1 3  1x ,  for x < 0 we have  x2  x  lim x2  x x → x2  x  x2  lim

3  1x

x →

30. lim

x →

1  1x

x  cos x cos x  lim 1  x → x x



3



32. lim cos x→ 

1x   cos 0  1

101 Note: lim

x →



cos x  0 by the Squeeze Theorem since x

cos x 1 1 ≤ ≤ . x x x

34. f x 

3x

36. lim x tan

6

x2  2

lim f x  3

x →

−9

x→ 



1 tan t sin t  lim  lim t →0 x t →0 t t

 cos t 1

 11  1

9

lim f x  3

Let x  1t.

x→

−6

Therefore, y  3 and y  3 are both horizontal asymptotes. 38. lim  2x  4x2  1   lim x →

40.

x →

2x 

 lim 4x  1

  2x  4x2  1

4x2  1





2x 

x →

3x  9x  x lim  3x  9x2  x    3x  9x2  x   x → x →   2 lim

 lim

x →



3x 

2

9x  x

2x  4x2  1

0



x 3x  9x2  x 1

 lim

x →

1

2

3

9x2  x

for x

< 0 we have x   x2 

 x2 1 1  lim  x → 3  9  1x 6 42.

x

100

101

102

103

104

105

f x

1.0

5.1

50.1

500.1

5000.1

50,000.1

lim

x →

x2  xx2  x 1

Limit does not exist.



30

106 500,000.1

x2  xx2  x x3  lim  x2  xx2  x x → x2  xx2  x

0

50 0

Section 3.5 44.

f x lim

101

102

103

104

105

106

2.000

0.348

0.101

0.032

0.010

0.003

0.001

x1

x →

3

100

x

xx

Limits at Infinity

0

0

25

−1

46. x  2 is a critical number.

48. (a) The function is even:

fx < 0 for x < 2.

(b) The function is odd:

fx > 0 for x > 2.

lim f x  5

x→

lim f x  5

x→

lim f x  lim f x  6

x →

x →

For example, let f x 

6  6. 0.1x  22  1

y

8

4

x 2

2

4

6

x3 x2

50. y 

2x 9  x2

52. y 

Intercept: 0, 0

 23

Intercepts: 3, 0, 0,

Symmetry: origin

Symmetry: none

Horizontal asymptote: y  0

Horizontal asymptote: y  1 since

Vertical asymptote: x  ± 3

x3 x3 .  1  lim lim x → x  2 x → x  2

y 6 5 4 3 2 1

Discontinuity: x  2 (Vertical asymptote) y 5 4 3 2 −4 −3 −2 −1

−5−4

x 1

3 4 5 6

−1 −2 −3 −4 −5 −6

−2 −3 −4 −5

54. y 

x2

x2 9

y 5 4 3 2

Intercept: 0, 0 Symmetry: y-axis Horizontal asymptote: y  1 since lim

x →

x2

x2 x2  1  lim 2 . x → x  9 9

Discontinuities: x  ± 3 (Vertical asymptotes) Relative maximum: 0, 0

−5 −4

−1 −2 −3 −4 −5

x 1

4 5

x 1 2

6

405

406

Chapter 3

56. y 

Applications of Differentiation

2x2 4

58. x2y  4

x2

Intercept: 0, 0

Intercepts: none

Symmetry: y-axis

Symmetry: y-axis

Horizontal asymptote: y  2

Horizontal asymptote: y  0 since

Relative minimum: 0, 0 y

lim

x →

4 4  0  lim 2 . x → x x2

Discontinuity: x  0 (Vertical asymptote)

5 4 3

y

1 x

−5 −4 −3 −2 −1

1 2 3 4 5

−2 −3 −4 −5

4 3 2 1 x

−5 −4 −3 −2 −1

60. y 

2x 1  x2

1 2 3 4 5

1 x

62. y  1 

Intercept: 0, 0

Intercept: 1, 0

Symmetry: origin

Symmetry: none

Horizontal asymptote: y  0 since

Horizontal asymptote: y  1 since

lim

x →

2x 2x  0  lim . x →  1  x2 1  x2

Discontinuities: x  ± 1 (Vertical asymptotes)

lim

x →

1  1x   1 

lim

x →

1  1x .

Discontinuity: x  0 (Vertical asymptote) y

y 5 4 3 2 1

5 4 3 2 x

−5 −4 −3 −2

2

x

−5 −4 −3 −2 −1

1 2 3 4 5

−3 −4 −5



64. y  4 1 

1 x2



66. y 

x x2  4

Intercepts: ± 1, 0

Domain:  , 2, 2, 

Symmetry: y-axis

Intercepts: none

Horizontal asymptote: y  4

Symmetry: origin

Vertical asymptote: x  0

Horizontal asymptotes: y  ± 1 since

y

lim

x2  4

 1, lim

x →

x x2  4

 1.

Vertical asymptotes: x  ± 2 (discontinuities)

3 2 1 −5 −4 −3 −2

x

x →

5

y

x 2 3 4 5

5 4 3 2 −5 −4 −3

−1 −2 −3 −4 −5

x 1

3 4 5

Section 3.5 68. f x  fx  f  x 

x2

x2 1

x = −1

2x x2  12x  x22x  2  0 when x  0. x2  12 x  12

Limits at Infinity

4

x=1

−3

(0, 0)

y=1

x2  122  2x2x2  12x 23x2  1  2 x2  14 x  13

407

3

−4

Since f  0 < 0, then 0, 0 is a relative maximum. Since f  x 0, nor is it undefined in the domain of f, there are no points of inflection. Vertical asymptotes: x  ± 1 Horizontal asymptote: y  1 70. f x  fx  f  x  

1 1  x2  x  2 x  1x  2

x = −1

 2x  1 1  0 when x  . x2  x  22 2



x2

( 12 , − 49( −3

 x  2 2  2x  12 x2  x  24 2

x=2

2

x2

3

y=0

 x  22x  1

−2

6  x  1 x2  x  23 x2

Since f   12  < 0, then  12 ,  49  is a relative maximum. Since f  x 0, nor is it undefined in the domain of f, there are no points of inflection. Vertical asymptotes: x  1, x  2 Horizontal asymptote: y  0 72. f x  fx  f  x 

x1 x2  x  1 xx  2  0 when x  0, 2. x2  x  12 2x3  3x2  1  0 when x 0.5321, 0.6527, 2.8794. x2  x  13

f  0 < 0 Therefore, 0, 1 is a relative maximum. f  2 > 0 Therefore,

2,  31 is a relative minimum. Points of inflection: 0.5321, 0.8440, 0.6527, 0.4491 and 2.8794, 0.2931 Horizontal asymptote: y  0

(− 0.6527, 0.4491) 2

(0.5321, 0.8440)

−3

3

(

−2, − 1 3

( −2

(0, 1)

(− 2.8794, − 0.2931)

408

Chapter 3

74. gx  gx 

Applications of Differentiation

2x

4

3x2  1

y= 2

3

2 3x2  132

−6

6

y=− 2

18x gx  3x2  152

3 −4

No relative extrema. Point of inflection: 0, 0. Horizontal asymptotes: y  ±

2 3

No vertical asymptotes

76. f x  fx 

2 sin 2x Hole at 0, 4 x

6

4x cos 2x  2 sin 2x x2



2

There are an infinite number of relative extrema. In the interval 2 , 2 , you obtain the following.

5

2 −2

Relative minima: ± 2.25, 0.869, ± 5.45, 0.365 Relative maxima: ± 3.87, 0.513 Horizontal asymptote: y  0 No vertical asymptotes

78. f x   (a)

1 x3  2x2  2 1 , gx   x  1  2 2x2 2 x f=g

(c)

4

−6

70

−80

6

80

−70

−4

(b) f x   

x3  2x2  2 2x2

 2xx

3 2



2x2 2  2x2 2x2

The graph appears as the slant asymptote y   12 x  1.



1 1   x  1  2  gx 2 x

80.

lim

v1v2 → 



100 1 



1  100 1  0  100% v1v2c

82. y 

3.351t2  42.461t  543.730 t2

(a)

5

20

100 0

(b) Yes. lim y  3.351 t→ 

Section 3.5

Limits at Infinity

409

100t2 , t > 0 65  t2

84. S  (a)

120

5

30 0

100  100 1

(b) Yes. lim S  t→ 

px a xn  . . .  a1x  a0  lim n m . . . x →  qx x →  bm x   b1x  b0

86. lim

Divide px and qx by xm. an a1 a0  . . .  m1  m px x mn x x 0. . .00 0  lim  Case 1: If n < m: lim . . .00b 0 x  qx x→  b b b  1 m m bm  . . .  m1  m0 x x a1 a0 an  . . .  m1  m an  . . .  0  0 an px x x  lim  Case 2: If m  n: lim . . .00b . b b x →  qx x → b  1 0 m m bm  . . .  m1  m x x px  lim Case 3: If n > m: lim x →  qx x →

a1 a0 an x nm  . . .  m1  m x x ± . . .0   . . .  ± . b b b  0 1 m bm  . . .  m1  m0 x x

88. False. Let y1  x  1, then y10  1. Thus, y1  1 2x  1  and y10  12. Finally, 1 1 and y10   . 4x  132 4

y1  

1 1 1 1 Let p  ax2  bx  1, then p0  1. Thus, p  2ax  b and p0  2 ⇒ b  2 . Finally, p  2a and p0   4 ⇒ a   8 . Therefore,

18x2  12x  1,

x < 0

x  1,

x ≥ 0

f x 

fx 

12

f  x 

14x  1

12  14 x,

and f 0  1,

x < 0

1 and f0  , and x > 0 2



x  1 ,

14, ,

32

x < 0

1 and f 0   . x > 0 4

f  x < 0 for all real x, but f x increases without bound.

410

Chapter 3

Section 3.6

Applications of Differentiation

A Summary of Curve Sketching

2. The slope of f approaches  as x → 0, and approaches   as x → 0. Matches (C)

4. The slope is positive up to approximately x  1.5. Matches (B)

6. (a) x0, x2, x4

(b) x2, x3 (d) x1

(c) x1 (e) x2, x3

8. y  y 

x x2  1

y 1

1  x2 1  xx  1   0 when x  ± 1. x2  12 x2  12



x   3

3

4

 3 < x < 1 x  1



1 2

1 < x < 0 x0

0

0 < x < 1 1 2

x1 1 < x < 3

3

x  3 3 < x <

4



3, 3 4

)

(−1, − 12 ) 1

(0, 0)

(−

Horizontal asymptote: y  0

  < x <  3

(

x

2x3  x2 y   2  0 when x  0, ± 3. x  13

y

(1, 12 )

y

y

Conclusion





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

0



Relative maximum





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

3, − 3 4

)

2

Section 3.6

10. y 

x2  1 x2  9

12. f x 

A Summary of Curve Sketching

x2 2 1 x x

y 

20x  0 when x  0 x2  92

fx 

2 < 0 when x  0. x2

y 

60x2  3 < 0 when x  0 x2  93

f  x 

4 0 x3



Therefore, 0,  Intercept:





1 is a relative maximum. 9

1 0,  9



Intercept: 2, 0 Vertical asymptote: x  0 Horizontal asymptote: y  1 y

Vertical asymptotes: x  ± 3

5

Horizontal asymptote: y  1

y

x 1

2

3

4

x=0

y=1 x

−1 −2 −3 −4 −5

14. f x  x 

4 5 1

0, − 9

(

)

x=3

32 x2

16. f x 

64 x  4x2  4x  16   0 when x  4. x3 x3

fx  1  f  x 

2

(−2, 0)

5 4 3 2

x = −3

3

y=1

Symmetric about y-axis

−5 − 4

4

192 > 0 if x  0. x4

x3 4x x 2 x2  4 x 4

fx 

x2x2  12 0 x2  42

f  x 

8xx2  12  0 when x  0 x2  43

when x  0, ± 23

Therefore, 4, 6 is a relative minimum.

Intercept: 0, 0

3 4, 0 Intercept;  2  

Relative maximum: 23, 33

Vertical asymptote: x  0

Relative minimum: 23, 33

Slant asymptote: y  x

Inflection point: 0, 0 Vertical asymptotes: x  ± 2

y

(−2 4, 0) 3

Slant asymptote: y  x

(4, 6)

8 6

y

4

y=x

2

8 6 4

x

−8 −6

2 −4 −6

4

6

8

x=0 −8 − 6 − 4

x 4 6 8 10

411

412

Chapter 3

18. y 

3 2x2  5x  5  2x  1  x2 x2

y  2  y 

Applications of Differentiation

y

(4 +2 6, 7.899 (

12

3 2x2  8x  5 4 ± 6 .   0 when x  2 x  2 x  22 2

8

(

6 0 x  23

4+ 6 , − 1.899 2

(

−8

y = 2x − 1 x

−4

4

8

12

x=2

4 2 4 Relative minimum:  2

6

Relative maximum:

6



−8

, 1.8990



, 7.8990

Intercept: 0, 52 Vertical asymptote: x  2 Slant asymptote: y  2x  1 20. gx  x9  x Domain: x ≤ 9

Domain: 4 ≤ x ≤ 4

22. y  x16  x2

gx 

36  x  0 when x  6 29  x

y 

g x 

3x  12 < 0 when x  6 49  x32

y 

28 

x2



 0 when x  ± 22

16  x2

2xx2  24  0 when x  0 16  x232

Relative maximum: 6, 63

Relative maximum: 22, 8

Intercepts: 0, 0, 9, 0

Relative minimum: 22, 8

Concave downward on  , 9

Intercepts: 0, 0, ± 4, 0

y

(0,

10 8 6 4 0) 2

−8 − 6 − 4 −2

(6, 6

Symmetric with respect to the origin

3)

Point of inflection: 0, 0 y

(9, 0)

x

2 4 6 8 10

(−4, 0) −5

(−2

10 8 6 4 2

−3 −2 −1

2 , −8)

(2

2 , 8)

(0, 0)

(4, 0)

x

1 2 3 4 5

−6 −8 −10

24. y  3x  123  x  12 y 

2 2  2x  143  2x  1   0 when x  0, 2 13 x  1 x  113

 y undefined for x  1 y 

y 5 4 3

2  2 < 0 for all x  1 3x  143

Concave downward on  , 1 and 1,  Relative maximum: 0, 2, 2, 2 Relative minimum: 1, 0 Intercepts: 0, 2, 1, 0, 1.280, 0, 3.280, 0

(2, 0)

(2, 2) x

−5 − 4 −3

−1 −2 −3 −4 −5

1 2 3 4 5

(1, 0)

Section 3.6

A Summary of Curve Sketching

26. y   13 x3  3x  2

y

y  x  1  0 when x  ± 1 2

2

y  2x  0 when x  0

1

(−2, 0)

(1, 0) x

y   < x < 1 4

x  1

3

1 < x < 0 2

x0

3

0 < x < 1 x1

0

1 < x <



y

−1

y

Conclusion





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

0



Relative maximum





Decreasing, concave down

(

0,

(−1, − 43 (

28. f x  13 x  13  2

1 −2 3

2

(

−2

y

fx  x  12  0 when x  1.

4

f  x  2x  1  0 when x  1.

3

(1, 2) 2

f x  < x < 1 x1

2



1< x <

fx

f  x

Conclusion





Increasing, concave down

0

0

Point of inflection





Increasing, concave up

( 5) 0, 3

(−0.817, 0) x 1

30. f x  x  1x  2x  5

 3

3

y

fx  x  1x  2  x  1x  5  x  2x  5 x2

2

12

(2 −

3, 6 3 ) (2, 0)

 4x  1  0 when x  2 ± 3 . −12 −9 −6 −3

f  x  6x  2  0 when x  2. f x   < x < 2  3 x  2  3

63

2  3 < x < 2 x2

0

2 < x < 2  3 x  2  3 2  3 < x <

63



fx

f  x

Conclusion





Increasing, concave down

0



Relative maximum





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

Intercepts: 0, 10, 1, 0, 2, 0, 5, 0

x 3

(2 +

6

9 12

3, −6 3)

413

414

Chapter 3

Applications of Differentiation

32. y  3x4  6x2 

5 3

y

y  12x3  12x  12xx2  1  0 when x  0, x  ± 1. y  36x2  12  123x2  1  0 when x  ± y   < x < 1 x  1

43

1 < x <  x 

3

3

3

3

0

3 < x < 0

x0

53

0 < x < x 3

3

3

3

3

3

0

3 < x < 1

x1 1 < x <

43



3

3

(− 33 , 0(

.

y

y

Conclusion





Decreasing, concave up

0



Relative minimum





Increasing, concave up



0

Point of inflection





Increasing, concave down

0



Relative maximum





Decreasing, concave down



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

−5 − 4 −3 −2 4 −1, − 3

(

34. f x  x4  8x3  18x2  16x  5

f  x  12x 2  48x  36  12x  3x  1  0 when x  3, x  1.

 < x < 1 x1 x3

4 < x <

Conclusion



Decreasing, concave up

0

0

Point of inflection





Decreasing, concave down

16



0

Point of inflection





Decreasing, concave up

0



Relative minimum





Increasing, concave up

27



f  x



3 < x < 4 x4

fx

0

1 < x < 3

(0, 53 ) ( 33 , 0( x 2 3 4 5 4 1, − 3

)−3 (

)

y

fx  4x3  24x2  36x  16  4x  4x  12  0 when x  1, x  4.

f x

7 6 5 4 3 2

4 −4

(0, 5) (1, 0) 1

(5, 0) 3

4

6

−12 −20 −28

(3, −16) (4, −27)

x 7

Section 3.6

A Summary of Curve Sketching

36. y  x  15

y

y  5x  14  0 when x  1.

2

y  20x  13  0 when x  1.

1

y  < x < 1 x1

0



1 < x <



(1, 0)

y

y

Conclusion





Increasing, concave down

0

0

Point of inflection





Increasing, concave up



2

3

y

2x  3x2  6x  5 2x  3x  5x  1  x2  6x  5 x  5x  1



1 −1

38. y  x2  6x  5 y 

x

−1





6



5

(3, 4)

4

 0 when x  3 and undefined when x  1, x  5.

3 2

2x2  6x  5 2x  5x  1 y  2  undefined when x  1, x  5. x  6x  5 x  5x  1







y

y 



0

Undefined

Undefined

40. y  cos x 



Increasing, concave down Relative maximum





Decreasing, concave down

0

Undefined

Undefined





5

x

6

Increasing, concave up

5 . y  sin x  sin 2x  sin x1  2 cos x  0 when x  0, , , 3 3 y  cos x  2 cos 2x  cos x  22 cos2 x  1 1 ± 33 0.8431, 0.5931.  4 cos x  cos x  2  0 when cos x  8

y 2 1

π −1 −2

Therefore, x 0.5678 or 5.7154, x 2.2057 or 4.0775.

 3 , 43, 53 , 43

Relative minimum:

4

Relative minimum, point of inflection

1 cos 2x, 0 ≤ x ≤ 2 2

Relative maxima:

(5, 0) 3

Relative minimum, point of inflection



2

2

Decreasing, concave up

0



5 < x <

1

Conclusion



3 < x < 5 x5

y

4

1 < x < 3 x3

(1, 0)



 < x < 1 x1

1

 ,  23

Inflection points: 0.5678, 0.6323, 2.2057, 0.4449, 5.7154, 0.6323, 4.0775, 0.4449



x

415

416

Chapter 3

Applications of Differentiation

42. y  2x  2  cot x, 0 < x < y  2  csc2 x  0 when x 

y 5 4 3 2 1

3 , 4 4

y  2 csc2 x cot x  0 when x 

2

Relative maximum:

34 , 32  5

Relative minimum:

 4 , 2  3

Point of inflection:

 2 ,  4

x

π

−1 −2 −3 −4 −5

Vertical asymptotes: x  0, 44. y  sec2

 8x  2 tan 8x  1, 3 < x < 3

y  2 sec2

y 5 4 3 2

 8x tan 8x 8   2 sec  8x 8   0 ⇒ x  2 2

x

Relative minimum: 2, 1

−5 − 4 −3 −2 −1

3 4 5

46. gx  x cot x, 2 < x < 2 gx 

y 4

sin x cos x  x sin2x

3 2

x  1. x→0 tan x

−2π

g0 does not exist. But lim x cot x  lim x→0



 

π

−1



x

−3 −4

3 3 ,0 ,  ,0 , ,0 , ,0 2 2 2 2



−π

−2

Vertical asymptotes: x  ± 2 , ± Intercepts: 

(2, −1)

−2 −3 −4 −5



Symmetric with respect to y-axis. Decreasing on 0,  and  , 2 

48. f x  5

x 1 4  x 1 2

50. f x 

6

4x

52. f  is constant.

x2  15

f is linear.

6

f is quadratic. −9

9

−8

8

y

f −6

x  2, 4 vertical asymptote y  0 horizontal asymptote

f ''

−6

y  ± 4 horizontal asymptotes

x

0, 0 point of inflection f'

Section 3.6 54.

y

A Summary of Curve Sketching

y

120 100

10

f

80

8

60

f ′′

6 4 2 x

−6 −3

3

6

9

x −4 −2 −2

12 15

2

4

6

8

10

(any vertical translate of f will do) 56.

y

y

2 1

1 x

−2

1

x −2

2

−1

1

−1

−1

−2

−2

2

(any vertical translate of the 3 segments of f will do) 58. If fx  2 in 5, 5 , then f x  2x  3 and f 2  7 is the least possible value of f 2. If fx  4 in 5, 5 , then f x  4x  3 and f 2  11 is the greatest possible value of f 2.

60. gx 

3x4  5x  3 x4  1

62. gx 

Vertical asymptote: none



Horizontal asymptote: y  3

x2  x  2 x1



x  2x  1 x  2, if x  1  x1 Undefined, if x  1

The rational function is not reduced to lowest terms.

7

4

−8

−6

4

6 −1 −4

The graph crosses the horizontal asymptote y  3. If a function has a vertical asymptote at x  c, the graph would not cross it since f c is undefined.

64. gx 

2x2  8x  15 5  2x  2  x5 x5 18

−10

20 −2

The graph appears to approach the slant asymptote y  2x  2.

hole at 1, 3

417

418

Chapter 3

Applications of Differentiation

66. f x  tansin x (a)

(b) f x  tansin x  tansin x

3

−2

 tansin x  f x

2

Symmetry with repect to the origin (d) On 1, 1, there is a relative maximum at  2, tan 1 and a relative minimum at  12, tan 1. 1

−3

(c) Periodic with period 2 (e) On 0, 1, the graph of f is concave downward. 68. Vertical asymptote: x  3

70. Vertical asymptote: x  0

Horizontal asymptote: none

Slant asymptote: y  x

y

x2 x3

y x

1 1  x2  x x

1 1 72. f x  ax2  ax  axax  2, a  0 2 2 1 fx  a2x  a  aax  1  0 when x  . a f  x  a2 > 0 for all x. (a) Intercepts: 0, 0,

2a, 0

(b)

y

a=2

a = −2

5

Relative minimum:

1a,  21

4

a=1

Points of inflection: none

x

−3

a = −1

2

−1

3

74. Tangent line at P: y  y0  fx0x  x0 (a) Let y  0: y0  fx0x  x0

(b) Let x  0: y  y0  fx0x0

fx0x  x0 fx0  y0 x  x0  x-intercept:



y0 f x0  x0  fx0 fx0

f x0 x0  ,0 fx0

(c) Normal line: y  y0   Let y  0: y0  

y  y0  x0 fx0 y  f x0  x0 fx0 y-intercept: 0, f x0  x0 fx0



(d) Let x  0: y  y0 

1 x  x0 fx0

1 x  x0 fx0

y-intercept:

x  x0  y0 fx0  x0  f x0 fx0



  

  

0

(f) PC 2  y02 

 

f x0 f x0  x0  fx0 fx0

 

 

0, y





x0 fx0



 ffxx   f x  ffxx  f x  0

0

0

f x01  fx0 2 PC 2  fx0

x-intercept: x0  f x0 fx0, 0

 

x0 fx0

y  y0 

y0 fx0  x  x0

(e) BC  x0 

1 x0 fx0



(g) AB  x0  x0  f x0 fx0  f x0 fx0



x0  y0   AP   f x01  fx0 2

(h) AP  f x0 2

2 f

2

2

2

0

2

0

0

2

2

Section 3.7

Section 3.7

Optimization Problems

Optimization Problems

2. Let x and y be two positive numbers such that x  y  S. P  xy  xS  x  Sx  x2

4. Let x and y be two positive numbers such that xy  192. S  x  3y 

S dP  S  2x  0 when x  . dx 2

192  3y y

192 dS  3  2  0 when y  8. dy y

S d 2P  2 < 0 when x  . dx 2 2

d 2S 384  3 > 0 when y  8. dy 2 y

P is a maximum when x  y  S2.

S is minimum when y  8 and x  24.

6. Let x and y be two positive numbers such that x  2y  100. P  xy  y100  2y  100y  2y2 dP  100  4y  0 when y  25. dy d 2P  4 < 0 when y  25. dy 2 P is a maximum when x  50 and y  25. 8. Let x be the length and y the width of the rectangle. 2x  2y  P y

P  2x P  x 2 2

A  xy  x

P2  x  P2 x  x

y

2

x

P dA P   2x  0 when x  . dx 2 4 d 2A P  2 < 0 when x  . dx2 4 A is maximum when x  y  P4 units. (A square!) 10. Let x be the length and y the width of the rectangle. xy  A y

A x

P  2x  2y  2x  2

y

Ax  2x  2Ax

2A dP  2  2  0 when x  A. dx x d 2P 4A  3 > 0 when x  A . dx2 x P is minimum when x  y  A centimeters. (A square!)

419

x

420

Chapter 3

Applications of Differentiation 14. f x  x  12, 5, 3

12. f x  x  8, 2, 0

d  x  52  x  12  3 2

From the graph, it is clear that 8, 0 is the closest point on the graph of f to 2, 0.

 x2  10x  25  x2  2x  22

y

 x2  10x  25  x4  4x3  8x  4  x4  4x3  x2  18x  29

4

Since d is smallest when the expression inside the radical is smallest, you need to find the critical numbers of

2

gx  x4  4x3  x2  18x  29

x 2

4

6

8

10

12

gx  4x3  12x2  2x  18  2x  12x2  8x  9 By the First Derivative Test, x  1 yields a minimum. Hence, 1, 4 is closest to 5, 3.

16.

F

v 22  0.02v 2

18. 4x  3y  200 is the perimeter. (see figure)

dF 22  0.02v 2  dv 22  0.02v 2 2

A  2xy  2x

200 3 4x  38 50x  x  2

dA 8  50  2x  0 when x  25. dx 3

 0 when v  1100 33.166. By the First Derivative Test, the flow rate on the road is maximized when v 33 mph.

d 2A 16  < 0 when x  25. dx2 3 A is a maximum when x  25 feet and y 

100 3

y x

20. (a)

(c)

Height, x

Length & Width

Volume

1

24  21

124  21 2  484

2

24  22

224  22 2  800

3

24  23

324  23 2  972

4

24  24

424  24 2  1024

5

24  25

524  25 2  980

6

24  26

624  26 2  864

x

(b) V  x24  2x2, 0 < x < 12 (d)

1200

0

12 0

The maximum volume seems to be 1024.

dV  2x24  2x2  24  2x2  24  2x24  6x dx  1212  x4  x  0 when x  12, 4 12 is not in the domain. 2V

d  122x  16 dx2 d 2V < 0 when x  4. dx2 When x  4, V  1024 is maximum.

feet.

Section 3.7 22. (a) P  2x  2 r  2x  2

y 2

2y 

Optimization Problems

y

x

 2x  y  200 ⇒y

200  2x 2  100  x  

(b) Length, x

Width, y

Area, xy

10

2 100  10 

2 10 100  10 573 

20

2 100  20 

20

2 100  20 1019 

30

2 100  30 

30

2 100  30 1337 

40

2 100  40 

40

2 100  40 1528 

50

2 100  50 

50

2 100  50 1592 

60

2 100  60 

60

2 100  60  1528 

The maximum area of the rectangle is approximately 1592 m2. (c) A  xy  x (e)

2 2 100  x  100x  x2  

2000

0

100 0

Maximum area is approximately 1591.55 m2 x  50 m.

24. You can see from the figure that A  xy and y 

6x . 2

y 6

6x 1  6x  x2. Ax 2 2





5 4

y=

6−x 2

3

dA 1  6  2x  0 when x  3. dx 2 d 2A  1 < 0 when x  3. dx2 A is a maximum when x  3 and y  32.

2

( x, y )

1 x 1

2

3

4

5

6

421

422

Chapter 3

26. (a)

A 

Applications of Differentiation

1 base height 2 1 216  h2 4  h 2

4 4

h

 16  h24  h

16 − h 2

dA 1  16  h2122h4  h  16  h212 dh 2  16  h212h4  h  16  h2 

2h2  2h  8 2h  4h  2  16  h2 16  h2

dA  0 when h  2, which is a maximum by the First Derivative Test. dh Hence, the sides are 216  h2  43, an equilateral triangle. Area  123 sq. units. (b) cos   tan  

4h 84  h



4  h 8

16  h2

Area  2

8

α

4+h

4

4h

4

h

1216  h 4  h 2

16 − h 2

 4  h2 tan   64 cos4  tan  A  64cos4  sec2   4 cos3 sin tan   0 ⇒ cos4  sec2   4 cos3  sin  tan  1  4 cos  sin  tan  1  sin2  4 sin  

1 ⇒   30 and A  123. 2

(c) Equilateral triangle

28. A  2xy  2xr 2  x 2 see figure 2r dA 2r2  2x2   0 when x  . dx 2 r2  x2

By the First Derivative Test, A is maximum when the rectangle has dimensions 2r by  2r2.

y

(−x,

r 2 − x2

(−r, 0)

( ( x,

r 2 − x2

( x

(r, 0)

Section 3.7 30. xy  36 ⇒ y 

Optimization Problems

36 x

x+3 x



36 A  x  3y  3  x  3 3 x



y

y+3

108  36   3x  9 x dA 108   3  0 ⇒ 3x2  108 ⇒ x  6, y  6 dx x2 Dimensions: 9 9

32. V   r 2h  V0 cubic units or h 



S  2 r 2  2 rh  2  r 2 





V0 r

V dS  2 2r  20  0 when r  dr r h

V0 r2



2V units. 0

3

V0 V0223 2V013 3 V 2 2  V 23  213  2r    0 0

By the First Derivative Test, this will yield the minimum surface area. V   r 2x

34.

x  2r  108 ⇒ x  108  2 r V

see figure

108  2 r  108r 2  2r3

r 2

r

x

dV   216r  6 r 2  6 r36   r dr  0 when r 

36 and x  36. 

36 d 2V   216  12 r < 0 when r  . dr 2  Volume is maximum when x  36 inches and r  36 11.459 inches. 36.

V   x 2h   x 2 2r2  x2  2 x 2r 2  x2



see figure



dV 1 2  2 x2 r  x 2122x  2xr 2  x2 dx 2 

2 x r2  x2

6r 2r 2 ⇒x . 3 3

By the First Derivative Test, the volume is a maximum when 6r

3

and h 

2r 3

.

Thus, the maximum volume is V

23 r 2r3  43r3 . 3

2

r2 − x2

(

(x, −

r2 − x2

(

x r

h

2r 2  3x2

 0 when x  0 and x 2 

x

(x,

423

424

Chapter 3

Applications of Differentiation

38. No. The volume will change because the shape of the container changes when squeezed. 4 40. V  3000   r 3   r 2h 3 3000 4  r r2 3

h

Let k  cost per square foot of the surface area of the sides, then 2k  cost per square foot of the hemispherical ends.



C  2k4 r 2  k2 rh  k 8 r 2  2 r





6000 32 dC k  r  2  0 when r  dr 3 r

16 4  r  k  r 3000 r 3 3

2

2



6000 r



5.636 feet and h 22.545 feet. 1125 2 3

By the Second Derivative Test, we have



d 2C 12,000 32 k  dr 2 3 r3

. > 0 when r  1125 2 3

Therefore, these dimensions will produce a minimum cost. 42. (a) Let x be the side of the triangle and y the side of the square. 3  4  A  cot x 2  cot y 2 where 3x  4y  20 4 3 4 4





A 

x



3

4











 43  0

3 x2 5 x 2 4

A

 5  4 cot x 2  cot y 2 where 4x  5y  20 4 4 4 5













4 2  x2  1.7204774 4  x , 0 ≤ x ≤ 5. 5

3 20 x2  5  x , 0 ≤ x ≤ . 4 3

3

(b) Let x be the side of the square and y the side of the pentagon.

2



A  2x  2.75276384 4 



4 x 0 5

x 2.62 When x  0, A 27.528, when x 2.62, A 13.102, and when x  5, A 25. Area is maximum when all 20 feet are used on the pentagon.

60 43  9

When x  0, A  25, when x  60 43  9, A 10.847, and when x  203, A 19.245. Area is maximum when all 20 feet are used on the square. (c) Let x be the side of the pentagon and y the side of the hexagon. A

 6  5 cot x 2  cot y 2 where 5x  6y  20 4 5 4 6









 2 3 20  5x 2 5 cot x   3  , 0 ≤ x ≤ 4.  4 5 2 6







5  5 A  cot x  33  2 5 6





 



20  5x 0 6



x 2.0475 When x  0, A 28.868, when x 2.0475, A 14.091, and when x  4, A 27.528. Area is maximum when all 20 feet are used on the hexagon

(d) Let x be the side of the hexagon and r the radius of the circle. A 

 2 6 cot x   r 2 where 6x  2 r  20 4 6









10 3x 2 10 33 2 x   ,0 ≤ x ≤ . 2   3

A  33  6

10  3x   0

x 1.748 When x  0, A 31.831, when x 1.748, A 15.138, and when x  103, A 28.868. Area is maximum when all 20 feet are used on the circle. In general, using all of the wire for the figure with more sides will enclose the most area.

Section 3.7 44. Let A be the amount of the power line.

Optimization Problems

425

y

A  h  y  2x2  y2

(0, h) h−y

x 2y dA  0 when y  .  1  dy x2  y2 3

y

2x2 x d 2A  2 > 0 for y  . 2 dy x  y232 3

x

(−x, 0)

(x, 0)

The amount of power line is minimum when y  x3 . 46. f x  12 x2 (a)

1 4 gx  16 x  12 x2 on 0, 4

(c) fx  x, Tangent line at  22, 4 is

9

y  4  22 x  22 

f g −1

y  22x  4.

4

gx  4 x3  x, Tangent line at  22, 0 is 1

−3

1 y  0   4  22 3  22  x  22 

1 4 1 4 (b) dx  f x  gx  12 x2   16 x  12 x2  x2  16 x

y  22x  8.

dx  2x  14 x3  0 ⇒ 8x  x3 ⇒ x  0, 22 in 0, 4  The maximum distance is d  4 when x  22.

The tangent lines are parallel and 4 vertical units apart. (d) The tangent lines will be parallel. If dx  f x  gx, then dx  0  fx  gx implies that fx  gx at the point x where the distance is maximum.

48. Let F be the illumination at point P which is x units from source 1. F

kI2 kI1  x2 d  x2

2kI2 2kI 2kI2 dF 2kI1    0 when 3 1  . dx x3 d  x3 x d  x3 3 I  1 3 I  2



x dx

3 I  x 3 I d  x  1 2 3 I  x  3 I d  3 I1   1 2

x

3 I d 1 3 I   2

3 I  1

3 6kI2 d I1 d 2F 6kI1  4  > 0 when x  3 . 2 4 3 I dx x d  x I1   2

This is the minimum point.

50. (a) T  θ

x2  4

2



3  x 4

x

x2 + 4

x2  4

2 x

dT x 1   0 dx 2x2  4 4

(b)

3−x Q



1 2

2x2  x2  4 x2  4 x2 T2  2 

—CONTINUED—

1 hours 4

426

Chapter 3

Applications of Differentiation

50. —CONTINUED— T

(c)

x2  4

v1



3  x v2

(d) Cost  x2  4 C1  3  xC2 

dT 1 x  0  dx v1x2  4 v2

T

3  x 1C2 1C1 C2  1C2 C1

x2  d12

v1

v1 only. v2



d22  a  x2

54. Cx  2kx2  4  k4  x

v2

Cx 

xa dT x   0 dx v1x2  d12 v2d22  a  x2

3x2  4 x

we have sin 1 sin 2 sin 1 sin 2  0⇒  . v1 v2 v1 v2

2 3

Or, use Exercise 50(d): sin 

Since 2

Thus, x 

2

d1 d2 d   > 0 d x 2 v1x2  d1232 v2d22  a  x2 32

θ

1 1 V   r 2h   r 2144  r 2 3 3





dV 1 1   r2 144  r 2122r  2r144  r 2 dr 3 2

1 288r  3r3 r96  r 2     0 when r  0, 46. 3 144  r 2 144  r 2





By the First Derivative Test, V is maximum when r  46 and h  43. Area of circle: A  122  144 Lateral surface area of cone: S   46  46 2   43 2  486 Area of sector: 144  486 



.

x2 + 4 x



2 3

2

this condition yields a minimum time.



k0

4x2  x2  4

x xa  sin 1 and  sin 2 2 2 2 x  d1 d2  a  x2

2T

2xk x2  4

2x  x2  4

Since

56.



v1 v2

depends on

52.

1C1

From above, sin 

v x  1 x2  4 v2 sin 

x2  4

1 2

r  72

2

144  486 2   3  6  1.153 radians or 66 72 3

4−x

C2 1  ⇒  30. C1 2

Section 3.7

Optimization Problems

58. Let d be the amount deposited in the bank, i be the interest rate paid by the bank, and P be the profit. P  0.12 d  id d  ki 2 since d is proportional to i 2 P  0.12ki 2  iki 2  k0.12i 2  i3 0.24 dP  k0.24i  3i 2  0 when i   0.08. di 3 d 2P  k0.24  6i < 0 when i  0.08 Note: k > 0. di 2 The profit is a maximum when i  8%. P

60.

(a)

1 3 s  6s 2  400 10

3 3 dP   s 2  12s   ss  40  0 when x  0, s  40. ds 10 10 3 d 2P   s  12 ds 2 5 d 2P 0 > 0 ⇒ s  0 yields a minimum. ds 2 d 2P 40 < 0 ⇒ s  40 yields a maximum. ds2 The maximum profit occurs when s  40, which corresponds to $40,000 P  $3,600,000.

(b)

3 d 2P   s  12  0 when s  20. ds 2 5 The point of diminishing returns occurs when s  20, which corresonds to $20,000 being spent on advertising.







62. S2  4m  1  5m  6  10m  3

Using a graphing utility, you can see that the minimum occurs when m  0.3. Line y  0.3x







S2  40.3  1  50.3  6  100.3  3  4.7 mi. S2

30

20

10

(0.3, 4.5) m 1

2

3

427

428

Chapter 3

Applications of Differentiation

h

x  and cos  . The area A of the 2 r 2 r cross equals the sum of two large rectangles minus

64. (a) Label the figure so that r2  x2  h2. Then, the area A is 8 times the area of the region given by OPQR:

(b) Note that sin

the common square in the middle.

h

A  22x2h  4h2  8xh  4h2

θ 2

R x

O

 8r2 sin

h Q

P r





cos  4r2 sin2 2 2 2



 4r2 sin  sin2

12h

A8

2



cos  sin

 x2  x  r2  x2r2  x2

2



A   4r2 cos  sin

 x  hh

12r

8





2



cos 0 2 2





cos  2 sin

2 2

tan  2

 8xr2  x2  4x2  4r2 Ax  8r2  x2 

 arctan2 1.10715 or 63.4

8x2  8x  0 r2  x2

8x2  8x  8r2  x2 r2  x2 x2  xr2  x2  r2  x2 2x2  r2  xr2  x2 4x4  4x2r2  r4  x2r2  x2 5x4  5x2r2  r4  0 Quadratic in x2. 5r2 ± 25r4  20r4 r2  5 ± 5 . 10 10 Take positive value. x2 

xr

5 10

5

(c) Note that x2 

0.85065r

Critical number

r2 r2 5  5  and r2  x2  5  5.  10 10

Ax  8xr2  x2  4x2  4r2

10r 5  5 10r 5  5 

8

2

10r 20

8

4

12

2

12

4

r2 5  5   4r2 10

2  2r2  5r2  4r2 5

8 25 2  r25  2r2  r 5 5





5 4  2r2 5  1   2r25  1 5 5

Using the angle approach, note that tan  2, sin 



Thus, A   4r2 sin  sin2





2



2 1 1  4r2  1 5  2 5 



4r25  1  2r25  1 2

2 5

and sin2

 2  211  cos   211  15.

Section 3.8

Section 3.8

Newton’s Method

Newton’s Method

2. f x  2x2  3 fx  4x x1  1

f xn  fxn 

n

xn

f xn 

fxn 

1

1

1

4



0.125

5.0

0.025

xn 

1 4

f xn  fxn  5 4

2

5  1.25 4

fx  sec2 x

n

xn

f xn 

fxn 

f xn  fxn 

x1  0.1

1

0.1000

0.1003

1.0101

0.0993

0.0007

2

0.0007

0.0007

1.0000

0.0007

0.0000

4. f x  tan x

6. f x  x5  x  1 fx  5x  1 4

Approximation of the zero of f is 0.755.

Approximation of the zero of f is 4.8284.

xn 

xn

f xn 

fxn 

f xn  fxn 

1

0.5000

 0.4688

1.3125

 0.3571

0.8571

2

0.8571

0.3196

3.6983

0.0864

0.7707

3

0.7707

0.0426

2.7641

0.0154

0.7553

4

0.7553

0.0011

2.6272

0.0004

0.7549

Approximation of the zero of f is 0.7937.

xn 

n

xn

f xn 

fxn 

f xn  fxn 

1

5

0.1010

0.5918

0.1707

4.8293

2

4.8293

0.0005

0.5858

.00085

4.8284

n

xn

f xn 

fxn 

f xn  fxn 

1

1

1

6

0.1667

0.8333

2

0.8333

0.1573

4.1663

0.0378

0.7955

3

0.7955

0.0068

3.7969

0.0018

0.7937

4

0.7937

0.0000

3.7798

0.0000

0.7937

10. f x  1  2x3 fx  6x2

f xn  fxn 

n

8. f x  x  2x  1 1 fx  1  x  1

1.225

xn 

f xn  fxn 

xn 

f xn  fxn 

f xn  fxn 

429

430

Chapter 3

Applications of Differentiation

1 12. f x  x 4  3x  3 2 fx  2x3  3 Approximation of the zero of f is 0.8937.

Approximation of the zero of f is 2.0720.

14. f x  x3  cos x fx  3x2  sin x Approximation of the zero of f is 0.866.

16. hx  f x  gx  3  x  hx  1 

n

xn

f xn 

fxn 

f xn  fxn 

1

1

0.5

5

0.1

0.9

2

0.9

0.0281

4.458

0.0063

0.8937

3

0.8937

0.0001

4.4276

0.0000

0.8937

xn 

f xn  fxn 

n

xn

f xn 

fxn 

f xn  fxn 

1

2

1

13

0.0769

2.0769

2

2.0769

0.0725

14.9175

0.0049

2.0720

3

2.0720

0.0003

14.7910

0.0000

2.0720

xn 

f xn  fxn 

n

xn

f xn 

fxn 

f xn  fxn 

1

0.9000

0.1074

3.2133

0.0334

0.8666

2

0.8666

0.0034

3.0151

0.0011

0.8655

3

0.8655

0.0001

3.0087

0.0000

0.8655

1 x2  1

2x x2  12

xn 

f xn  fxn 

n

xn

h xn 

hxn 

h xn  hxn 

1

2.9000

0.0063

0.9345

0.0067

2.8933

2

2.8933

0.0000

0.9341

0.0000

2.8933

n

xn

h xn 

hxn 

h xn  hxn 

1

0.8000

0.0567

2.3174

0.0245

0.8245

2

0.8245

0.0009

2.3832

0.0004

0.8241

xn 

h xn  hxn 

Point of intersection of the graphs of f and g occurs when x  2.893. 18. hx  f x  gx  x2  cos x hx  2x  sin x One point of intersection of the graphs of f and g occurs when x  0.824. Since f x  x2 and gx  cos x are both symmetric with respect to the y-axis, the other point of intersection occurs when x  0.824. 20. f x  xn  a  0 fx  nxn1 xi1  xi  

xin  a nxin1

nxin  xin  a n  1xin  a  nxin1 nxin1

xn 

h xn  hxn 

Section 3.8

22. xi1 

xi2  5 2xi

24. xi1 

Newton’s Method

431

2xi3  15 3xi2

i

1

2

3

4

i

1

2

3

4

xi

2.0000

2.2500

2.2361

2.2361

xi

2.5000

2.4667

2.4662

2.4662

3 15  2.466 

5  2.236

26. f x  tan x fx  sec2 x

n

xn

f xn 

fxn 

f xn  fxn 

Approximation of the zero: 3.142

1

3.0000

0.1425

1.0203

0.1397

3.1397

2

3.1397

0.0019

1.0000

0.0019

3.1416

3

3.1416

0.0000

1.0000

0.0000

3.1416

y  x1 

3 2

f xn  fxn 

30. f x  2 sin x  cos 2x

28. y  4x3  12x2  12x  3  f x 12x2

xn 

fx  2 cos x  2 sin 2x

 24x  12  fx

x1 

Fails because fx1  0.

fx2  0; therefore, the method fails. n

xn

f xn 

fxn 

f xn  fxn 

1

3 2

3 2

3

2

1

1

0

3 2

f xn  fxn 

n

xn

f xn 

fxn 

1 2

1

1

3 2

3

0





g xn  gxn 

xn 

32. Newton’s Method could fail if fc  0, or if the initial value x1 is far from c. 34. Let gx  f x  x  cot x  x gx  csc2 x  1. The fixed point is approximately 0.86.

g xn  gxn 

n

xn

g xn 

gxn 

1

1.0000

0.3579

2.4123

0.1484

0.8516

2

0.8516

0.0240

2.7668

 0.0087

0.8603

3

0.8603

0.0001

2.7403

0.0000

0.8603

xn 

36. f x  sin x, fx  cos x (a)

(d)

2

y 2

−



−2

(b) x1  1.8 x2  x1 

(3, 0.141) (6.086, 0)

1

π 2 −1

π

x

(3.143, 0)

−2

f x1  6.086 fx1

(c) x1  3 x2  x1 

(1.8, 0.974)

f x1  3.143 fx1

The x-intercepts correspond to the values resulting from the first iteration of Newton’s Method. (e) If the initial guess x1 is not “close to” the desired zero of the function, the x-intercept of the tangent line may approximate another zero of the function.

432

Chapter 3

Applications of Differentiation (b) xn1  xn2  11xn 

38. (a) xn1  xn2  3xn 

1 3

i

1

2

3

4

i

1

2

3

4

xi

0.3000

0.3300

0.3333

0.3333

xi

0.1000

0.0900

0.0909

0.0909

1 11

 0.333

 0.091

40. f x  x sin x, 0, 

y

fx  x cos x  sin x  0

4 3

Letting Fx  fx, we can use Newton’s Method as follows.

Fx  2 cos x  x sin x n

xn

1

2.0000

2

2.0290

1

Fxn 

F xn  Fxn 

0.0770

2.6509

0.0290

2.0290

0.0007

2.7044

0.0002

2.0288

F xn 

(2.029, 1.820)

2

xn 

F xn  Fxn 

π 4

π 2

x

3π 4

Approximation to the critical number: 2.029 42. y  f x  x2, 4, 3

y

d  x  42  y  32  x  42  x2  32  x4  7x2  8x  25

3 2

d is minimum when D  x4  7x2  8x  25 is minimum.

(0.529, 0.280)

1

x

gx  D  4x3  14x  8

−2 −1 −1

gx  12x2  14

1

2

3

4

−2 −3

n

xn

g xn 

gxn 

g xn  gxn 

1

0.5000

 0.5000

17.0000

 0.0294

0.5294

2

0.5294

0.0051

17.3632

0.0003

0.5291

3

0.5291

 0.0001

17.3594

0.0000

0.5291

xn 

(4, − 3)

g xn  gxn 

x  0.529 Point closest to 4, 3 is approximately 0.529, 0.280.

44. Maximize: C  C 

3t 2  t 50  t3 3t4  2t3  300t  50 0 50  t32

n

xn

f xn 

fxn 

f xn  fxn 

1

4.5000

12.4375

915.0000

0.0136

4.4864

2

4.4864

0.0658

904.3822

0.0001

4.4863

Let f x  3t4  2t3  300t  50 fx  12t3  6t2  300. Since f 4  354 and f 5  575, the solution is in the interval 4, 5. Approximation: t  4.486 hours

xn 

f xn  fxn 

Section 3.8

Newton’s Method

46. 170  0.808x3  17.974x2  71.248x  110.843, 1 ≤ x ≤ 5 Let f x  0.808x3  17.974x2  71.248x  59.157 fx  2.424x2  35.948x  71.248. From the graph, choose x1  1 and x1  3.5. Apply Newton’s Method. n

xn

f xn 

fxn 

f xn  fxn 

1

1.0000

5.0750

37.7240

0.1345

1.1345

2

1.1345

0.2805

33.5849

0.0084

1.1429

3

1.1429

0.0006

33.3293

0.0000

1.1429

n

xn

f xn 

fxn 

f xn  fxn 

1

3.5000

4.6725

24.8760

 0.1878

3.6878

2

3.6878

0.3286

28.3550

0.0116

3.6762

3

3.6762

0.0009

28.1450

0.0000

3.6762

xn 

f xn  fxn 

xn 

f xn  fxn 

The zeros occur when x  1.1429 and x  3.6762. These approximately correspond to engine speeds of 1143 revmin and 3676 revmin. 48. True

50. True

52. f x  4  x2 sinx  2 Domain: 2, 2 x  2 and x  2 are both zeros. fx  4  x2 cosx  2  Let x1  1.

x 4  x2

sinx  2

n

xn

f xn 

fxn 

f xn  fxn 

1

1.0000

0.2444

1.7962

0.1361

2

1.1361

0.0090

1.6498

0.0055

1.1416

3

1.1416

0.0000

1.6422

0.0000

1.1416

Zeros: x  ± 2, x  1.142 y 1 x −2

1

−2 −3

2

xn 

f xn  fxn 

1.1361

433

434

Chapter 3

Applications of Differentiation

Section 3.9

Differentials

2. f x  6  6x2 x2 fx  12x3 

x

y

1.99

2

2.01

2.1

6 x2

1.6620

1.5151

1.5

1.4851

1.3605

9 3 Tx   x  2 2

1.65

1.515

1.5

1.485

1.35

f x 

12 x3

 

Tangent line at 2,

1.9

3 : 2

3 12 3  x  2  x  2 2 8 2 9 3 y x 2 2

4. f x  x fx 

1 2x

x

1.9

1.99

2

2.01

2.1

f x  x

1.3784

1.4107

1.4142

1.4177

1.4491

1.3789

1.4107

1.4142

1.4177

1.4496

T x 

Tangent line at  2, 2  :

x 2



1 2

y  f 2  f2x  2 y  2 

1 x  2 22

y

x 1  22 2

6. f x  csc x fx  csc x cot x Tangent line at 2, csc 2: y  f 2  f2x  2 y  csc 2  csc 2 cot 2x  2 y  csc 2 cot 2x  2  csc 2 x

1.9

1.99

2

2.01

2.1

f x  csc x

1.0567

1.0948

1.0998

1.1049

1.1585

T x  csc 2 cot 2x  2  csc 2

1.0494

1.0947

1.0998

1.1048

1.1501

8. y  f x  1  2x2, fx  4x, x  0, x  dx  0.1 y  f x  x  f x

dy  fx dx

 f 0.1  f 0

 f00.1

 1  20.1   1  20   0.02 2

2

 00.1  0

10. y  f x  2x  1, fx  2, x  2, x  dx  0.01 y  f x  x  f x

dy  fx dx

 f 2.01  f 2

 f20.01

 22.01  1  22  1  0.02

 20.01  0.02

Section 3.9 12.

y  3x2 3

14. y  9  x2

dy  2x1 3dx 

16.

2 dx x1 3

dy 

1

y  x 



18.

x



dy  

1

sec2 x x2  1

x

2

x 1 9  x21 22xdx  dx 9  x2 2

y  x sin x dy  x cos x  sin x dx

1 x1 dx  dx  dy  2x 2xx 2xx

20. y 

Differentials

22. (a) f 1.9  f 2  0.1 f 2  f20.1 1  10.1  1.1

 12 sec2 x tan x  sec2 x2x dx x2  12



(b) f 2.04  f 2  0.04 f 2  f20.04 1  10.04  0.96

x  tan x  x

2 sec xx tan dx x  1 2

2

2

2

24. (a) f 1.9  f 2  0.1 f 2  f20.1

26. (a) g2.93  g3  0.07 g3  g30.07

1  00.1  1

8  30.07  7.79

(b) f 2.04  f 2  0.04 f 2  f20.04

(b) g3.1  g3  0.1 g3  g30.1

1  00.04  1 28. (a) g2.93  g3  0.07 g3  g30.07 8  50.07  7.65 (b) g3.1  g3  0.1 g3  g30.1 8  50.1  8.5

8  30.1  8.3 30.

1 A  2 bh, b  36, h  50

db  dh  ± 0.25 dA  12 b dh  12 h db A dA  2 36± 0.25  2 50± 0.25 1

1

 ± 10.75 square centimeters 32.

x  12 inches

34. (a)

x  dx  ± 0.03 inch

C  56 centimeters C  dC  ± 1.2 centimeters

(a) V  x3

C  2 r ⇒ r 

dV  3x2 dx  3122± 0.03

A  r2  

 ± 12.96 cubic inches (b) S  6x2

dA 

dS  12x dx  1212± 0.03

C 2

2C

2



1 2 C 4

1 1 33.6 C dC  56± 1.2  2 2 

33.6  dA  0.042857  4.2857% A 1 4562

 ± 4.32 square inches

(b)

dA 1 2C dC 2dC   ≤ 0.03 A 1 4C2 C dC 0.03 ≤  0.015  1.5% C 2

435

436

36.

Chapter 3

Applications of Differentiation

P  500x  x2 

12x

2



 77x  3000 , x changes from 115 to 120

dP  500  2x  x  77dx  577  3x dx  577  3115120  115  1160 1160 dP 100  100 2.7% P 43517.50

Approximate percentage change:

38. V  43  r3, r  100 cm, dr  0.2 cm

E  IR

40.

V dV  4 r dr  4 100 0.2  8000 cm 2

2

3

R

E I

dR  

E dI I2

dR  E I 2 dI dI   R E I I



dR dI dI    R I I

1 1 A  baseheight  9.5cot 9.5  45.125 cot 2 2 dA  45.125



h  50 tan

44.

42. See Exercise 41.

csc2



0.0044 sin 0.4669cos 0.4669

0.0109  1.09% in radians 3 x, x  27, dx  1 46. Let f x   3 x  f x  x f x  fxdx  

3 26  3 27  

d



dh 50 1.2479  d ≤ 0.06 x 50 tan1.2479

csc2 d d dA   A cot sin cos 0.25 sin 26.75cos 26.75

dh  50 sec2



d



 71.5  1.2479 radians

1 dx 3 x2 3

1 1 1  3  2.9630 3 272 3 27

3 26 2.9625 Using a calculator, 

48. Let f x  x3, x  3, dx  0.01. f x  x f x  fx dx  x3  3x2 dx f x  x  2.993 33  3320.01  27  0.27  26.73 Using a calculator: 2.993 26.7309

sec2

9.9316 d ≤ 0.06 2.9886

d ≤ 0.018

h

θ

50 ft

Review Exercises for Chapter 3 50. Let f x  tan x, x  0, dx  0.05, fx  sec2 x.

52. Propagated error  f x   x  f x,

Then

relative error 

f 0.05  f 0  f0dx



437



dy dy , and the percent error   100. y y

tan 0.05  tan 0  sec2 00.05  0  10.05.

54. True,

y dy  a x dx

56. False Let f x  x, x  1, and x  dx  3. Then y  f x  x  f x  f 4  f 1  1 and dy  fx dx 

1 3 3  . 21 2

Thus, dy > y in this example.

Review Exercises for Chapter 3 2. (a) f 4  f 4  3 (c)

(b) f 3  f 3   4  4

y

(d) Yes. Since f 2  f 2   1  1 and f 1  f 1  2, the Mean Value says that there exists at least one value c in 2, 1 such that

6 4

x −6 −4 −2

4

fc 

6

−4

(e) No, lim f x exists because f is continuous at 0, 0.

−6

x →0

At least six critical numbers on 6, 6. 4. f x 

f 1  f 2 2  1   1. 1  2 12

x x2  1

, 0, 2



(f) Yes, f is differentiable at x  2.

6. No. f is not differentiable at x  2.



1 fx  x  x2  1322x  x2  112 2 1 x2  132 No critical numbers Left endpoint: 0, 0 Minimum Right endpoint:  2, 25  Maximum 

8. No; the function is discontinuous at x  0 which is in the interval 2, 1 .

10.

1 f x  , 1 ≤ x ≤ 4 x fx  

1 x2

f b  f a 14  1 34 1    ba 41 3 4 fc 

1 1  c2 4

c2

12.

f x  x  2x, 0 ≤ x ≤ 4 fx 

1 2x

2

f b  f a 6  0 3   ba 40 2 fc 

1 3 2 2 2c

c1

438

Chapter 3

Applications of Differentiation

f x  2x2  3x  1

14.

fx  4x  3 f b  f a 21  1  5 ba 40 fc  4c  3  5 c  2  Midpoint of 0, 4 16. gx  x  13

Critical number: x  1

18. f x  sin x  cos x, 0 ≤ x ≤ 2

Critical numbers: x 

gx 

5 ,x 4 4



1 < x <

Sign of gx

gx > 0

gx > 0

Conclusion

Increasing

Increasing

0 < x <

Interval

fx  cos x  sin x

20. gx 

  < x < 1

Interval

gx  3x  12

4

5 < x < 4 4

5 < x < 2 4

Sign of fx

fx > 0

fx < 0

fx > 0

Conclusion

Increasing

Decreasing

Increasing

3 x sin  1 , 0, 4 2 2

Test Interval

3 x 1 cos 2 2 2

Sign of gx

gx > 0

gx < 0

gx > 0

Conclusion

Increasing

Decreasing

Increasing





 0 when x  1 

2 2 ,3

Relative maximum:

1  2 , 32

Relative minimum:

3  2 ,  23

22. (a) y  A sinkm t  B coskm t

A sinkm t A  ⇒ tankm t  . B coskm t B

Therefore, sin km t  cos km t 

A A2  B2

B A2  B2

.

When v  y  0, yA

A A B  B A B B  A

2

2

2

2

2

(b) Period:

y  Akm coskm t  Bkm sinkm t  0 when

0 < x < 1

2

 B2.

1

2 2 < x < 3

3

2 km

Frequency:

1 1 km  2 km 2

2 < x < 4

Review Exercises for Chapter 3 24. f x  x  22x  4  x3  12x  16 fx  3x2  12 f x  6x  0 when x  0.

439

Test Interval

 < x < 0

Sign of f x

f x < 0

f x > 0

Concave downward

Concave upward

Conclusion

0 < x <



Point of inflection: 0, 16 26.

ht  t  4t  1 Domain: 1,  ht  1 

2 t  1

y

28. 7

0 ⇒ t3

6 5 4

1 h t  t  132 h 3 

30.

C

1 > 0 8

3, 5 is a relative minimum.

Qx s  2x r

r Qs dC  2  0 dx x 2

3 2 1 x

−1

1

2

3

4

5

6

7

32. (a) S  0.1222t3  1.3655t2  0.9052t  4.8429 (b)

r Qs  x2 2

25

1

14 0

2Qs x2  r x

34. lim

x →



2Qs r

2x 2x  lim 0 3x2  5 x → 3  5x2

38. gx 

5x2 2

x2

lim

x →

5x2 5  lim 5  2 x → 1  2x2

x2

(c) St  0 when t  3.7. This is a maximum by the First Derivative Test. (d) No, because the t3 coefficient term is negative.

36. lim

3x

x →

x2  4

40. f x 

 lim

x →

3 1  4x2

3

3x x2  2

lim

x →

3x x2  2

Horizontal asymptote: y  5

 lim

x →

 lim

x →

lim

x →

3x x2  2

3xx x2  2x2

3 1  2x2

 lim

x →

 lim

x →

3

3xx



x2  2  x2



3  3  1  2x2

Horizontal asymptotes: y  ± 3

440

Chapter 3

Applications of Differentiation



 



2  4 cos x  cos 2x 3

44. gx 

42. f x  x3  3x2  2x  xx  1x  2 Relative minima: (0, 0, 1, 0, 2, 0

Relative minima: 2 k, 0.29 where k is any integer.

Relative maxima: 1.577, 0.38, 0.423, 0.38

Relative maxima: 2k  1 , 8.29 where k is any integer.

3

10

−2

4 − 5 2

−1

46. f x  4x3  x4  x34  x

y 30

Domain:  , ; Range:  , 27

25 20

fx  12x  4x  4x 3  x  0 when x  0, 3. 2

3

5 2

0

2

15 10

f x  24x  12x 2  12x2  x  0 when x  0, 2.

5 x

f 3 < 0

−2

1

2

3

5

Therefore, 3, 27 is a relative maximum. Points of inflection: 0, 0, 2, 16 Intercepts: 0, 0, 4, 0 48. f x  x2  42

y

Domain:  , ; Range: 0, 

24 20

fx  4xx2  4  0 when x  0, ± 2. 23 f x  43x2  4  0 when x  ± . 3 f 0 < 0

(0, 16) (−2, 0)

(2, 0) 8 4 x

−3 −2 −1

Therefore, 0, 16 is a relative maximum.

1

2

3

f ± 2 > 0 Therefore, ± 2, 0 are relative minima. Points of inflection:  ± 233, 649 Intercepts: 2, 0, 0, 16, 2, 0 Symmetry with respect to y-axis 50. f x  x  3x  23 Domain:  , ; Range:

y



 16,875 256 ,



−4

fx  x  33x  22  x  23  4x  7x  22  0 when x  2,

f  74  > 0 Therefore,  74 ,  16,875 256  is a relative minimum. Points of inflection: 2, 0,  12 ,  625 16  Intercepts: 2, 0, 0, 24, 3, 0

−2

2

x

4

− 20

(0,−24)

7 4.

f x  4x  72x  2  x  224  62x  1x  2  0 when x  2,

(3, 0)

(−2, 0)

− 40 − 60

1 2.

( 74 , − 16.875 256 )

Review Exercises for Chapter 3 52. f x  x  213x  123

y

Graph of Exercise 39 translated 2 units to the right x replaces by x  2.

3 2

1, 0 is a relative maximum.

 1, 

1

(−1, 0)

4  is a relative minimum.

3 

1

2, 0 is a point of inflection.

−2

2x 1  x2

(1, 41/3)

y 3

Domain:  , ; Range: 1, 1

2

(1, 1)

21  x1  x  0 when x  ± 1. fx  1  x22 f x 

x 3

−3

Intercepts: 1, 0, 2, 0 54. f x 

(2, 0)

−3 −2

1 x −1

1

2

3

(−1, −1)

2x3  x2  0 when x  0, ± 3. 1  x23

−2 −3

f 1 < 0 Therefore, 1, 1 is a relative maximum. f 1 > 0 Therefore, 1, 1 is a relative minimum. Points of inflection: 3, 32, 0, 0, 3, 32 Intercept: 0, 0 Symmetric with respect to the origin Horizontal asymptote: y  0 56. f x 

x2 1  x4

 2

Domain:  , ; Range: 0,

1

fx 

1  x42x  x24x3 2x1  x1  x1  x2   0 when x  0, ± 1. 1  x42 1  x42

f x 

1  x422  10x4  2x  2x521  x44x3 21  12x4  3x8  0 when x  ±  1  x44 1  x43

6 ± 3

33

4

f ± 1 < 0



Therefore, ± 1,

1 are relative maxima. 2

y 1

f 0 > 0 Therefore, 0, 0 is a relative minimum. Points of inflection:

 ±

4



6  33 , 0.29 , ± 3

Intercept: 0, 0 Symmetric to the y-axis Horizontal asymptote: y  0

3 4 1 2

(−1, ) 1 2

4

6  33 , 0.40 3

(1, 21) (0, 0) x

−3 −2 −1 − 21

1

2

3

.

441

442

Chapter 3

58. f x  x2 

Applications of Differentiation

1 x3  1  x x



Domain:  , 0, 0, ; Range:  , 



2x  4, 60. f x  x  1  x  3  2, 2x  4,

1 2x3  1 1 fx  2x  2   0 when x  3 . x x2 2 2 2x3  1  0 when x  1. f x  2  3  x x3

 



Domain:  ,  Range: 2, 

Intercept: 0, 4 y 4

>0

1 f 3 2

(0, 4)

3 2



1 3 Therefore, 3 , 3 is a relative minimum. 2 4

1

Point of inflection: 1, 0

x 1

2

3

4

Intercept: 1, 0 Vertical asymptote: x  0 y 3 2 1

(−1, 0) −3 −2

62. f x 

( 12 , 34 ) 3

3

x 1

2

3

1 2 sin x  sin 2 x

Domain: 1, 1 ; Range:

y 1

32 3, 32 3 



fx  2cos x  cos 2 x  22 cos x  1cos x  1  0

1 2

x − 12

− 12

1 2

−1

2 Critical Numbers: x  ± , 0 3

f x  2 sin x  2 sin 2 x  2 sin x1  4 cos x  0 when x  0, ± 1, ± 0.420. By the First Derivative Test:

 32, 32 3 is a relative minimum. 23, 32 3 is a relative maximum. 



Points of inflection: 0.420, 0.462, 0.420, 0.462, ± 1, 0, 0, 0 Intercepts: (1, 0, 0, 0, 1, 0 Symmetric with respect to the origin 64. f x  xn, n is a positive integer. (a) fx  nxn1 The function has a relative minimum at 0, 0 when n is even. (b) f x  nn  1xn2 The function has a point of inflection at 0, 0 when n is odd and n ≥ 3.

x ≤ 1 1 < x ≤ 3 x > 3

Review Exercises for Chapter 3 x2 y2 1   1, y  144  x2 144 16 3

66. Ellipse:



A  2x

y 12

2 4 144  x2  x144  x2 3 3





144 − x 2

−12

(

12 −8 −12

4 144  2x2  0 when x  72  62. 3 144  x2



1 3

x

x2 dA 4   144  x2 dx 3 144  x2



( x,

8



2 The dimensions of the rectangle are 2x  122 by y  144  72  42. 3 68. We have points 0, y, x, 0, and 4, 5. Thus, m

50 5x y5  or y  . 04 4x x4

Let f x  L 2  x 2 

x 5x 4

L (4, 5)

2

5 (x, 0)



x fx  2x  50 x4 x

(0, y)



x4x 0 x  42



4

100x 0 x  43

3 100 . x x  43  100  0 when x  0 or x  4  

L

x

2



3 100  4  25x2 x x  42  25  10023  25  12.7 feet  2 3 100 x  4 x4 

70. Label triangle with vertices 0, 0, a, 0, and b, c. The equations of the sides of the triangle are y  cbx and y  cb  a x  a. Let x, 0 be a vertex of the inscribed rectangle. The coordinates of the upper left vertex are x, cbx. The y-coordinate of the upper right vertex of the rectangle is cbx. Solving for the x-coordinate x of the rectangle’s upper right vertex, you get c c x x  a b ba

y= cx b

b  ax  bx  a

(

ba ab x xaa x. b b

(0, 0)

Finally, the lower right vertex is

a  a b b x, 0 . Width of rectangle: a  Height of rectangle:

ab xx b

c x see figure b



A  WidthHeight  a 



A

ab xx b

bc x  a  ba x bc x

b x  0 when x  .  ba  acb  2ac b 2

a c dA c  a x  x dx b b b

x, c x b

2

b2  a  ba b2 bc b2  a2 2c  41 ac  21 12 ac  21 Area of triangle

(

(x, 0)

(b, c) c ( x − a) b−a

y=

(a − a b− b x, bc x( (a, 0)

(a − a b− b x, 0(

443

444

Chapter 3

Applications of Differentiation

72. You can form a right triangle with vertices 0, y, 0, 0, and x, 0. Choosing a point a, b on the hypotenuse (assuming the triangle is in the first quadrant), the slope is m

b0 bx yb  . ⇒y 0a ax ax

Let f x  L2  x2  y2  x2 

. abx  x 2

fx  2x  2

ab abx  x  a  x 2

2x a  x3  ab2 3 ab2.  0 when x  0, a   a  x3 3 Choosing the nonzero value, we have y  b   a 2b. 3 ab2 2  b   L   a     3 a2b 2

 a2  3a43b23  3a23b43  b212  a23  b2332 meters 74. Using Exercise 73 as a guide we have L1  a csc and L2  b sec . Then dLd  a csc cot  b sec tan  0 when 3 ab, sec  tan  

a23  b23

b13

, csc 

L  L1  L2  a csc  b sec  a

a23  b23

a13

and

a23  b2312 a23  b2312 b  a23  b2332. a13 b13

This matches the result of Exercise 72. 76. Total cost  Cost per hourNumber of hours T

11v 825 v 110  7.50   500 v 50 v 2

dT 11 825 11v 2  41,250   2  dv 50 v 50v 2  0 when v  3750  256  61.2 mph. d 2T 1650  3 > 0 when v  256 so this value yields a minimum. dv 2 v 78. f x  x3  2x  1 From the graph, you can see that f x has one real zero. fx  3x2  2 f changes sign in 1, 0 . n

xn

f xn 

f xn 

f xn  fxn 

1

0.5000

0.1250

2.7500

0.0455

0.4545

2

0.4545

0.0029

2.6197

0.0011

0.4534

On the interval 1, 0 : x  0.453.

xn 

f xn  fxn 

Review Exercises for Chapter 3

43. r 

v02 sin 2 32

45. Let f x  x, x  100, dx  0.6. f x  x  f x  f x dx

v0  2200 ftsec

 changes from 10 to 11 dr 

 x 

22002 cos 2 d 16

  10

f x  x  99.4

 180 

d  11  10

1 dx 2x

 100 

1 0.6  9.97 2100

Using a calculator: 99.4  9.96995

 180

r  dr 

22002 20 cos 16 180

  180   4961 feet

 4961 feet 49. Let f x  x, x  4, dx  0.02, f x  1 2x .

4 x, x  625, dx  1. 47. Let f x   4 x  f x  x  f x  f x d x  

Then

1 dx 44x3

f 4.02  f 4  f 4 dx

1 4 624   4 625  f x  x   1 4 625 3 4  5

4.02  4 

1 1 0.02  2  0.02. 4 24

1  4.998 500

4 624  4.9980. Using a calculator, 

51. In general, when  x → 0, dy approaches y. 53. True

55. True

Review Exercises for Chapter 3 1. A number c in the domain of f is a critical number if f c  0 or f is undefined at c.

y 4

f ′(c) is 3 undefined.

f ′(c) = 0

x −4 −3

−1 −2 −3 −4

3. gx  2x  5 cos x, 0, 2

18

(6.28, 17.57)

g x  2  5 sin x 2

 0 when sin x  5 . Critical numbers: x  0.41, x  2.73 Left endpoint: 0, 5 Critical number: 0.41, 5.41 Critical number: 2.73, 0.88 Minimum Right endpoint: 2, 17.57 Maximum

(2.73, 0.88) − 4

2 −1

1

2

4

163

164

Chapter 3

Applications of Differentiation

5. Yes. f 3  f 2  0. f is continuous on 3, 2 , differentiable on 3, 2.





7. f x  3  x  4 y

(a)

f x  x  33x  1  0 for x  13.

6 4

c  13 satisfies f c  0.

2 x

−2

2

4

6

10

−4 −6

f 1  f 7  0 (b) f is not differentiable at x  4.

9.

f x  x23, 1 ≤ x ≤ 8

f x  x  cos x, 

11.

2 f x  x13 3

f x  1  sin x f b  f a 2   2  1 ba 2   2

f b  f a 4  1 3   ba 81 7

f c  1  sin c  1

2 3 f c  c13  3 7 c

13.

149

3

  ≤ x ≤ 2 2



c0

2744  3.764 729

f x  Ax2  Bx  C f x  2Ax  B f x2  f x1 Ax22  x12  Bx2  x1  x2  x1 x2  x1  Ax1  x2  B f c  2Ac  B  Ax1  x2  B 2Ac  Ax1  x2 c

x1  x2  Midpoint of x1, x2

2

15. f x  x  12x  3 f x  x  1 1  x  32x  1 2

 x  13x  7 7 Critical numbers: x  1 and x  3

17. hx  xx  3  x32  3x12 Domain: 0,  3 3 h x  x12  x12 2 2 3 3x  1  x12x  1  2 2x Critical number: x  1

Interval:

 < x < 1

1 < x <

7 3

7 3

< x <



Sign of f x:

f x > 0

f x < 0

f x > 0

Conclusion:

Increasing

Decreasing

Increasing



Interval:

0 < x < 1

Sign of h x:

h x < 0

h x > 0

Conclusion:

Decreasing

Increasing

1 < x <

Review Exercises for Chapter 3 19. ht  14t 4  8t

Test Interval: < t < 2

h t  t 3  8  0 when t  2. Relative minimum: 2, 12

165



2 < t <

Sign of h t:

h t < 0

h t > 0

Conclusion:

Decreasing

Increasing

1 1 cos12t  sin12t 3 4

21. y 

v  y  4 sin12t  3 cos12t (a) When t 

 1 , y  inch and v  y  4 inches/second. 8 4

(b) y  4 sin12t  3 cos12t  0 when

sin12t 3 3   ⇒ tan12t   . cos12t 4 4

3 4 Therefore, sin12t   and cos12t  . The maximum displacement is 5 5 y (c) Period:

1345  41  53  125 inch. 2   12 6 1 6  6 

Frequency:

23. f x  x  cos x, 0 ≤ x ≤ 2 f x  1  sin x f x  cos x  0 when x  Points of inflection:

 3 , . 2 2

Test Interval: Sign of f x: Conclusion:

 3 < x < 2 2

3 < x < 2 2

f x < 0

f x > 0

f x < 0

Concave downward

Concave upward

Concave downward

0 < x <

 2

2 , 2 , 32, 32

25. gx  2x21  x2

y

g x  4x2x2  1 Critical numbers: x  0, ±

(−

1 2

1, 1 2 2

)

1

−2

g x  4  24x

(

1, 1 2 2

)

(0, 0)

2

x

−1

2

−2

g 0  4 > 0

Relative minimum at 0, 0

 

1 1 Relative maximums at ± , 2 2

y

27. 6

(5, f(5))

5 4

(3, f(3))

2 1 −1

 29. The first derivative is positive and the second derivative is negative. The graph is increasing and is concave down.

7

3

−3



1 g ±  8 < 0 2

(6, 0) (0, 0) 2 3 4 5

x 7

166

Chapter 3

Applications of Differentiation

31. (a) D  0.0034t4  0.2352t3  4.9423t2  20.8641t  94.4025 (b)

369

0

29 0

(c) Maximum at 21.9, 319.5 1992 Minimum at 2.6, 69.6 1972 (d) Outlays increasing at greatest rate at the point of inflection 9.8, 173.7 1979

33. lim

x →

2x2 2 2  lim   5 x → 3  5x2 3

35. lim

2x  3 x4

39. f x 

3x2

37. hx 

Discontinuity: x  4 lim

x →

x →

5 cos x  0, since 5 cos x ≤ 5. x



3 2 x

Discontinuity: x  0

2x  3 2  3x  lim 2 x → 1  4x x4

lim

x →

3x  2  2

Vertical asymptote: x  4

Vertical asymptote: x  0

Horizontal asymptote: y  2

Horizontal asymptote: y  2

41. f x  x3 



243 x

43. f x 

x1 1  3x2

Relative minimum: 3, 108

Relative minimum: 0.155, 1.077

Relative maximum: 3, 108

Relative maximum: 2.155, 0.077 0.2

200

−2

−5

5

5

− 1.4

− 200

Vertical asymptote: x  0

Horizontal asymptote: y  0

45. f x  4x  x2  x4  x Domain:  , ; Range:  , 4 f x  4  2x  0 when x  2. f x  2 Therefore, 2, 4 is a relative maximum. Intercepts: 0, 0, 4, 0

y

5

)2, 4)

4 3 2 1

x 1

2

3

5

Review Exercises for Chapter 3 47. f x  x16  x2, Domain: 4, 4 , Range: 8, 8

y

2

2, 8

8

Domain: 4, 4 ; Range: 8, 8

6 4

16  2x2 f x   0 when x  ± 22 and undefined when x  ± 4. 16  x2 f x 

2xx2  24 16  x232

2

(− 4, 0)

(4, 0) x

8

6

2

2

4

6

8

(0, 0)

8

2

2,

8

f  22  > 0

Therefore,  22, 8 is a relative minimum. f  22  < 0

Therefore,  22, 8 is a relative maximum. Point of inflection: 0, 0 Intercepts: 4, 0, 0, 0, 4, 0 Symmetry with respect to origin 49. f x  x  13x  32

y

Domain:  , ; Range:  , 

4

f x  x  12x  35x  11  0 when x  1,

11 , 3. 5

f x  4x  15x2  22x  23  0 when x  1,

( 115 , 1.11(

(1, 0)

(2.69, 0.46) (3, 0)

2

x

−2

4 −2

11± 6 . 5

6

(1.71, 0.60)

−4

f 3 > 0 Therefore, 3, 0 is a relative minimum. f

115 < 0

Therefore,

is a relative maximum. 115, 3456 3125 

Points of inflection: 1, 0,

11 5

6

 11 5

, 0.60 ,

6



, 0.46

Intercepts: 0, 9, 1, 0, 3, 0 51. f x  x13x  323

y

Domain:  , ; Range:  , 

4 3

x1 f x   0 when x  1 and undefined when x  3, 0. x  313x23 2 f x  53 is undefined when x  0, 3. x x  343 3 4 is By the First Derivative Test 3, 0 is a relative maximum and  1,    a relative minimum. 0, 0 is a point of inflection.

Intercepts: 3, 0, 0, 0

2 1

) 3, 0)

)0, 0) x

5

4

2

) 1,

1

1

1.59) 3

2

167

168

Chapter 3

Applications of Differentiation

x1 x1

53. f x 

x

1

y

Domain:  , 1, 1, ; Range:  , 1, 1,  f x 

2 < 0 if x 1. x  12

f x 

4 x  13

4

y

1 2

x 2

2

4

2

Horizontal asymptote: y  1 Vertical asymptote: x  1 Intercepts: 1, 0, 0, 1 55. f x 

4 1  x2

y 5

Domain:  , ; Range: 0, 4

8x  0 when x  0. f x  1  x22 3 81  3x2 .  0 when x  ± f x  1  x23 3

(0, 4)

4

(−

3,3 3

(

(

3,3 3

1

2

(

2 1 −3

−2 −1

x −1

3

f 0 < 0 Therefore, 0, 4 is a relative maximum. Points of inflection:  ± 33, 3 Intercept: 0, 4 Symmetric to the y-axis Horizontal asymptote: y  0

57. f x  x3  x 

y

4 x

10

Domain:  , 0, 0, ; Range:  , 6 , 6,  f x  3x2  1  f x  6x 

4  x2

3x4

 4  0 when x  ± 1. x2 x2

8 6x4  8  0 x3 x3

f 1 < 0 Therefore, 1, 6 is a relative maximum. f 1 > 0 Therefore, 1, 6 is a relative minimum. Vertical asymptote: x  0 Symmetric with respect to origin

5

(1, 6) x

2

1

(−1, −6) −5

1

x

2

0

Review Exercises for Chapter 3





59. f x  x2  9

y

Domain:  , ; Range: 0,  f x 

2xx2  9  0 when x  0 and is undefined when x  ± 3. x2  9



10



5

2x2  9 is undefined at x  ± 3. f x  2 x 9



)0, 9)



) 3, 0)

)3, 0) x

4

f 0 < 0

2

2

4

Therefore, 0, 9 is a relative maximum. Relative minima: ± 3, 0 Points of inflection: ± 3, 0 Intercepts: ± 3, 0, 0, 9 Symmetric to the y-axis 61. f x  x  cos x

y

)2 , 2

Domain: 0, 2 ; Range: 1, 1  2

3 3 , 2 2

f x  1  sin x ≥ 0, f is increasing. f x  cos x  0 when x  Points of inflection:



1)

2

 3 , . 2 2

  3 3 , , , 2 2 2 2



)0, 1)

, 2 2 x

2



Intercept: 0, 1 63. x2  4y2  2x  16y  13  0 (a) x 2  2x  1  4y 2  4y  4  13  1  16

y

x  1  4y  2  4 x  12 y  22  1 4 1 The graph is an ellipse: 2

2

4

(1, 3) 3 2 1

Maximum: 1, 3

(1, 1) x −1

Minimum: 1, 1

1

2

3

(b) x2  4y2  2x  16y  13  0 2x  8y

dy dy  2  16  0 dx dx dy 8y  16  2  2x dx dy 2  2x 1x   dx 8y  16 4y  8

The critical numbers are x  1 and y  2. These correspond to the points 1, 1, 1, 3, 2, 1, and 2, 3. Hence, the maximum is 1, 3 and the minimum is 1, 1.

169

170

Chapter 3

Applications of Differentiation

65. Let t  0 at noon.

(100 − 12t, 0) (0, 0)

L  d 2  100  12t2  10t2  10,000  2400t  244t 2

A

(100, 0)

d

300 dL  2400  488t  0 when t   4.92 hr. dt 61

B (0, −10t)

Ship A at 40.98, 0; Ship B at 0, 49.18 d 2  10,000  2400t  244t 2  4098.36 when t  4.92  4:55 P.M.. d  64 km 67. We have points 0, y, x, 0, and 1, 8. Thus,

y

08 8x y8  or y  . m 01 x1 x1

(0, y)

10

(1, 8)

8 6

Let f x  L 2  x 2 

x 8x 1 . 2

4 2



x f x  2x  128 x1 x



(x, 0)

x  1  x 0 x  12

x 2

4

6

8

10

64x 0 x  13

x x  13  64  0 when x  0, 5 minimum. Vertices of triangle: 0, 0, 5, 0, 0, 10 69.

A  Average of basesHeight 

x 2 s

3s2  2sx  x2

2

s

see figure

s

dA 1 s  xs  x   3s2  2sx  x2 dx 4 3s2  2sx  x2



x−s 2

22s  xs  x  0 when x  2s. 43s2  2sx  x2 A is a maximum when x  2s. 71. You can form a right triangle with vertices 0, 0, x, 0 and 0, y. Assume that the hypotenuse of length L passes through 4, 6. 60 6x y6  or y  04 4x x4

Let f x  L2  x2  y2  x 2  f x  2x  72

x 6x 4 . 2

0 x x 4 x 4  4 2

3 x x  43  144  0 when x  0 or x  4   144.

L  14.05 feet

s

x−s 2 x



m

3s 2 + 2sx − x 2 2

Review Exercises for Chapter 3 csc  

73. csc

L1 or L1  6 csc  6

2    9 or L L2

2

 9 csc

see figure

L1 θ

2  

L2

θ 9

L  L1  L2  6 csc   9 csc

171

6

(π2 − θ(

2    6 csc   9 sec 

dL  6 csc  cot   9 sec  tan   0 d tan3  

3 2  2 ⇒ tan   3 3 3

sec   1  tan2   csc   L6

1  23

23



323  223

313

sec  323  223  tan  213

323  22312 323  22312 9  3323  22332 ft  21.07 ft Compare to Exercise 72 using a  9 and b  6. 13 2 313

75. Total cost  Cost per hourNumber of hours T

v 110 11v 550  5   600 v  60 v 2

dT 11 550 11v 2  33,000   2  dv 60 v 60v 2  0 when v  3000  1030  54.8 mph. d 2T 1100  3 > 0 when v  1030 so this value yields a minimum. dv 2 v 77. f x  x3  3x  1 From the graph you can see that f x has three real zeros. f x  3x2  3 f xn 

f xn 

f xn  f xn 

1.5000

0.1250

3.7500

0.0333

1.5333

2

1.5333

0.0049

4.0530

0.0012

1.5321

n

xn

f xn 

f xn 

f xn  f xn 

1

0.5000

0.3750

2.2500

 0.1667

0.3333

2

0.3333

 0.0371

2.6667

0.0139

0.3472

3

0.3472

 0.0003

2.6384

0.0001

0.3473

n

xn

f xn 

f xn 

f xn  f xn 

1

 1.9000

0.1590

7.8300

0.0203

1.8797

2

1.8797

0.0024

7.5998

0.0003

1.8794

n

xn

1

xn 

f xn  f xn 

xn 

xn 

f xn  f xn 

f xn  f xn 

The three real zeros of f x are x  1.532, x  0.347, and x  1.879.

172

Chapter 3

Applications of Differentiation

79. Find the zeros of f x  x4  x  3. fx  4x3  1 From the graph you can see that f x has two real zeros. f changes sign in 2, 1.

n

xn

f xn 

f xn 

f xn  fxn 

1

1.2000

0.2736

7.9120

0.0346

1.1654

2

1.1654

0.0100

7.3312

0.0014

1.1640

xn 

f xn  fxn 

On the interval 2, 1: x  1.164. f changes sign in 1, 2. f xn 

f xn  fxn 

0.5625

12.5000

0.0450

1.4550

1.4550

0.0268

11.3211

0.0024

1.4526

1.4526

 0.0003

11.2602

0.0000

1.4526

n

xn

1

1.5000

2 3

f xn 

xn 

f xn  fxn 

On the interval 1, 2; x  1.453. 81.

y  x1  cos x  x  x cos x dy  1  x sin x  cos x dx dy  1  x sin x  cos x dx

83.

S  4 r 2. dr  r  ± 0.025 dS  8r dr  89± 0.025  ± 1.8 square cm dS 8 r dr 2 dr 100  100  100 S 4 r 2 r 

2± 0.025 100  ± 0.56% 9

4 V  r3 3 dV  4 r 2 dr  492± 0.025  ± 8.1 cubic cm dV 4 r 2 dr 3 dr 100  100  100 V 43r 3 r 

3± 0.025 100  ± 0.83% 9

Problem Solving for Chapter 3 1. Assume y1 < d < y2. Let gx  f x  dx  a. g is continuous on a, b and therefore has a minimum c, gc on a, b. The point c cannot be an endpoint of a, b because ga  fa  d  y1  d < 0 gb  fb  d  y2  d > 0 Hence, a < c < b and gc  0 ⇒ fc  d.

Problem Solving for Chapter 3 3. (a) For a  3, 2, 1, 0, p has a relative maximum at 0, 0. For a  1, 2, 3, p has a relative maximum at 0, 0 and 2 relative minima. (b) px  4ax3  12x  4xax2  3  0 ⇒ x  0, ±

3a

p x  12ax2  12  12ax2  1 For x  0, p 0  12 < 0 ⇒ p has a relative maximum at 0, 0. (c) If a > 0, x  ±

3a are the remaining critical numbers.

3a  12 3a  12  24 > 0 ⇒ p has relative minima for a > 0.

p ±

(d) 0, 0 lies on y  3x2. Let x  ±

3a. Then

px  a

3a

2

6

3 a

2

a=1 a=3 y

 2ax  2x

2x2

8 7 6 5 4 3 2

 a

For a ≥ 0, there is one relative minimum at 0, 0.

(c) For a < 0, there are two relative minima at x  ±

−2

 2a.

(d) There are either 1 or 3 critical points. The above analysis shows that there cannot be exactly two relative extrema. c  x2 x c c c  2x  0 ⇒ 2  2x ⇒ x3  ⇒ x  x2 x 2

cx 3

2c 2 x3

If c  0, f x  x2 has a relative minimum, but no relative maximum.

2c is a relative minimum, because f  2c > 0. c If c < 0, x   is a relative minimum too. 2 If c > 0, x 

3

3

Answer: all c.

a=2

a=0

a = −1 a = −2 a = −3

(b) For a < 0, there is a relative maximum at 0, 1.

f  x 

a = −1 a = −3

 3x2 is satisfied by all the relative extrema of p.

p x  16x2  2a

fx  

1

2

3

3a  a9  18a   a9.

5. px  x 4  ax2  1

7. f x 

a=1 x

−3



(a) px 

a=3

2

9 Thus, y    3 ± a

4x4

y

a=2

3

x −1 −2

2

−8

a = −2 a=0

173

174

Chapter 3

9. Set

Applications of Differentiation

f b  f a  f ab  a  k. b  a2

Define Fx  f x  f a  fax  a  kx  a2. Fa  0, Fb  f b  f a  fab  a  kb  a2  0 F is continuous on a, b and differentiable on a, b. There exists c1, a < c1 < b, satisfying Fc1  0. Fx  fx  fa  2kx  a satisfies the hypothesis of Rolle’s Theorem on a, c1: Fa  0, Fc1  0. There exists c2, a < c2 < c1 satisfying F c2   0. Finally, F x  f x  2k and F c2   0 implies that k

f  c2 . 2

Thus, k 

11. E   E  

f b  f a  f ab  a f  c2 1  ⇒f b  f a  fab  a  f  c2b  a2. b  a2 2 2

tan 1  0.1 tan  10 tan  tan2  0.1  tan 1  10 tan

1  10 tan 10 sec2  2 tan sec2   10 tan  tan2 10 sec2 0 1  10 tan 

⇒ 1  10 tan 10 sec2  2 tan sec2   10 tan  tan2 10 sec2 ⇒ 10 sec2  2 tan sec2  100 tan sec2  20 tan2 sec2  100 tan sec2  10 tan2 sec2 ⇒ 10  2 tan  10 tan2 ⇒ 10 tan2  2 tan  10  0 tan 

2 ± 4  400  0.90499, 1.10499 20

Using the positive value,  0.7356, or 42.14 . 13. v  2400 sin v  2400 cos  0



 3  2n,  2n, n an integer 2 2

Problem Solving for Chapter 3 x y 4   1 or y   x  4. 3 4 3

15. The line has equation Rectangle:





4 4 Area  A  xy  x  x  4   x2  4x. 3 3 8 8 3 Ax   x  4  0 ⇒ x  4 ⇒ x  3 3 2 Dimensions:

3 2 2

Calculus was helpful.

Circle: The distance from the center r, r to the line

r





r r  1 3 4







x y   1  0 must be r: 3 4



12 7r  12 7r  12  5 12 5

1 1  9 16 5r  7r  12 ⇒ r  1 or r  6.





Clearly, r  1. x y   1 and satisfies x  y  r. 3 4

Semicircle: The center lies on the line

7 12 r r  1 ⇒ r  1 ⇒ r  . No calculus necessary. 3 4 12 7

Thus

17. y  1  x21 y 

2x 1  x22

y 

3 23x2  1 1 0 ⇒ x± ± 3 x2  13 3

y′′:

+++ −−−− −−−− +++ −

3 3

0

3 3



The tangent line has greatest slope at 

19. (a)

x sin x

3 3

3

,

4

and least slope at 33, 34 . 

0.1

0.2

0.3

0.4

0.5

1.0

0.09983

0.19867

0.29552

0.38942

0.47943

0.84147

sin x ≤ x (b) Let f x  sin x. Then fx  cos x and on 0, x you have by the Mean Value Theorem, fc  cosc  Hence,

f x  f 0 , 0 < c < x x0 sin x x



sin x  cosc ≤ 1 x









⇒ sin x ≤ x ⇒ sin x ≤ x

175

Review Exercises for Chapter 3 50. Let f x  tan x, x  0, dx  0.05, fx  sec2 x.

52. Propagated error  f x   x  f x,

Then

relative error 

f 0.05  f 0  f0dx



437



dy dy , and the percent error   100. y y

tan 0.05  tan 0  sec2 00.05  0  10.05.

54. True,

y dy  a x dx

56. False Let f x  x, x  1, and x  dx  3. Then y  f x  x  f x  f 4  f 1  1 and dy  fx dx 

1 3 3  . 21 2

Thus, dy > y in this example.

Review Exercises for Chapter 3 2. (a) f 4  f 4  3 (c)

(b) f 3  f 3   4  4

y

(d) Yes. Since f 2  f 2   1  1 and f 1  f 1  2, the Mean Value says that there exists at least one value c in 2, 1 such that

6 4

x −6 −4 −2

4

fc 

6

−4

(e) No, lim f x exists because f is continuous at 0, 0.

−6

x →0

At least six critical numbers on 6, 6. 4. f x 

f 1  f 2 2  1   1. 1  2 12

x x2  1

, 0, 2



(f) Yes, f is differentiable at x  2.

6. No. f is not differentiable at x  2.



1 fx  x  x2  1322x  x2  112 2 1 x2  132 No critical numbers Left endpoint: 0, 0 Minimum Right endpoint:  2, 25  Maximum 

8. No; the function is discontinuous at x  0 which is in the interval 2, 1 .

10.

1 f x  , 1 ≤ x ≤ 4 x fx  

1 x2

f b  f a 14  1 34 1    ba 41 3 4 fc 

1 1  c2 4

c2

12.

f x  x  2x, 0 ≤ x ≤ 4 fx 

1 2x

2

f b  f a 6  0 3   ba 40 2 fc 

1 3 2 2 2c

c1

438

Chapter 3

Applications of Differentiation

f x  2x2  3x  1

14.

fx  4x  3 f b  f a 21  1  5 ba 40 fc  4c  3  5 c  2  Midpoint of 0, 4 16. gx  x  13

Critical number: x  1

18. f x  sin x  cos x, 0 ≤ x ≤ 2

Critical numbers: x 

gx 

5 ,x 4 4



1 < x <

Sign of gx

gx > 0

gx > 0

Conclusion

Increasing

Increasing

0 < x <

Interval

fx  cos x  sin x

20. gx 

  < x < 1

Interval

gx  3x  12

4

5 < x < 4 4

5 < x < 2 4

Sign of fx

fx > 0

fx < 0

fx > 0

Conclusion

Increasing

Decreasing

Increasing

3 x sin  1 , 0, 4 2 2

Test Interval

3 x 1 cos 2 2 2

Sign of gx

gx > 0

gx < 0

gx > 0

Conclusion

Increasing

Decreasing

Increasing





 0 when x  1 

2 2 ,3

Relative maximum:

1  2 , 32

Relative minimum:

3  2 ,  23

22. (a) y  A sinkm t  B coskm t

A sinkm t A  ⇒ tankm t  . B coskm t B

Therefore, sin km t  cos km t 

A A2  B2

B A2  B2

.

When v  y  0, yA

A A B  B A B B  A

2

2

2

2

2

(b) Period:

y  Akm coskm t  Bkm sinkm t  0 when

0 < x < 1

2

 B2.

1

2 2 < x < 3

3

2 km

Frequency:

1 1 km  2 km 2

2 < x < 4

Review Exercises for Chapter 3 24. f x  x  22x  4  x3  12x  16 fx  3x2  12 f x  6x  0 when x  0.

439

Test Interval

 < x < 0

Sign of f x

f x < 0

f x > 0

Concave downward

Concave upward

Conclusion

0 < x <



Point of inflection: 0, 16 26.

ht  t  4t  1 Domain: 1,  ht  1 

2 t  1

y

28. 7

0 ⇒ t3

6 5 4

1 h t  t  132 h 3 

30.

C

1 > 0 8

3, 5 is a relative minimum.

Qx s  2x r

r Qs dC  2  0 dx x 2

3 2 1 x

−1

1

2

3

4

5

6

7

32. (a) S  0.1222t3  1.3655t2  0.9052t  4.8429 (b)

r Qs  x2 2

25

1

14 0

2Qs x2  r x

34. lim

x →



2Qs r

2x 2x  lim 0 3x2  5 x → 3  5x2

38. gx 

5x2 2

x2

lim

x →

5x2 5  lim 5  2 x → 1  2x2

x2

(c) St  0 when t  3.7. This is a maximum by the First Derivative Test. (d) No, because the t3 coefficient term is negative.

36. lim

3x

x →

x2  4

40. f x 

 lim

x →

3 1  4x2

3

3x x2  2

lim

x →

3x x2  2

Horizontal asymptote: y  5

 lim

x →

 lim

x →

lim

x →

3x x2  2

3xx x2  2x2

3 1  2x2

 lim

x →

 lim

x →

3

3xx



x2  2  x2



3  3  1  2x2

Horizontal asymptotes: y  ± 3

440

Chapter 3

Applications of Differentiation



 



2  4 cos x  cos 2x 3

44. gx 

42. f x  x3  3x2  2x  xx  1x  2 Relative minima: (0, 0, 1, 0, 2, 0

Relative minima: 2 k, 0.29 where k is any integer.

Relative maxima: 1.577, 0.38, 0.423, 0.38

Relative maxima: 2k  1 , 8.29 where k is any integer.

3

10

−2

4 − 5 2

−1

46. f x  4x3  x4  x34  x

y 30

Domain:  , ; Range:  , 27

25 20

fx  12x  4x  4x 3  x  0 when x  0, 3. 2

3

5 2

0

2

15 10

f x  24x  12x 2  12x2  x  0 when x  0, 2.

5 x

f 3 < 0

−2

1

2

3

5

Therefore, 3, 27 is a relative maximum. Points of inflection: 0, 0, 2, 16 Intercepts: 0, 0, 4, 0 48. f x  x2  42

y

Domain:  , ; Range: 0, 

24 20

fx  4xx2  4  0 when x  0, ± 2. 23 f x  43x2  4  0 when x  ± . 3 f 0 < 0

(0, 16) (−2, 0)

(2, 0) 8 4 x

−3 −2 −1

Therefore, 0, 16 is a relative maximum.

1

2

3

f ± 2 > 0 Therefore, ± 2, 0 are relative minima. Points of inflection:  ± 233, 649 Intercepts: 2, 0, 0, 16, 2, 0 Symmetry with respect to y-axis 50. f x  x  3x  23 Domain:  , ; Range:

y



 16,875 256 ,



−4

fx  x  33x  22  x  23  4x  7x  22  0 when x  2,

f  74  > 0 Therefore,  74 ,  16,875 256  is a relative minimum. Points of inflection: 2, 0,  12 ,  625 16  Intercepts: 2, 0, 0, 24, 3, 0

−2

2

x

4

− 20

(0,−24)

7 4.

f x  4x  72x  2  x  224  62x  1x  2  0 when x  2,

(3, 0)

(−2, 0)

− 40 − 60

1 2.

( 74 , − 16.875 256 )

Review Exercises for Chapter 3 52. f x  x  213x  123

y

Graph of Exercise 39 translated 2 units to the right x replaces by x  2.

3 2

1, 0 is a relative maximum.

 1, 

1

(−1, 0)

4  is a relative minimum.

3 

1

2, 0 is a point of inflection.

−2

2x 1  x2

(1, 41/3)

y 3

Domain:  , ; Range: 1, 1

2

(1, 1)

21  x1  x  0 when x  ± 1. fx  1  x22 f x 

x 3

−3

Intercepts: 1, 0, 2, 0 54. f x 

(2, 0)

−3 −2

1 x −1

1

2

3

(−1, −1)

2x3  x2  0 when x  0, ± 3. 1  x23

−2 −3

f 1 < 0 Therefore, 1, 1 is a relative maximum. f 1 > 0 Therefore, 1, 1 is a relative minimum. Points of inflection: 3, 32, 0, 0, 3, 32 Intercept: 0, 0 Symmetric with respect to the origin Horizontal asymptote: y  0 56. f x 

x2 1  x4

 2

Domain:  , ; Range: 0,

1

fx 

1  x42x  x24x3 2x1  x1  x1  x2   0 when x  0, ± 1. 1  x42 1  x42

f x 

1  x422  10x4  2x  2x521  x44x3 21  12x4  3x8  0 when x  ±  1  x44 1  x43

6 ± 3

33

4

f ± 1 < 0



Therefore, ± 1,

1 are relative maxima. 2

y 1

f 0 > 0 Therefore, 0, 0 is a relative minimum. Points of inflection:

 ±

4



6  33 , 0.29 , ± 3

Intercept: 0, 0 Symmetric to the y-axis Horizontal asymptote: y  0

3 4 1 2

(−1, ) 1 2

4

6  33 , 0.40 3

(1, 21) (0, 0) x

−3 −2 −1 − 21

1

2

3

.

441

442

Chapter 3

58. f x  x2 

Applications of Differentiation

1 x3  1  x x



Domain:  , 0, 0, ; Range:  , 



2x  4, 60. f x  x  1  x  3  2, 2x  4,

1 2x3  1 1 fx  2x  2   0 when x  3 . x x2 2 2 2x3  1  0 when x  1. f x  2  3  x x3

 



Domain:  ,  Range: 2, 

Intercept: 0, 4 y 4

>0

1 f 3 2

(0, 4)

3 2



1 3 Therefore, 3 , 3 is a relative minimum. 2 4

1

Point of inflection: 1, 0

x 1

2

3

4

Intercept: 1, 0 Vertical asymptote: x  0 y 3 2 1

(−1, 0) −3 −2

62. f x 

( 12 , 34 ) 3

3

x 1

2

3

1 2 sin x  sin 2 x

Domain: 1, 1 ; Range:

y 1

32 3, 32 3 



fx  2cos x  cos 2 x  22 cos x  1cos x  1  0

1 2

x − 12

− 12

1 2

−1

2 Critical Numbers: x  ± , 0 3

f x  2 sin x  2 sin 2 x  2 sin x1  4 cos x  0 when x  0, ± 1, ± 0.420. By the First Derivative Test:

 32, 32 3 is a relative minimum. 23, 32 3 is a relative maximum. 



Points of inflection: 0.420, 0.462, 0.420, 0.462, ± 1, 0, 0, 0 Intercepts: (1, 0, 0, 0, 1, 0 Symmetric with respect to the origin 64. f x  xn, n is a positive integer. (a) fx  nxn1 The function has a relative minimum at 0, 0 when n is even. (b) f x  nn  1xn2 The function has a point of inflection at 0, 0 when n is odd and n ≥ 3.

x ≤ 1 1 < x ≤ 3 x > 3

Review Exercises for Chapter 3 x2 y2 1   1, y  144  x2 144 16 3

66. Ellipse:



A  2x

y 12

2 4 144  x2  x144  x2 3 3





144 − x 2

−12

(

12 −8 −12

4 144  2x2  0 when x  72  62. 3 144  x2



1 3

x

x2 dA 4   144  x2 dx 3 144  x2



( x,

8



2 The dimensions of the rectangle are 2x  122 by y  144  72  42. 3 68. We have points 0, y, x, 0, and 4, 5. Thus, m

50 5x y5  or y  . 04 4x x4

Let f x  L 2  x 2 

x 5x 4

L (4, 5)

2

5 (x, 0)



x fx  2x  50 x4 x

(0, y)



x4x 0 x  42



4

100x 0 x  43

3 100 . x x  43  100  0 when x  0 or x  4  

L

x

2



3 100  4  25x2 x x  42  25  10023  25  12.7 feet  2 3 100 x  4 x4 

70. Label triangle with vertices 0, 0, a, 0, and b, c. The equations of the sides of the triangle are y  cbx and y  cb  a x  a. Let x, 0 be a vertex of the inscribed rectangle. The coordinates of the upper left vertex are x, cbx. The y-coordinate of the upper right vertex of the rectangle is cbx. Solving for the x-coordinate x of the rectangle’s upper right vertex, you get c c x x  a b ba

y= cx b

b  ax  bx  a

(

ba ab x xaa x. b b

(0, 0)

Finally, the lower right vertex is

a  a b b x, 0 . Width of rectangle: a  Height of rectangle:

ab xx b

c x see figure b



A  WidthHeight  a 



A

ab xx b

bc x  a  ba x bc x

b x  0 when x  .  ba  acb  2ac b 2

a c dA c  a x  x dx b b b

x, c x b

2

b2  a  ba b2 bc b2  a2 2c  41 ac  21 12 ac  21 Area of triangle

(

(x, 0)

(b, c) c ( x − a) b−a

y=

(a − a b− b x, bc x( (a, 0)

(a − a b− b x, 0(

443

444

Chapter 3

Applications of Differentiation

72. You can form a right triangle with vertices 0, y, 0, 0, and x, 0. Choosing a point a, b on the hypotenuse (assuming the triangle is in the first quadrant), the slope is m

b0 bx yb  . ⇒y 0a ax ax

Let f x  L2  x2  y2  x2 

. abx  x 2

fx  2x  2

ab abx  x  a  x 2

2x a  x3  ab2 3 ab2.  0 when x  0, a   a  x3 3 Choosing the nonzero value, we have y  b   a 2b. 3 ab2 2  b   L   a     3 a2b 2

 a2  3a43b23  3a23b43  b212  a23  b2332 meters 74. Using Exercise 73 as a guide we have L1  a csc and L2  b sec . Then dLd  a csc cot  b sec tan  0 when 3 ab, sec  tan  

a23  b23

b13

, csc 

L  L1  L2  a csc  b sec  a

a23  b23

a13

and

a23  b2312 a23  b2312 b  a23  b2332. a13 b13

This matches the result of Exercise 72. 76. Total cost  Cost per hourNumber of hours T

11v 825 v 110  7.50   500 v 50 v 2

dT 11 825 11v 2  41,250   2  dv 50 v 50v 2  0 when v  3750  256  61.2 mph. d 2T 1650  3 > 0 when v  256 so this value yields a minimum. dv 2 v 78. f x  x3  2x  1 From the graph, you can see that f x has one real zero. fx  3x2  2 f changes sign in 1, 0 . n

xn

f xn 

f xn 

f xn  fxn 

1

0.5000

0.1250

2.7500

0.0455

0.4545

2

0.4545

0.0029

2.6197

0.0011

0.4534

On the interval 1, 0 : x  0.453.

xn 

f xn  fxn 

Problem Solving for Chapter 3 80. Find the zeros of f x  sin x  x  1. fx   cos x  1 From the graph you can see that f x has three real zeros.

n

xn

f xn 

f xn 

f xn  fxn 

1

0.2000

0.2122

3.5416

0.0599

0.2599

2

0.2599

0.0113

3.1513

0.0036

0.2635

3

0.2635

0.0000

3.1253

0.0000

0.2635

n

xn

f xn 

f xn 

f xn  fxn 

1

1.0000

0.0000

2.1416

0.0000

n

xn

f xn 

f xn 

f xn  fxn 

1

1.8000

0.2122

3.5416

0.0599

1.7401

2

1.7401

0.0113

3.1513

0.0036

1.7365

3

1.7365

0.0000

3.1253

0.0000

1.7365

xn 

xn 

f xn  fxn 

f xn  fxn 

1.0000

xn 

f xn  fxn 

The three real zeros of f x are x  0.264, x  1, and x  1.737.

82.

y  36  x2

84.

x dy 1  36  x2122x  dx 2 36  x2 dy 

p  75 

1 x 4

p  p8  p7



 75 

x dx 36  x2





8 7 1  75   4 4 4

1 1 1 dp   dx   1   4 4 4

p  dp because p is linear

Problem Solving for Chapter 3 2. (a)

dV  3x2dx  3x2 x V  x  x3  x3  3x2x  3xx2  x3



V  dV  3xx2  x3  3xx  x2x

  x, where  → 0 as x → 0. (b) Let  

y  fx. Then  → 0 as x → 0. x

Furthermore, y  dy  y  fxdx  x.

445

446

Chapter 3

Applications of Differentiation

4. Let hx  gx  f x, which is continuous on a, b and differentiable on a, b. ha  0 and hb  gb  f b.

y

By the Mean Value Theorem, there exists c in a, b such that

g

f

hb  ha gb  f b hc   . ba ba

x a

b

Since hc  gc  fc > 0 and b  a > 0, gb  f b > 0 ⇒ gb > f b. 6. (a) f  2ax  b, f  2a 0. No points of inflection. (b) f  3ax2  2bx  c, f  6ax  2b  0 ⇒ x 

b . One point of inflection. 3a

(c) y  kyL  y  kLy  ky2 y  kLy  2kyy  kyL  2y L If y  , then y  0 and this is a point of inflection because of the analysis below. 2 y′′:

++++++

−−−−−−

L y= 2

8.

d 5 13

θ 12

x d  132  x2, sin  . d Let A be the amount of illumination at one of the corners, as indicated in the figure. Then A

kI kIx sin  132  x2 132  x232

Ax  kI

x2  169321  x

32 x

2

 169122x

169  x23

⇒ x2  16932  3x2x2  16912 x2  169  3x2 2x2  169 x

13 2

 9.19 feet

By the First Derivative Test, this is a maximum.

0

Problem Solving for Chapter 3 10. Let T be the intersection of PQ and RS. Let MN be the perpendicular to SQ and PR passing through T. Let TM  x and TN  b  x. SN MR bx  MR ⇒ SN  bx x x NQ PM bx  PM ⇒ NQ  bx x x SQ 

bx bx d MR  PM  x x

1 1 bx 1 b  x2 1 2x2  2bx  b2 Ax  Area  dx  d b  x  d x   d 2 2 x 2 x 2 x







1 x4x  2b  2x2  2bx  b2 Ax  d 2 x2





Ax  0 ⇒ 4x2  2xb  2x2  2bx  b2 2x2  b2 x

b 2

bx b  b2 d d  2  1d. x b2

Hence, we have SQ 

Using the Second Derivative Test, this is a minimum. There is no maximum. S

Q

N b−x

b

T x P

d

M

R

12. (a) Let M > 0 be given. Take N  M. Then whenever x > N  M, you have f x  x2 > M. (b) Let  > 0 be given. Let M 

1. Then whenever x > M  1,

you have x2 >

 

1 1 1 ⇒ 2 <  ⇒ 2  0 < .  x x





(c) Let  > 0 be given. There exists N > 0 such that f x  L <  whenever x > N. 1 1 Let  Let x  . N. y If 0 < y < 

 f x  L 

1 1 1 , then < ⇒ x > N and N x N

  f

1  L < . y

447

448

Chapter 3

Applications of Differentiation

14. Distance  42  x2  4  x2  42  f x fx 

x 42  x2



4x 4  x2  42

0

x4  x2  42  x  442  x2 x2 16  8x  x2  16  x2  8x  1616  x2 32x2  8x3  x 4  x 4  8x3  32x2  128x  256 128x  256 x2 The bug should head towards the midpoint of the opposite side. Without Calculus: Imagine opening up the cube: P x

Q

The shortest distance is the line PQ, passing through the midpoint.

v 16. (a) s 





km m 1000 5 hr km  v sec 18 3600 hr





v

20

40

60

80

100

s

5.56

11.11

16.67

22.22

27.78

d

5.1

13.7

27.2

44.2

66.4

dt  0.071s2  0.389s  0.727 (c)

(b) The distance between the back of the first vehicle and the front of the second vehicle is dt, the safe stopping distance. The first vehicle passes the given point in 5.5s seconds, and the second vehicle takes dss more seconds. Hence, T (d)

ds 5.5 .  s s

T s  0.071s  0.389 

6.227 s

10

Ts  0.071 

6.227 6.227 ⇒ s2  s2 0.071 ⇒ s  9.365 msec

0

30

T 9.365  1.719 seconds

0

9.365 msec

1 5.5 T  0.071s2  0.389s  0.727  s s The minimum is attained when s  9.365 msec. 18. (a)

x

0

0.5

1

2

1  x

1

1.2247

1.4142

1.7321

1 x1 2

1

1.25

1.5

2

(e) d9.365  10.597 m

(b) Let f x  1  x. Using the Mean Value Theorem on the interval 0, x, there exists c, 0 < c < x, satisfying fc 

1 f x  f 0 1  x  1   . 21  c x0 x

Thus 1  x 

3600  3.37 kmhr 1000

x x  1 <  1 because 1  c > 1. 21  c 2

Review Exercises for Chapter 4

Review Exercises for Chapter 4 2.

y

4.

u  3x du  3 dx



f′

2

3  3x

x

dx 



2 3x133 dx  3x23  C 3

f

6.



x3  2x2  1 dx  x2



x  2  x2 dx

8.



5 cos x  2 sec2 x dx  5 sin x  2 tan x  C

1 1  x2  2x   C 2 x 12. 45 mph  66 ftsec

10. f  x  6x  1 fx 



6x  1 dx  3x  12  C1

Since the slope of the tangent line at 2, 1 is 3, it follows that f2  3  C1  3 when C1  0. fx  3x  12 f x 



3x  12 dx  x  13  C2

f 2  1  C2  1 when C2  0.

30 mph  44 ftsec at  a vt  at  66 since v0  66 ftsec. a st   t 2  66t since s0  0. 2 Solving the system vt  at  66  44 a s(t   t2  66t  264 2

f x  x  13

we obtain t  245 and a  5512. We now solve  5512t  66  0 and get t  725. Thus, s

72 725   5512 2 5

2

 66

725 475.2 ft.

Stopping distance from 30 mph to rest is 475.2  264  211.2 ft. 14. at  9.8 msec2 vt  9.8t  v0  9.8t  40 st  4.9t2  40t s0  0 (a) vt  9.8t  40  0 when t 

40 4.08 sec. 9.8

(b) s4.08 81.63 m (c) vt  9.8t  40  20 when t  (d) s2.04 61.2 m

20 2.04 sec. 9.8

483

484

Chapter 4

Integration

16. x1  2, x2  1, x3  5, x4  3, x5  7 (a)

1 16 1 5 x  2  1  5  3  7  5 i1 i 5 5

(b)

x  2  1  5  3  7  210



5

1

i1

1

1

5

(c)

1

1

37

i

2x  x

  22  22  21  12  25  52  23  32  27  72  56

2 i

i

i1 5

(d)

x  x i

  1  2  5  1  3  5  7  3  5

i1

i2

1 18. y  9  x2, x  1, n  4 4

9  41 4  9  41 9  9  41 16  9  41 25

S4  1

22.5

9  419  9  41 16  9  41 25  9  9

s4  1

14.5 20. y  x2  3, x  Area  lim

12



f ci x

8 6

  

 lim

y

right endpoints 10

n

n→  i1

n→

2 n

n

2i n

i1

2

 

3



2 n

4 2 x 1



2 n 4i2  lim 3 n→  n i1 n2  lim

2 4 nn  12n  1  3n n n2 6

 lim

43 n  1n2n  1  6  38  6  263

n→ 

n→ 



2

1 2 22. y  x3, x  4 n Area  lim

y 20

n

f ci x

15

n→  i1

 n

1 2i  lim 2 n→  i1 4 n

10

  3

2 n

5 x



1 n 24i 24i2 8i3  lim 8  2  3 n→  2n i1 n n n





4 n 3i 3i2 i3 1  2  3 n i1 n n n

 lim

4 3 nn  1 3 nn  12n  1 1 n2n  12 n  2  3 n n 2 n 6 n 4

n→ 

 4  6  4  1  15

1



 lim

n→ 

2



2

3

4

Review Exercises for Chapter 4

24. (a) S  m

b4b4  m2b4 b4  m3b4 b4  m4b4 b4  mb16 1  2  3  4  5mb8 2

s  m0 (b) Sn 

y

y = mx

b4  mb4b4  m2b4 b4  m3b4 b4  mb16 1  2  3  3mb8 2

f  n n   n n  mn i  n

bi

n

b

i1

sn 

2

mbi

b

b

i1

n1 b bi  m n n i0

bi f n

2 n

i1

     

n1 i0

mb2 nn  1 mb2n  1  2 n 2 2n





x=b

mb2 n  1n mb2n  1 i 2  n 2 2n i0



b b m n n

2



2 n1



mb2n  1 mb2n  1 1 2 1 1  lim  mb  bmb  baseheight n→  n→  2n 2n 2 2 2

(c) Area  lim



b

(d)

mx dx 

0

n

26.



lim

→  i1

12mx 

b

2

0

1  mb2 2



3

3ci9  ci 2 xi 

3x9  x2 dx

28.

y

1

6 5 3 2 1 x − 4 −3 −2 −1

1

2

3

4

−2



4

4

   

6

30. (a)



0

3

(b)



3

f x dx 

0

16  x2 dx 

1 42  8 2

6

f x dx 

f x dx  4  1  3

3



6

f x dx  

6

f x dx   1  1

3

4

(c)

f x dx  0

4



6

(d)

6

10 f x dx  10

3

12 12x2 dx  x3 2



x4  2x2  5 dx 

1

  6 x  3

3

2

1

2

36.

2

 2

38.

1





1 1  dx  x2 x3

4

40.

1

5  x5



34.

1

1 1 x2  x3 dx    2 x 2x 1

4

 4

t3

 1  1  2

   2  8  1  2  8 2 1

1

1

1

1 1

2

52 15



3  2t

2

 2

t2  2 dt 



2x3  5x 3

325  163  10   325  163  10





1

16 6  6  , (d) 9 3



sec2 t dt  tan t

 4

f x dx  101  10

3



3

32.

485

1



14 3

(semicircle)

x

486

Chapter 4



Integration

2

42.

x  4 dx 

0

2

x2  4x 2

0



2

 10

44.

1

x2  x  2 dx  



6



5 4 y

2 1

3 x

−2 −1

2

1

3

4

2

5

x

−2

1

3

−1 −2





3

1

x1  x dx  x12  x32 dx

48. Area 

0

sec2 x dx

0



23x



2 2 4   3 5 15

32

3





2  x52 5

1

 tan x

0

0

 3

y 5 4

y

3 1

2

π 6

x 1

50.

1 20



2

x3 dx 

0

8 x4

2 0

y

2

8

2

6

3 2 x 

4

x3

2

( 3 2 , 2) x 1

52. Fx 

1 x2





56.

x

2 1

 

8 1 1  2   24  3 3 2

y 7

46.



x3 x2   2x 3 2

1 x

2

2

54. Fx  csc2 x

dx  



x2  2  x2 dx

x3 1  2x   C 3 x

π 3

x

10 7 9   3 6 2



Review Exercises for Chapter 4 58. u  x3  3, du  3x2 dx



x2x3  3 dx 



1 2 x3  312 3x2 dx  x3  332  C 3 9

60. u  x2  6x  5, du  2x  6 dx





x3 1 2x  6 1 2 1  dx  x  6x  51  C  C x2  6x  52 2 x2  6x  52 2 2x2  6x  5

62.



64.



66.



68.



70.



x sin 3x2 dx 

cos x sin x

dx 



1 1 sin 3x26x dx   cos 3x2  C 6 6



sin x12 cos x dx  2sin x12  C  2sin x  C



1 cot4 csc2 d   cot 4csc2  d   cot 5  C 5

1

x2x3  13 dx 

0



6

72.



1 1 sec 2x tan 2x2 dx  sec 2x  C 2 2

sec 2x tan 2x dx 

3



x3  133x2 dx 



x2  8122x dx 

1 3

x 1 dx  6 3x2  8

1



1 x3  14 12

0

6

3

13x

1 0

 812

2



1 5 16  1  12 4





6 3

1  27  1 3

74. u  x  1, x  u  1, dx  du When x  1, u  0. When x  0, u  1.



0

2

1

 

1

x2x  1 dx  2

u  12u du

0 1

 2

u52  2u32  u12 du  2

0



4

76.

27u

72



4 2  u52  u32 5 3

1 0



32 105

sin 2x dx  0 since sin 2x is an odd function.

 4

78. u  1  x, x  1  u, dx  du When x  a, u  1  a. When x  b, u  1  b.



b

Pa, b 

a

 

1155 3 1155 x 1  x32 dx  32 32

1155 32





1b

 1  u3 u32 du

1a

1b

u92  3u72  3u52  u32 du 

1a



1155 2u52 105u3  385u2  495u  231 32 1155

(a) P0, 0.25 

16 105u

 385u2  495u  231

(b) P0.5, 1 

16 105u

 385u2  495u  231

u52

u52

3

3

1155 2 11 2 2 92 6 72 2 52 u  u  u  u 32 11 3 7 5

1b 1a



16 105u u52



0.025  2.5%



0.736  73.6%

0.75 1

0 0.5

3



1b 1a



 385u2  495u  231

1b 1a

487

488

Chapter 4



2

80.

1.75 sin

0

Integration

t 2 t dt   1.75 cos 2  2





2

2 7   1.751  1   2.2282 liters  

Increase is 7 5.1 1.9    0.6048 liters.   

 

1

82. Trapezoidal Rule n  4:

0

1

Simpson’s Rule n  4:

0

x32 1 21432 21232 23432 1 0   0.172 2 dx  2  2  3x 8 3  14 3  12 3  342 2





x32 1 41432 21232 43432 1 0   0.166 2 dx  2  2  3x 12 3  14 3  12 3  342 2





Graphing utility: 0.166

84. Trapezoidal Rule n  4:





1  sin2 x dx  3.820

0

Simpson’s Rule n  4: 3.820 Graphing utility: 3.820

Problem Solving for Chapter 4



x

2. (a) Fx 

sin t2 dt

2

x Fx (b) Gx  x Gx

0

1.0

1.5

1.9

2.0

2.1

2.5

3.0

4.0

5.0

0.8048

0.4945

0.0265

0.0611

0

0.0867

0.3743

0.0312

0.0576

0.2769

1 x2



x

sin t2 dt

2

1.9

1.95

1.99

2.01

2.05

2.1

0.6106

0.6873

0.7436

0.7697

0.8174

0.8671

lim Gx  0.75

x→2

(c) F2  lim

x→2

Fx  F2 x2

1 x→2 x  2

 lim



x

sin t2 dt

2

 lim Gx x→2

Since Fx  sin x2, F2  sin 4  lim Gx. x→2

Note: sin 4  0.7568

Problem Solving for Chapter 4 4. Let d be the distance traversed and a be the uniform acceleration. We can assume that v0  0 and s0  0. Then at  a vt  at 1 s t  at2. 2 st  d when t 

2da. 2da 

2ad.

1  2ad  0  2

ad2 .

The highest speed is v  a The lowest speed is v  0. The mean speed is

The time necessary to traverse the distance d at the mean speed is t

d ad2



2da

which is the same as the time calculated above. 6. (a)

y 100 80 60 40 20 x 0.2

0.4

0.6

0.8

1.0

(b) v is increasing (positive acceleration) on 0, 0.4 and 0.7, 1.0. (c) Average acceleration 

v0.4  v0 60  0   150 mihr2 0.4  0 0.4

(d) This integral is the total distance traveled in miles.



1

vt dt 

0

1 385  38.5 miles

0  220  260  240  240  65  10 10

(e) One approximation is a0.8 

v0.9  v0.8 50  40   100 mihr2 0.9  0.8 0.1

(other answers possible)

489

490

Chapter 4



Integration

x

8.



x

f tx  t dt 

0

d dx

Thus,

0







x

x f t dt 

x

t f t dt  x

0



x

0

x

f tx  t dt  x f x 

0

 

x

f t dt 

t f t dt

0

x

f t dt  x f x 

0

f t dt

0

Differentiating the other integral, d dx

  x



x

0

x

f v dv dt 

0

f v dv.

0

Thus, the two original integrals have equal derivatives,



x

  x

f tx  t dt 

0

t

0

f v dv dt  C

0

Letting x  0, we see that C  0.



1

10. Consider



2 3

1

x dx  x32

0

0

2  . The corresponding 3

Riemann Sum using right-hand endpoints is Sn   Thus, lim

1 n

 1  n

2 . . .   n

1

1  2  . . .  n n32

1  2  . . .  n

n32

n→ 





3

12. (a) Area 

nn 

2  . 3

3

3

9  x2 dx  2

9  x2 dx

y

0



 2 9x 

x3 3

10



3

8 7 6 5 4 3 2 1

0

 2 27  9  36 (b) Base  6, height  9. Area 

2 2 bh  69  36. 3 3

−4

x

−2 −1

1 2

4 5

(c) Let the parabola be given by y  b2  a2x2, a, b > 0.



ba

Area  2

b2  a2x2 dx

0



2

b2x

y



a2

x3 3



ba b2

0

 a  a3 a 

 2 b2

2

b

b

3

 a  3 a   34 a

2 Base 

b3

1 b3

b3 −

2b , height  b2 a

Archimedes’ Formula: Area 



2 2b 2 4 b3 b   3 a 3 a

b a

b a

x

Problem Solving for Chapter 4 14. (a) 1  i3  1  3i  3i2  i3 ⇒ 1  i3  i3  3i2  3i  1 3i2  3i  1  i  13  i3

(b) n

 3i

 3i  1 

2

i1

n

 i  1

 i3

3

i1

 23  13  33  23  . . .  n  13  n3  n  13  1 n

Hence, n  13 

 3i

2

 3i  1  1

i1

(c) n  13  1 

n

 3i

2

 3i  1 

i1 n

 3i



2

n

i

2

2



i1

3nn  1 n 2

3nn  1 n 2

 n3  3n2  3n 

i1



n

 3i



2n3  6n2  6n  3n2  3n  2n 2



2n3  3n2  n 2



nn  12n  1 2



nn  12n  1 6

i1

  20

16. (a) C  0.1

12 sin

8

18

(b) C  0.1

12 sin

10

t  8 14.4 t  8 dt   cos 12  12











0

  

0

b b



0 b



0

Then,



f x dx. f x  f b  x

f b  u du f b  u  f u f b  u du f b  u  f u f b  x dx f b  x  f x

 

b

2A 

0

f x dx  f x  f b  x



b

0

f b  x dx f b  x  f x

b



1 dx  b.

0

b Thus, A  . 2



1

(b) b  1 ⇒

0



14.4 1  1  $9.17  18 10

 3 14.4 3  10.8    6  $3.14  14.4  2  2

Let u  b  x, du  dx. A

8



Savings  9.17  3.14  $6.03. b



t  8 14.4 t  8  6 dt   cos  0.6t 12  12 

18. (a) Let A 

20

sin x 1 dx  sin1  x  sin x 2



491

C H A P T E R Integration

4

Section 4.1

Antiderivatives and Indefinite Integration . . . . . . . . . 177

Section 4.2

Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Section 4.3

Riemann Sums and Definite Integrals . . . . . . . . . . . 188

Section 4.4

The Fundamental Theorem of Calculus . . . . . . . . . . 192

Section 4.5

Integration by Substitution . . . . . . . . . . . . . . . . . 197

Section 4.6

Numerical Integration

Review Exercises

. . . . . . . . . . . . . . . . . . . 204

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C H A P T E R Integration Section 4.1

4

Antiderivatives and Indefinite Integration

Solutions to Odd-Numbered Exercises

1.

d 3 d 9  C  3x3  C  9x4  4 dx x3 dx x

3.

d 1 3 x  4x  C  x2  4  x  2x  2 dx 3

5.

dy  3t2 dt

7.

dy  x3 2 dx







y  t3  C Check:

x x

13.



1 dx 2x3

15.



11.

Integrate

Simplify

x 4 3

3 4 3 x C 4

4 3

x1 2 C 1 2





1 x2 C 2 2



 

x2  3x  C 2



x



17.

21.







x2 3 dx 



3 x5 3  C  x5 3  C 5 3 5

d 3 5 3 3 x2 x  C  x2 3  dx 5



C



2x  3x 2dx  x 2  x3  C

Check:

d 1 4 x  2x  C  x3  2 dx 4

3 x2 dx 



d 2 5 2 x  C  x3 2 dx 5

1 C 4x2



1 x3  2 dx  x 4  2x  C 4

Check:

2

d x2  3x  C  x  3 dx 2



C

x3 2 dx

1 3 x dx 2

x  3dx 

Check:

23.

x1 3 dx

dx

Check:

19.



3 x dx

1

Check:

Rewrite



9.

2 y  x5 2  C 5

d 3 t  C  3t2 dt

Given





2 x3 2  2x  1 dx  x5 2  x2  x  C 5

Check:

25.

d 2 x  x3  C  2x  3x 2 dx





1 dx  x3

Check:



d 2 5 2 x  x2  x  C  x3 2  2x  1 dx 5



x3 dx 



x2 1 C 2C 2 2x



d 1 1  C  3 dx 2x2 x

177

178

27.

Chapter 4



x2  x  1 dx  x

Check:

29.

Integration



2 2 2 x3 2  x1 2  x1 2 dx  x5 2  x3 2  2x1 2  C  x1 23x2  5x  15  C 5 3 15

d 2 5 2 2 3 2 x2  x  1 x  x  2x1 2  C  x3 2  x1 2  x1 2  dx 5 3 x







x  13x  2 dx 



3x2  x  2 dx

31.

1  x3  x2  2x  C 2 Check:





y2 y dy 



2 y5 2 dy  y7 2  C 7





d 2 7 2 y  C  y5 2  y2 y dy 7

Check:



d 3 1 2 x  x  2x  C  3x2  x  2 dx 2  x  13x  2

33.

37.

dx 

1 dx  x  C

Check:

d x  C  1 dx

1  csc t cot t dt  t  csc t  C

39.

d t  csc t  C  1  csc t cot t dt



tan2 y  1 dy 



2 sin x  3 cos x dx  2 cos x  3 sin x  C d 2 cos x  3 sin x  C  2 sin x  3 cos x dx

Check:



Check:

41.

35.



sec2   sin  d  tan   cos   C d tan   cos   C  sec2   sin  d

Check:



43. f x  cos x

sec2 y dy  tan y  C

y

d Check: tan y  C  sec2 y  tan2 y  1 dy

3 2

C

3

2C

0

x 2 2

3

45. f x  2

47. fx  1  x2

f x  2x  C

f x  x 

f )x)

2x

2

y

x3 3

f )x)

5

f )x)

f )x)

2x

x

3 2

x 3

2

1

2

3

x 3

2

3 1

Answers will vary.

f

2

Answers will vary.



2x  1 dx  x2  x  C

1  12  1  C ⇒ C  1

x3 3

4

3

dy  2x  1, 1, 1 dx y

x y

2

49.

x3 C 3

4

f′

C

3

y  x2  x  1

Section 4.1

51.

dy  cos x, 0, 4 dx y

Antiderivatives and Indefinite Integration

179

53. (a) Answers will vary. y



5

cos x dx  sin x  C

4  sin 0  C ⇒ C  4 y  sin x  4

x

−3

5

−3

(b)

dy 1  x  1, 4, 2 dx 2 x2 xC 4

y

6

−4

42 2 4C 4

8 −2

2C x2 x2 4

y

55. fx  4x, f 0  6 f x 



4x dx  2x 2  C

57. ht  8t3  5, h1  4 ht 



8t3  5dt  2t4  5t  C

f0  6  202  C ⇒ C  6

h1  4  2  5  C ⇒ C  11

f x  2x 2  6

ht  2t4  5t  11 61. f  x  x3 2

59. f  x  2 f2  5

f4  2

f 2  10

f 0  0

fx 

fx 



2 dx  2x  C1

f2  4  C1  5 ⇒ C1  1 fx  2x  1 f x 



2x  1 dx  x2  x  C2

f 2  6  C2  10 ⇒ C2  4 f x  x  x  4 2



x3 2 dx  2x1 2  C1  

fx   f x 



2 x

1.5t  5 dt  0.75t 2  5t  C

h0  0  0  C  12 ⇒ C  12 ht  0.75t2  5t  12 (b) h6  0.7562  56  12  69 cm

 C1

3

2x1 2  3 dx  4x1 2  3x  C2

f x  4x1 2  3x  4 x  3x



x

2 f4    C1  2 ⇒ C1  3 2

f 0  0  0  C2  0 ⇒ C2  0

63. (a) ht 

2

180

Chapter 4

Integration

65. f 0  4. Graph of f is given. (a) f4 1.0

(f) f  is a minimum at x  3.

(b) No. The slopes of the tangent lines are greater than 2 on 0, 2. Therefore, f must increase more than 4 units on 0, 4.

(g)

y 6 4

(c) No, f 5 < f 4 because f is decreasing on 4, 5. (d) f is an maximum at x  3.5 because f3.5 0 and the first derivative test.

2 x −2

(e) f is concave upward when f is increasing on  , 1 and 5, . f is concave downward on 1, 5. Points of inflection at x  1, 5. 67. at  32 ft sec2 vt 



v0 st  32t  v0  0 when t   time to reach 32 maximum height.



32t  60dt  16t 2  60t  C2 s

st  16t2  60t  6 Position function



The ball reaches its maximim height when

15  16  15 18  8

v0

2

 60

32  550 v0

v02 v02   550 64 32

73. From Exercise 71, f t  4.9t2  10t  2. v t  9.8t  10  0 (Maximum height when v  0.)

9.8 dt  9.8t  C1

9.8t  10

v0  v0  C1 ⇒ vt  9.8t  v0



t

9.8t  v0 dt  4.9t  v0t  C2 2

f 0  s0  C2 ⇒ f t  4.9t 2  v0t  s0

f

10 9.8

10 9.8  7.1 m

a  1.6

st 

 v0

158  6 62.26 feet



vt 

2

15 seconds 8

71. at  9.8

75.

v0

v0 187.617 ft sec

32t  60 t

32  1632 v02  35,200

vt  32t  60  0

f t 

8

st  16t2  v0t

32 dt  32t  C1

vt 

6

−6

s0  6  C2

s

4

69. From Exercise 68, we have:

v0  60  C1 st 

2



1.6 dt  1.6t  v0  1.6t, since the stone was dropped, v0  0.

1.6t dt  0.8t2  s0

s20  0 ⇒ 0.8202  s0  0 s0  320 Thus, the height of the cliff is 320 meters. vt  1.6t v20  32 m sec

Section 4.1

0 ≤ t ≤ 5

77. xt  t3  6t2  9t  2

Antiderivatives and Indefinite Integration

79. vt 

(a) vt  xt  3t  12t  9 2

xt 

 3t2  4t  3  3t  1t  3

 t1 2

t > 0



vt dt  2t1 2  C

x1  4  21  C ⇒ C  2

at  vt  6t  12  6t  2 (b) vt > 0 when 0 < t < 1 or 3 < t < 5.

xt  2t1 2  2 position function

(c) at  6t  2  0 when t  2.

1 1 at  vt   t3 2  3 2 acceleration 2 2t

v2  311  3 81. (a) v0  25 km hr  25

1000 250  m sec 3600 36

v13  80 km hr  80

1000 800  m sec 3600 36

83. Truck: vt  30 st  30t Let s0  0. Automobile: at  6

at  a constant acceleration

vt  6t Let v0  0.

vt  at  C

st  3t2 Let s0  0.

v0  v13 

At the point where the automobile overtakes the truck:

250 250 ⇒ vt  at  36 36

30t  3t2

800 250  13a  36 36

0  3t2  30t 0  3tt  10 when t  10 sec.

550  13a 36 a st  a

(b)

s13  85.

1 t

(a) s10  3102  300 ft (b) v10  610  60 ft sec 41 mph

550 275 

1.175 m sec2 468 234

t 2 250  t 2 36

s0  0

275 132 250  13 189.58 m 234 2 36

1 mi hr5280 ft mi 22 ft sec  3600 sec hr 15 (a)

t

0

5

10

15

20

25

30

V1ft sec

0

3.67

10.27

23.47

42.53

66

95.33

V2ft sec

0

30.8

55.73

74.8

88

93.87

95.33

(c) S1t  S2t 



V1t dt 

0.1068 3 0.0416 2 t  t  0.3679t 3 2

V2t dt  

0.1208t3 6.7991t2   0.0707t 3 2

In both cases, the constant of integration is 0 because S10  S20  0 S130 953.5 feet S230 1970.3 feet The second car was going faster than the first until the end.

(b) V1t  0.1068t2  0.0416t  0.3679 V2t  0.1208t2  6.7991t  0.0707

181

182

Chapter 4

Integration

87. at  k vt  kt k st  t2 since v0  s0  0. 2 At the time of lift-off, kt  160 and k2t2  0.7. Since k2t2  0.7,

1.4k 1.4 1.4  160 v   k k k t

1.4k  1602 ⇒ k 

1602 1.4

 18,285.714 mihr2  7.45 ftsec2. 89. True

91. True

93. False. For example,

95. fx 

1,3x,

 x

x dx 

 x dx

x dx because



x2 x3 C  C1 3 2

x2  C  2

2

0 ≤ x < 2 2 ≤ x ≤ 5



x  C1, 0 ≤ x < 2 f x  3x2  C2, 2 ≤ x ≤ 5 2 f 1  3 ⇒ 1  C1  3 ⇒ C1  2 f is continuous: Values must agree at x  2: 4  6  C2 ⇒ C2  2



0 ≤ x < 2 x  2, f x  3x 2  2, 2 ≤ x ≤ 5 2 The left and right hand derivatives at x  2 do not agree. Hence f is not differentiable at x  2.

Section 4.2 1.

5

5

5

i1

i1

i1

2i  1  2 i  1  21  2  3  4  5  5  35 4

3.

k

2

k0 9

7.

Area

1 1 1 1 1 158 1     1 2 5 10 17 85 9.

i1 20

15.



i1

58  3 8

1

3i

j

4

5.

k1

i  2 20

i1

2021  420 2

 n 

11.

2 n n i1

17.

i  1

j1

2i  2

c  c  c  c  c  4c 2i

20

2

3





i1

2in

13.

19

i

2

i1





192039  2470 6



3 n 3i 2 1 n i1 n

 2

15

19.

ii  1



2

i1

15

i

2

3

i1

15

i

2

15

i



i1

21. sum seqx

>

Section 4.2

2  3, x, 1, 20, 1  2930 (TI-82)

i1

20

i

152162 151631 1516  2  4 6 2

2

 3 

i1



 14,400  2,480  120

2020  1220  1  320 6

202141  60  2930 6

 12,040 9 33 23. S  3  4  2  51  2  16.5

s  1  3  4  1  9 2

25 2

25. S  3  3  51  11

 12.5

s  2  2  31  7

14 14  12 14  34 14  114  1  2 8 3  2  0.768 1 2 3 1 1 1 1 1 3 1 s4  0                0.518 4 4 4 2 4 4 4 8

27. S4 







29. S5  1 s5 

n→ 











1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           0.646 65 5 75 5 85 5 95 5 2 5 6 7 8 9 10

81n n n 4 1  814 lim n 2

31. lim



1 1 1 1 1 1 1 1 15  65 5  75 5  85 5  95 5  51  61  71  81  91  0.746



2

4

4

n→

81 81  2n3  n2  1  n4 4 4

18n nn 2 1  182 lim n n n  1821  9  2

33. lim n→

2

2i  1 1 n 1 nn  1 n2 n   Sn  2 2i  1  2 2 2 n n n 2 n i1 i1 n

35.

2

n→







S10 

12  1.2 10

S100  1.02 S1000  1.002 S10,000  1.0002 6kk  1 6 n 2 6 nn  12n  1 nn  1  3 k  k  3  3 n n k1 n 6 2 k1 n

37.









6 2n2  3n  1  3n  3 1  22n2  2  Sn n2 6 n



S10  1.98 S100  1.9998 S1000  1.999998 S10,000  1.99999998

 n   n

39. lim

n→  i1

16i 2

lim

n→ 

16 n 16 nn  1 n2  n i  lim 2  lim 8 n→  n n→  n2 i1 2 n2









Area

  8 lim 1  n1  8 n→ 

183

184

Chapter 4

Integration

1 1 n1 1 n  1n2n  1 i  12  lim 3 i 2  lim 3 3 n→  i1 n n→  n i1 n→  n 6 n

41. lim



 lim

n→ 

1 2n3  3n2  n 1 2  3n  1n2  lim n→  6 6 n3 1





1 nn  1 2

1  nn  2 lim n 1  n i  2 lim n n  n n

43. lim





i

45. (a)

n

1

2

n→  i1

n→

1

i1

n

1

n→

i1

y

(e)

x

  31

  2 lim 1  n 2n n  21  21  3 2

2

n→ 

5

10

50

100

3

sn

1.6

1.8

1.96

1.98

2

Sn

2.4

2.2

2.04

2.02

1

i  12n 2n  lim n4 i  1  n

1

(b) x 

n

(f) lim

x

n→

3

n→

i1



Endpoints:

 lim

n→ 

2n < 22n < . . . < n  12n < n2n  2 n

f x

i n   n    n

2

lim

n→

(c) Since y  x is increasing, f mi  f xi1 on xi1, xi. sn 

2

i1

 x



n4 nn 2 1

 lim

2n  1 2 n

n→ 





i1

 

   

n 2 2  i  1 n n i1

2 n

2n n 1  n4  2

4 n i n→  n2 i1 lim

i1

2i  2 f n

 lim

i1

n

i1

4 nn  1 n  lim 2 n→  n 2

20 2  n n

0

49. Because the curve is concave upward, the midpoint approximation will be less than the actual area: <

dx

Section 4.3

51. f x 

1 x4

53.

is not integrable on the interval 3, 5 and f has a discontinuity at x  4.

Riemann Sums and Definite Integrals

y

4 3 2 1 1

2

3

x

4

a. A  5 square units 55.

y

2 3 2

1 1 2

x 1 2



1

3 2

2

1

d.

1 2 sin  x dx  12  1 2

0



3

57.

x 3  x dx

0

n

4

8

12

16

20

Ln

3.6830

3.9956

4.0707

4.1016

4.1177

Mn

4.3082

4.2076

4.1838

4.1740

4.1690

Rn

3.6830

3.9956

4.0707

4.1016

4.1177

4

8

12

16

20

Ln

0.5890

0.6872

0.7199

0.7363

0.7461

Mn

0.7854

0.7854

0.7854

0.7854

0.7854

Rn

0.9817

0.8836

0.8508

0.8345

0.8247



2

59.

sin2 x dx

0

n

61. True

63. True

65. False



2

0

67. f x  x2  3x, 0, 8 x0  0, x1  1, x2  3, x3  7, x4  8 x1  1, x2  2, x3  4, x4  1 c1  1, c2  2, c3  5, c4  8 4

f c  x  f 1 x i

1

 f 2 x2  f 5 x3  f 8 x4

i1

 41  102  404  881  272

x dx  2

191

192

Chapter 4

69. f x 

1,0,

Differentiation

x is rational x is irrational

is not integrable on the interval 0, 1. As  → 0, f ci  1 or f ci  0 in each subinterval since there are an infinite number of both rational and irrational numbers in any interval, no matter how small. 71. Let f x  x2, 0 ≤ x ≤ 1, and xi  1 n. The appropriate Riemann Sum is

f c  x  n n

n

i

i

2

i

i1

i1

lim

n→ 

1 n 1  3 i 2. n n i1



1 2 1 1  22  32  . . .  n2  lim 3 n→  n n3



n→ 

1. f x 





0

n2n  1n  1 6

1 1 1 2n2  3n  1 1    lim  n→  3 6n2 2n 6n2 3

 lim

Section 4.4





The Fundamental Theorem of Calculus

4 x2  1

5

5

3. f x  x x2  1



2

4 dx is positive. x2  1

−5

2

5

x x2  1 dx  0

−5

−5

−2



2x dx  x2



t2  2 dt 

 t3  2t



2t  12 dt 



 

0

101

0

1

9.

1

1

 1



4

1



u2 du 

u





 34t





t1 3  t2 3 dt 

1

 3

23.





 2t

1 1

 43t

3



 2t2  t

 34t

4 3

3 2

1 0



4 1 21 3 3

   23 4 

 4u1 2





3  t5 3 5

 23u



1 x2 2 3 2  x 3 2 3

x  x1 2 dx 

0



0

0

1





3 2 0



3

1

  23  4  32

 4 4 

1 0







1 1 2 1   3 2 3 18



2x  3 dx split up the integral at the zero x 

3 2

 3x  x2

4

27 34  53   20

3

3  2x dx 

0



0

34  2  34  2  4



3 2

2x  3 dx 

0

4 3

1

0

21.

1

1

1

x  x 1 dx  3 3

0

0

2

2

u1 2  2u1 2 du 



1

 x2  2x

13  2   31  2   103

4



x  2 dx 

   23  2  3  1  21



3 t  2 dt 

1

19.



4t2  4t  1 dt 

3 3  1 dx    x x2 x

1

17.

1

0

2

15.

7.

1

0

13.

1

3

1

11.



0

1

1

5.

5



 x2  3x

3 3 2



3 2



92  49  0  9  9  94  29  292  49  29

12  2   52

Section 4.4

 3

25.

0



2



x 2  4 dx 

3

4  x 2 dx 

0





 8





27.

x3 3

2 0





4 sec tan d  4 sec

 6







 6



3



10,000t  6 dt  10,000

0



3

37. A 



3

 

3  3



 3





 2



3

 233

3 0

 2

0

x  x2 dx 

0







1

35. A 

 $135,000

   x 5 x10  2x

2 3x1 2  x3 2 dx  2x3 2  x5 2 5 0

cos x dx  sin x

0

3

 42  42  0



t2  6t 2

3

3  x x dx 

0

39. A 



   1  0  1  2  

0



2



sec2 x dx  tan x

 3

33.

3





 3

3

8 8  9  12  8 3 3



 6

 x3  4x



1  sin x dx  x  cos x

 6

31.



23 3

0

29.

x 2  4 dx

2

 4x 





The Fundamental Theorem of Calculus

3

3

0

0



 x2  x3 

3 1

2

12 3 5

41. Since y ≥ 0 on 0, 2,

1



2

A





2

0

x3  x dx 

 2

43. Since y ≥ 0 on 0, 2,

45.



x4 x2  4 2



2 0

0

 4  2  6.



3x2  1 dx  x3  x

0

A

1 6



0

x  2 x  dx 

 x2  4x3 

3 2 2

2

0

f c2  0 

6  8 2 3

c  2 c 

3  4 2 3

c  2 c  1 

2 0

 8  2  10.

2

8 2 3

3  4 2 1 3

 c  12  6  34

2

6  34 2 64 2 c  1 ±  3

c  1  ±



2

c  0.4380 or c  1.7908

193

194

Chapter 4



 4

47.

Integration



 4



2 sec2 x dx  2 tan x

 4

 21  21  4

 4

 4   4   4

f c

2 sec2 c 

8 

sec2 c 

4 

sec c  ±

2



c  ± arcsec

 2

 ± arccos

49.



2

1 2  2

2

4  x2 dx 

Average value  4  x2 

51.

1 0







2

 ± 0.4817



2



1 1 4x  x3 4 3

2

1 4

 8  38  8  38   38



sin x dx  

0





1 cos x 

0



3 3

, 8 3

(

5

(

2

3 3

, 8 3

(0.690, π2 ( − 2

(2.451, π2 (

−1

 6

57.

0

0



6

2  f x dx 

0

0

f x dx  Fb  Fa.

a

3 2

f x dx   area of region A  1.5

6



b

then

2

2 

3

53. If f is continuous on a, b and F x  f x on a, b,

2





2



0



6

f x dx   f x dx 

f x dx  1.5  5.0  6.5

2

6

2 dx 

f x dx

0

 12  3.5  15.5 61. (a) F x  k sec2 x

(b)

F 0  k  500

1  3  0



 3

500 sec2 x dx 

0



F x  500 sec2 x



 3



1500 tan x 

0

1500  3  0 

 826.99 newtons  827 newtons

63.

1 50



5

0

(

−1

2 

x  0.690, 2.451

59.

2

−3

8 8 2 3  ± 1.155. when x2  4  or x  ± 3 3 3

sin x 

55.

(−

8 3

2 Average value  





0.1729t  0.1552t2  0.0374t3 dt 





1 0.08645t2  0.05073t3  0.00935t4 5

5 0

 0.5318 liter

Section 4.4

65. (a)

The Fundamental Theorem of Calculus

(b)

1

0

10

24

0

−1

24 0

The average value of S appears to be g.

The area above the x-axis equals the area below the x-axis. Thus, the average value is zero. 67. (a) v  8.61 104t3  0.0782t2  0.208t  0.0952 (b)

90

− 10

70 − 10



60

(c)

vt dt 

0



 8.61 4 10

4t 4

x

69. Fx 

t  5 dt 

0





t2  5t 2

x 0





0.0782t3 0.208t 2   0.0952t 3 2



x2  5x 2

60 0

 2476 meters





x

71. Fx 

x

10 2 dv  1 v

1



10 1  10  10 1  x x

F2 

4  52  8 2

F5 

25 25  55   2 2

F2  10

12  5

F8 

64  58  8 2

F5  10

45  8

F8  10

78  354





x

73. Fx 

cos d  sin

1



x 1



x

 sin x  sin 1

75. (a)

t  2 dt 

0

F2  sin 2  sin 1  0.0678



10 v

10v2 dv 

x

 t2  2t 2

0



x 1



1  x2  2x 2



d 1 2 (b) x  2x  x  2 dx 2

F5  sin 5  sin 1  1.8004 F8  sin 8  sin 1  0.1479

77. (a)



x 3 t

dt 

8

(b)

 4t 



3

x

4 3

8

79. (a)

x 4



d 3 4 3 3 x x  12  x1 3  dx 4



2

(b)



 

sec2 t dt  tan t

x x 4

 tan x  1

d tan x  1  sec2 x dx

x

x

81. F x 



x

3 3  x 4 3  16  x 4 3  12 4 4

t 2  2t dt

F x  x2  2x

83. F x 

1



x

t 4  1 dt

F x  x4  1

85. F x 

t cos t dt

0

F x  x cos x

195

196

Chapter 4



Integration

x2

87. Fx 

4t  1 dt

Alternate solution:

x



x2



Fx 



 2t  t 2

x2

4t  1 dt

x

x

 2x  22  x  2  2x2  x

0



x

 8x  10



x2

4t  1 dt 



0

x



F x  8

4t  1 dt



x2

4t  1 dt 

0

4t  1 dt

0

F x   4x  1  4x  2  1  8



sin x

89. Fx 

t dt 

0

 23t  3 2

sin x 0

2  sin x3 2 3

F x  sin x1 2 cos x  cos x sin x



x3

91. Fx 

sin t 2 dt

0

F x  sinx32

 3x2  3x2 sin x 6

Alternate solution



sin x

Fx 

t dt

0

F x  sin x



d sin x  sin xcos x dx

x

93. gx 

f t dt

0

1 1 g0  0, g1  , g2  1, g3  , g4  0 2 2





 45t 

x



 5000 25 

2

(b)

f

g

2

3

x

5 4

0



12 5 4 x  1000125  12x5 4 5

C1  1000125  121  $137,000 C5  1000125  1255 4  $214,721

x 1

t1 4 dt

0

 5000 25  3

y

1



95. (a) Cx  5000 25  3

C10  1000125  12105 4  $338,394

4

−1 −2

g has a relative maximum at x  2.



1

99. False;

97. True

1



0

x2 dx 

1



1

x2 dx 

x2 dx

0

Each of these integrals is infinite. f x  x2 has a nonremovable discontinuity at x  0.



1 x

101. f x 

0

1 dt  t 1 2



x

1 dt 2 t  1 0

By the Second Fundamental Theorem of Calculus, we have f x 



1 1 1   2 1 x2  1 x2 x 1



1 1   0. 1  x2 x2  1

Since f x  0, f x must be constant.

Section 4.5 103. xt  t 3  6t 2  9t  2 xt  3t 2  12t  9  3t 2  4t  3  3t  3t  1

   5

Total distance 



xt dt

0

5





3 t  3t  1 dt

0



1



3

t 2  4t  3 dt  3

3

0

5

t 2  4t  3dt  3

1

t 2  4t  3dt

3

 4  4  20  28 units

   4

105. Total distance 



xt dt

1

4

 



vt dt

1 4 1

1

t

dt



 2t12

4 1

 22  1  2 units

Section 4.5

1. 3. 5.

7.

    

f g x

g x dx

u  g x

du  g x dx

5x2  1210x dx

5x2  1

10x dx

x2  1

2x dx

tan x

sec2 x dx

x

x2  1

dx

tan2 x sec2 x dx

1  2x4 2 dx 

Check:

9.

Integration by Substitution

1  2x5 C 5

d 1  2x5  C  21  2x4 dx 5





9  x2122x dx 

Check:





9  x232 2  C  9  x232  C 32 3



2 d 2 9  x232  C  dx 3 3

3

 29  x2122x  9  x22x

Integration by Substitution

197

198

11.

Chapter 4



x3x4  32 dx 

Check:

13.

17.

  



t2  232 1 2 1 t2  232 C C t  2122t dt  2 2 32 3

32t2  2122t d t2  232 C   t2  212t dt 3 3







5 5 1  x2132x dx   2 2





d 15 15  1  x243  C   dx 8 8



1  x243 15  C   1  x243  C 43 8

4

3 1  x2  31  x2132x  5x1  x213  5x







1 x 1 d  C  21  x232x  dx 41  x22 4 1  x23



x2 1 1 1  x31 1 dx  1  x323x2 dx  C C 1  x32 3 3 1 31  x3



x

1







d 1 1 x2   C   11  x323x2  3 dx 31  x  3 1  x32

1  x2

 



1 1 1  x22 x 1 dx   1  x232x dx   C C 2 3 1  x  2 2 2 41  x22

Check:

27.





5x1  x213 dx  

Check:

25.





Check:

23.



1 1 x3  15 x3  15 x3  143x2 dx  C C 3 3 5 15

d x3  15 5x3  143x2 C   x2x3  14 dx 15 15

tt2  2 dt 

Check:

21.





Check:

19.



x2x3  14 dx 

Check:



x4  33 1 1 x4  33 C C x4  324x3 dx  4 4 3 12

d x4  33 3x4  32 3 C  4x   x4  32x3 dx 12 12



Check:

15.

Integration

dx  



1 1 1  x212 1  x2122x dx    C   1  x2  C 2 2 12

d 1 x  1  x212  C   1  x2122x  1  x2 dx 2 1 t

 t1  dt   1  1t   t1  dt   1  41t 3

3

2

4

2

1 1 1  1t 4 d   C   4 1  dt 4 4 t









  t1   t1 1  1t  3

2

1 1 1 2x12 dx  2x12 2 dx   C  2x  C 2 2 12 2x

Check:





d 2x  C  212x122  1 dx 2x

C

2

3

Section 4.5

29.

31.

33.



x2  3x  7 dx  x



2 2 x32  3x12  7x12 dx  x52  2x32  14x12  C  xx2  5x  35  C 5 5

Check:

d 2 52 x2  3x  7 x  2x32  14x12  C  dx 5 x



2 dt  t

Check:

d 14 2 t  t2  C  t 3  2t  t 2 t  dt 4 t



t2 t 







1 t3  2t dt  t 4  t2  C 4



9  yy dy 

35. y 

 







Check:



9y12  y32 dy  9







23y   52y 32



52

2  C  y3215  y  C 5



d 2 32 d 2 6y32  y52  C  9y12  y32  9  yy y 15  y  C  dy 5 dy 5

4x 

4x 16  x2



 dx

37. y 

 4 x dx  2 16  x2122x dx 4

Integration by Substitution

x2   2 16 12x    C 2

2 12

 2x2  416  x2  C

39. (a) 3



1 x2  2x  322x  2 dx 2



1 x2  2x  31 C 2 1



1 C 2x2  2x  3



x4  x2 dx  



x 2



dy  x4  x2, 2, 2 dx y

−2

x1 dx x2  2x  32



(b)

y

 

−1

1 2



1 4  x2122x dx 2

2

1

 34  x232  C   34  x232  C

1 2, 2: 2   4  2232  C ⇒ C  2 3 1 y   4  x232  2 3 2

−2

2

−1

41.



45.



 sin x dx  cos x  C



 

1 1 1 1 1 cos d   cos  2 d  sin  C 2    

43.



sin 2x dx 



1 1 sin 2x2x dx   cos 2x  C 2 2

199

200

Chapter 4

Integration

  

1 2

49.



1 tan5 x  C  tan5 x  C 5 5

51.



47.



1 1 sin 2x2 1 sin 2x2 cos 2x dx   C  sin2 2x  C 2 2 2 4

sin 2x cos 2x dx 

 

sin 2x cos 2x dx   sin 2x cos 2x dx 

tan4 x sec2 x dx 

1 1 cos 2x2 1 cos 2x2 sin 2x dx    C1   cos2 2x  C1 2 2 2 4 2 sin 2x cos 2x dx 

1 2



sin 4x dx 

OR

1 cos 4x  C2 8



csc2 x dx   cot x3csc2 x dx cot3 x 

53.

OR



cot2 x dx 

cot x2 1 1 1 1 C  C  tan2 x  C  sec2 x  1  C  sec2 x  C1 2 2 cot2 x 2 2 2



csc2 x  1 dx  cot x  x  C

55. f x 



cos

x x dx  2 sin  C 2 2

Since f 0  3  2 sin 0  C, C  3. Thus, f x  2 sin 57. u  x  2, x  u  2, dx  du



xx  2 dx  

 

u  2u du u32  2u12 du

4 2  u52  u32  C 5 3 

2u32 3u  10  C 15



2 x  232 3x  2  10  C 15



2 x  2323x  4  C 15

59. u  1  x, x  1  u, dx  du



 

x21  x dx   1  u2u du   u12  2u32  u52 du 

23u



2u32 35  42u  15u2  C 105



2 1  x32 35  421  x  151  x2  C 105



2 1  x3215x2  12x  8  C 105

32



4 2  u52  u72  C 5 7

x  3. 2

Section 4.5

1 1 61. u  2x  1, x  u  1, dx  du 2 2



x2  1 dx  2x  1  

  

12u  1 2  1 1 du 2 u

1 12 2 u u  2u  1  4 du 8 1 u32  2u12  3u12 du 8







1 2 52 4 32 u  u  6u12  C 8 5 3



u12 2 3u  10u  45  C 60



2x  1

60

32x  12  102x  1  45  C



1 2x  112x2  8x  52  C 60



1 2x  13x2  2x  13  C 15

63. u  x  1, x  u  1, dx  du



x dx  x  1  x  1



 u  1 du u  u



 



 du

u  1 u  1





u u  1

  1  u12 du   u  2u12  C  u  2u  C   x  1  2x  1  C  x  2x  1  1  C    x  2x  1   C1 where C1  1  C. 65. Let u  x2  1, du  2x dx.



1

1

xx2  13 dx 

1 2



1

1

x2  132x dx 

8x

67. Let u  x3  1, du  3x2 dx



2

1

2x2x3  1 dx  2 

1 3



2



23 x







x3  1123x2 dx

1

3

 132 32



2 1



4 3 x  132 9

2 1

4 27  22  12  982 9

1

2

 14



1 1

0

Integration by Substitution

201

202

Chapter 4

Integration

69. Let u  2x  1, du  2 dx.



4

0

1 1 dx  2 2x  1

71. Let u  1  x, du 



9

1



4





2x  1122 dx  2x  1

0

4

 9  1  2

0

1 dx. 2x



1 dx  2 2 x 1  x 

9

1

1  x 2

21 x dx   1 2x

9 1

1 1  1 2 2

73. u  2  x, x  2  u, dx  du When x  1, u  1. When x  2, u  0.



2

1



23x dx  32 sin23x



0

0

u32  u12 du 

1

2

cos



0

 2  u  1 u du 

1

2

75.



0

x  12  x dx 

5u 2

52



2  u32 3

0 1



5  3  154 2

2

 

3 3 33  2 2 4

77. u  x  1, x  u  1, dx  du When x  0, u  1. When x  7, u  8.



7

Area 

 

8

3 x  1 dx  x

0

3 u du u  1

1 8



u43  u13 du 

1

79. A 







2 sin x  sin 2x dx   2 cos x 

0

81. Area 



4

83.

0



23

2

2x  dx  2

23

sec2

2

sec2

73

3 3  12        384 7 7 4

3  u43 4

0

23

2



1

 2 3  1

7

85.

xx  3 dx  28.8 

3

144 5

2x  12 dx 

2x  12 dx 

0

−1 0

 

1 1 4 1 2x  12 2 dx  2x  13  C1  x3  2x2  x   C1 2 6 3 6 4 4x2  4x  1 dx  x3  2x2  x  C2 3

1 They differ by a constant: C2  C1  . 6

 d  7.377 6



4

8

0

−1

  cos 5

5

 

 3

87.

15

−1

1209 28

4

2x 12 dx  2 tan2x 

x 10 dx  3.333  3 2x  1

8





1 cos 2x 2

3

89.

37u

−1

Section 4.5

91. f x  x2x2  1 is even.





2

93. f x  xx2  13 is odd.

2

2

x2x2  1 dx  2



x4  x2 dx  2

0

325  3  8

2



2

95.

0

x2 dx 

 

3 x3

0

2 0

2

x2 dx 



x2 dx 

0

2

0



4

2



2

0



0

xx2  13 dx  0

272 15

 

 

2

8 3

(b)

2



(d)

2

4

x3  6x2  2x  3 dx 

2

x2 dx  2



4

4

16 3

2

3x2 dx  3

x2 dx  8

0



4

x3  2x dx 

x2 dx 

0

0

8 x2 dx   3

4

97.



2

2

x2 dx  

(c)

x5 x3  5 3

8  ; the function x2 is an even function. 3 2

(a)

Integration by Substitution

4

6x2  3 dx  0  2





6x2  3 dx  2 2x3  3x

0

4 0

 232

99. Answers will vary. See “Guidelines for Making a Change of Variables” on page 292.



2

101. f x  xx2  12 is odd. Hence,

2

xx2  12 dx  0.

k dV  dt t  12

103.

Vt 



k k C dt   t  12 t1

V0  k  C  500,000 1 V1   k  C  400,000 2 Solving this system yields k  200,000 and C  300,000. Thus, Vt 

200,000  300,000. t1

When t  4, V4  $340,000.

105.

1 ba (a) (b) (c)

 b

74.50  43.75 sin

a

262.5 t 1 74.50t  cos 3  6



t 1 262.5 t dt  74.50t  cos 6 ba  6





262.5 t 1 74.50t  cos 3  6



3 0



1 262.5 t 74.50t  cos 12  6



6 3









b a





1 262.5 223.5   102.352 thousand units 3 



1 262.5 447   223.5  102.352 thousand units 3 

12 0











1 262.5 262.5 894    74.5 thousand units 12  

203

204

Chapter 4

107.

1 ba (a) (b)



Integration

b





1 1 1  cos60 t  sin120t b  a 30 120 

2 sin60 t  cos120 t dt 

a







1240 0

  30 1 2  1201    301 

 240 





2x  12 dx 

1 1 2x  12 2 dx  2x  13  C 2 6

(c)

1 1 1  cos60 t  sin120 t 130  0 30 120

109. False



10



10

10

ax3  bx2  cx  d dx 



 30   301   0 amps

 30

1

10





10

ax3  cx dx 

10

Odd 113. True

2  5  2 2  1.382 amps 



111. True



130 0

1

 60

0

1 1 1  cos60 t  sin120 t 1240  0 30 120

10

bx2  d dx  0  2

bx2  d dx

0

Even



4 sin x cos x dx  2 sin 2x dx  cos 2x  C 115. Let u  x  h, then du  dx. When x  a, u  a  h. When x  b, u  b  h. Thus,



b



bh

f x  h dx 

a

  

x2 dx 

0 2

Trapezoidal:

x2 dx

0 2

Simpson’s:

x2 dx

0

  

2

3. Exact:

x3 dx 

0 2

Trapezoidal:

x3 dx

0 2

Simpson’s:

f x dx.

ah

Numerical Integration 2

1. Exact:



bh

f u du 

ah

Section 4.6

0

a

 30  0   301   4 1.273 amps



160

1 1 1  cos60 t  sin120 t 160  0 30 120

b

x3 dx

 3x  1

2

3

0



8 2.6667 3





2





2

1 1 02 4 2 1 1 04 6 2

 212  2

32

2

 212  4

32

2

 213  2

32

3

 213  4

32

3

4

 4.000





3





3

x4

2 0

1 1 02 4 2 1 1 04 6 2



11  2.7500 4



8 2.6667 3



17  4.2500 4



24  4.0000 6

 22   22 

 23   23 

Section 4.6

  

2

5. Exact:

x3 dx 

0 2

Trapezoidal:

x3 dx

0 2

Simpson’s:

x3 dx

0

 

 14x 

2 0

x dx 

x dx

4



x dx

4

 

2

1 2

Trapezoidal:

 23x 

9

32

4



1



2

1

3

24

2 3

34

4

3

34

 213  2 3

54

 213  4

3

2

54

3

64

2

3

64

2 3

74

4

3

74



 8  4.0625



3

 8  4.0000

16 38  12.6667 3 3

 18 

378  2 214  2 478  2 264  2 578  2 314  2 678  3



 

378 



1 1 dx   x  12 x1



2 1

478 

21  4

678  3 12.6667

31  4

1 1 1     0.1667 3 2 6





578 

26  4











1 1 1 1 1 1 1 2 dx 2 2  x  12 8 4 54  12 32  12 74  12 9







1 1 32 8 32 1     0.1676 8 4 81 25 121 9















1 1 1 1 1 1 1 4 dx 2 4  x  12 12 4 54  12 32  12 74  12 9

1  x3 dx

0 2

1  x3 dx

0







1 1 64 8 64 1     0.1667 12 4 81 25 121 9

2

Simpson’s:

2

5 24 24



11. Trapezoidal:

3

24

5 22 16

 Simpson’s:

2

12.6640

9

9. Exact:

3





1 1 04 12 4

9

Simpson’s:





1 1 02 8 4

4

Trapezoidal:

 4.0000

4

9

7. Exact:

Numerical Integration

1 1  2 1  18  2 2  2 1  278  3 3.283 4 1 1  4 1  18  2 2  4 1  278  3 3.240 6

Graphing utility: 3.241



1

13.



1

x 1  x dx 

0

x1  x dx

0



x1  x dx



x1  x dx

1

Trapezoidal:

0

1

Simpson’s:

0

Graphing utility: 0.393

 

1 02 8

 

1 04 12

121  21  2 341  43  0.342



1 1 1 2 4 4



121  21  4 341  43  0.372

1 1 1 2 4 4

205

206

Chapter 4

Integration



2

15. Trapezoidal:

cosx2 dx

2

8

0





2





2

cos 0  2 cos

4



2



2

 2 cos



2

 2 cos



2

2



2



2

 2 cos



2

 4 cos



2

4



2



2

 2 

 cos

2

0.957



2

Simpson’s:

cosx2 dx

2

12

0

cos 0  4 cos

4

2

4

 2 

 cos

2

0.978 Graphing utility: 0.977

 

1.1

17. Trapezoidal:

1 sin1  2 sin1.0252  2 sin1.052  2 sin1.0752  sin1.12 0.089 80

sin x2 dx

1 1.1

Simpson’s:

1 sin1  4 sin1.0252  2 sin1.052  4 sin1.0752  sin1.12 0.089 120

sin x2 dx

1

Graphing utility: 0.089

 

4

19. Trapezoidal:

x tan x dx

0

4

Simpson’s:

x tan x dx

0

   2 2 3 3  02 tan 2 tan 2 tan  0.194 32 16 16 16 16 16 16 4

 



 

 



   2 2 3 3  04 tan 2 tan 4 tan  0.186 48 16 16 16 16 16 16 4

 



 

 



Graphing utility: 0.186

21. (a)

23.

y

f x  x3 fx  3x2

y = f ( x)

f x  6x f x  6 f 4x  0 x

a

b

(a) Trapezoidal: Error ≤

The Trapezoidal Rule overestimates the area if the graph of the integrand is concave up.

f  x is maximum in 0, 2 when x  2. (b) Simpson’s: Error ≤ f 4x  0.

25. f  x 



2 in 1, 3 . x3







(a) f  x is maximum when x  1 and f  1  2. Trapezoidal: Error ≤ f 4x 



23 12n2

2 < 0.00001, n2 > 133,333.33, n > 365.15; let n  366.

24 in 1, 3 x5







(b) f 4x is maximum when x  1 and when f 41  24. Simpson’s: Error ≤

25 180n4

2  03 12  0.5 since 1242

24 < 0.00001, n4 > 426,666.67, n > 25.56; let n  26.

2  05 0  0 since 18044

Section 4.6

Numerical Integration

27. f x  1  x (a) f  x  

1 in 0, 2 . 41  x32 1

 f  x is maximum when x  0 and  f 0  4.

 < 0.00001, n

8 1 12n2 4

Trapezoidal: Error ≤

> 16,666.67, n > 129.10; let n  130.

2

15 in 0, 2 161  x72

(b) f 4x 

15

 f 4x is maximum when x  0 and  f 40  16. Simpson’s: Error ≤

 < 0.00001, n

32 15 180n4 16

4

> 16,666.67, n > 11.36; let n  12.

29. f x  tanx2 (a) f  x  2 sec2x2 1  4x2 tanx2 in 0, 1 .

 f  x is maximum when x  1 and  f  1 49.5305. 1  03 49.5305 < 0.00001, n2 > 412,754.17, n > 642.46; let n  643. 12n2

Trapezoidal: Error ≤

(b) f 4x  8 sec2x2 12x2  3  32x4 tanx2  36x2 tan2x2  48x4 tan3x2 in 0, 1

 f 4x is maximum when x  1 and  f 41 9184.4734. Simpson’s: Error ≤

1  05 9184.4734 < 0.00001, n4 > 5,102,485.22, n > 47.53; let n  48. 180n4

31. Let f x  Ax3  Bx2  Cx  D. Then f 4x  0. Simpson’s: Error ≤

b  a5 0  0 180n4

Therefore, Simpson’s Rule is exact when approximating the integral of a cubic polynomial.



1

Example:

x3 dx 

0





1 1 04 6 2

3



1 

1 4

This is the exact value of the integral. 33. f x  2  3x2 on 0, 4 . Ln

Mn

Rn

Tn

Sn

4

12.7771

15.3965

18.4340

15.6055

15.4845

8

14.0868

15.4480

16.9152

15.5010

15.4662

10

14.3569

15.4544

16.6197

15.4883

15.4658

12

14.5386

15.4578

16.4242

15.4814

15.4657

16

14.7674

15.4613

16.1816

15.4745

15.4657

20

14.9056

15.4628

16.0370

15.4713

15.4657

n

207

208

Chapter 4

Integration

35. f x  sin x on 0, 4 . Ln

Mn

Rn

Tn

Sn

4

2.8163

3.5456

3.7256

3.2709

3.3996

8

3.1809

3.5053

3.6356

3.4083

3.4541

10

3.2478

3.4990

3.6115

3.4296

3.4624

12

3.2909

3.4952

3.5940

3.4425

3.4674

16

3.3431

3.4910

3.5704

3.4568

3.4730

20

3.3734

3.4888

3.5552

3.4643

3.4759

n

37. A 



2

x cos x dx

0

Simpson’s Rule: n  14



2

x cos x dx

0

28 cos 28  2 14 cos 14  4 328 cos 328  . . .  2 cos 2 



0 cos 0  4 84



0.701 y

1

1 2



π

π

4

2

x

5

39. W 

100x 125  x 3 dx

0

Simpson’s Rule: n  12



5

100x 125  x3 dx

0



 400



12

41.

0



6

1  x2

12  0 36

15 125   15 12

12

3

 200

10 125   10 12

12

3

 . . .  0 10,233.58 ft  lb

Simpson’s Rule, n  6

6  46.0209  26.0851  46.1968  26.3640  46.6002  6.9282

1000 125  2125  2120  2112  290  290  295  288  275  235  89,250 sq m 210

t

45.

3

1 113.098 3.1416 36

43. Area



dx

 125  125

5 5 0  400 312 12

sin x dx  2, n  10

0

By trial and error, we obtain t 2.477.

C H A P T E R Integration

4

Section 4.1

Antiderivatives and Indefinite Integration . . . . . . . . . 450

Section 4.2

Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Section 4.3

Riemann Sums and Definite Integrals . . . . . . . . . . . 462

Section 4.4

The Fundamental Theorem of Calculus . . . . . . . . . . 466

Section 4.5

Integration by Substitution . . . . . . . . . . . . . . . . . 472

Section 4.6

Numerical Integration

Review Exercises

. . . . . . . . . . . . . . . . . . . 479

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

C H A P T E R Integration Section 4.1

4

Antiderivatives and Indefinite Integration

Solutions to Even-Numbered Exercises

2.





1 d 4 1 x   C  4x3  2 dx x x

4.

d 2x2  3 d 2 32 x  2x12  C C  dx dx 3 3x







 x12  x32  6.

dr  d

8.

r    C Check:

2x2 1 C 2 c 2 x

Check:

d 1  C  2x3 dx x 2



Given

Rewrite

Integrate

Simplify

10.



1 dx x2



x1 C 1

1  C x

12.



xx2  3 dx



x3  3x dx

x4 x2 3 C 4 2

1 4 3 2 x  x C 4 2

14.





1 x1 C 9 1

1 C 9x

16.



1 dx 3x 2

1 2 x dx 9

5  xdx  5x 

x2 C 2

Check:

20.

 

18.



x4  2x 2  2x  C 4







4x3  6x 2  1dx  x 4  2x 3  x  C d 4 x  2x 3  x  C  4x 3  6x 2  1 dx

d x4  2x 2  2x  C  x3  4x  2 dx 4

x 

 dx  x 2x 1



12



 

1 x32 1 x12 2  x12 dx   C  x32  x12  C  2 32 2 12 3



d 2 32 1 1 x  x12  C  x12  x12  x  dx 3 2 2x





Check:

x 3  4x  2dx 

Check:

450



 

x2 d 5x   C  5  x dx 2



Check:

22.

x2 dx

x2  1 x32

dy  2x3 dx y

d   C   d



Section 4.1

24.





4 x3  1 dx  

Check:

28.





4 x34  1 dx  x74  x  C 7





x2  2x3  3x4dx



x1 2x2 3x3   C 1 2 3



1 1 1  2 3C x x x



36.

40.

x4 dx 





d 1 1  C  4 dx 3x3 x



2t2  12 dt 

30.



4t4  4t2  1 dt

4 4  t5  t3  t  C 5 3 Check:





d 45 43 t  t  t  C  4t 4  4t2  1 dt 5 3  2t2  12

x 2  2x  3 x4



1 3 t2  3t3 dt  t3  t4  C 3 4





3 dt  3t  C

34.



d 13 34 t  t  C  t2  3t3  1  3tt2 dt 3 4

Check:



1 t 2  sin t dt  t3  cos t  C 3



1  2  sec2  d   3  tan   C 3



sec ytan y  sec y dy 

Check:



sec y tan y  sec2 y dy

42.

d 3t  C  3 dt



38.

d 13 t  cos t  C  t2  sin t dt 3









d 1 3   tan   C   2  sec2  d 3

cos x dx  1  cos2 x

 sec y  tan y  C



d Check: sec y  tan y  C  sec y tan y  sec2 y dy

Check:

 sec ytan y  sec y



cos x dx  sin2 x

46. fx  x

y 6

f x  C=3

x2 C 2 y

C=0 C = −2 4

6

d 1 csc x  C  csc x cot x  dx sin x

y

2

x

f ( x) = 2

2

f′ f (x) = − 1x + 1

f′

4

−4

−4

x

−2

4 −2

−4

−2

cos x sin x

1 x2

6

−2



cos x 1  cos2 x

2 f ( x) = x + 2

8 8

x dx cos sin x 

1 f x    C x

x

−2

1 sin x

48. fx 

4 2



csc x cot x dx  csc x  C



44. f x  x

451

x3 1 C 3C 3 3x



1  3tt2 dt 

Check:



d 1 1 1   2  3  C  x2  2x3  3x4 dx x x x



Check:

1 dx  x4

Check:





32.



26.

d 4 74 4 x3  1 x  x  C  x34  1   dx 7

x 2  2x  3 dx  x4

Check:

Antiderivatives and Indefinite Integration

x 2

4

−4

f (x) = − 1x

452

50.

Chapter 4

Integration

dy  2x  1  2x  2, 3, 2 dx y

52.



2x  1 dx  x2  2x  C

2  32  23  C ⇒ C  1 y  x2  2x  1

54. (a)

y

(b)

5

4



3

1 C ⇒ C2 1

y

1  2, x > 0 x

x2 dx 

1 C x

5

(−1, 3)

y

x3 xC 3

3

13  1  C 3

−4

4

−5

1 3 1C 3

−5

C y

56. gx  6x 2, g0  1 gx 

y

dy  x2  1, 1, 3 dx

x

−4

1 dy   2  x2, 1,3 dx x



6x 2 dx  2x3  C

7 3 7 x3 x 3 3 58. fs  6s  8s 3, f 2  3 f s 



6s  8s 3ds  3s 2  2s 4  C

g0  1  203  C ⇒ C  1

f 2  3  322  224  C  12  32  C ⇒ C  23

gx  2x3  1

f s  3s 2  2s 4  23 62. f x  sin x

60. f x  x2 f0  6

f0  1

f 0  3 fx 

f 0  6



1 x 2 dx  x3  C1 3

fx 



sin x dx  cos x  C1

f0  0  C1  6 ⇒ C1  6

f0  1  C1  1 ⇒ C1  2

1 fx  x3  6 3

fx  cos x  2

f x 





1 3 1 x  6 dx  x 4  6x  C2 3 12

f 0  0  0  C2  3 ⇒ C2  3 f x 

1 4 x  6x  3 12

f x 



cos x  2 dx  sin x  2x  C2

f 0  0  0  C2  6 ⇒ C2  6 f x  sin x  2x  6

Section 4.1

64.

dP  kt, 0 ≤ t ≤ 10 dt Pt 



2 kt12 dt  kt32  C 3

Antiderivatives and Indefinite Integration

66. Since f is negative on  , 0, f is decreasing on  , 0. Since f is positive on 0, , f is increasing on 0, . f has a relative minimum at 0, 0. Since f is positive on  , , f is increasing on  , .

P0  0  C  500 ⇒ C  500

y 3

2 P1  k  500  600 ⇒ k  150 3 2 Pt  150t32  500  100t32  500 3

f′

2

−3

x

−2

1

70. v0  16 ftsec

f 0  s0

(a)

st  16t2  16t  64  0 16t2  t  4  0

32 dt  32t  C1

t

f0  0  C1  v0 ⇒ C1  v0 ft  32t  v0 f t  st 

1 ± 17 2

Choosing the positive value,



32t  v0 dt  16t2  v0t  C2

f 0  0  0  C2  s0 ⇒ C2  s0

3

−3

s0  64 ft



2

−2

f

f0  v0

ft  vt 

f ′′

1

P7  100732  500 2352 bacteria 68. f t  at  32 ftsec2

453

t

1  17

2.562 seconds. 2 vt  st  32t  16

(b)

f t  16t 2  v0t  s0 v

1  2 17  321  2 17  16 



 1617 65.970 ftsec 72. From Exercise 71, f t  4.9t2  1600. (Using the canyon floor as position 0.) f t  0  4.9t2  1600 4.9t2  1600 t2

1600  ⇒ t 326.53 18.1 sec 4.9

74. From Exercise 71, f t  4.9t2  v0t  2. If f t  200  4.9t2  v0t  2, then vt  9.8t  v0  0 for this t value. Hence, t  v09.8 and we solve 4.9

9.8 v0

2

 v0

9.8  2  200 v0

v2 4.9 v02  0  198 2 9.8 9.8 4.9 v02  9.8 v02  9.82 198 4.9 v02  9.82 198 v02  3880.8 ⇒ v0 62.3 msec.

454

76.

Chapter 4



v dv  GM

Integration



1 dy y2



1 2 GM v  C 2 y

 15t  9

(b) vt > 0 when 0 < t <

5 and 3 < t < 5. 3

7 (c) at  6t  14  0 when t  . 3

1 GM C  v02  2 R 1 2 GM 1 2 GM v   v0  2 y 2 R

v

73  373  573  3  2 32   34

2GM 2GM  v02  y R

v2  v02  2GM

80. (a) at  cos t

f t 



7t2

at  vt  6t  14

1 2 GM v  C 2 0 R

vt 

t3

(a) vt  xt  3t2  14t  15  3t  5t  3

When y  R, v  v0.

v2 

0 ≤ t ≤ 5

78. xt  t  1t  32



1y  R1 



at dt 

cos t dt  sin t  C1  sin t since v0  0

vt dt 

sin t dt  cos t  C2

f 0  3  cos0  C2  1  C2 ⇒ C2  4 f t  cos t  4 (b) vt  0  sin t for t  k, k  0, 1, 2, . . . v0  45 mph  66 ftsec

(a) 16.5t  66  44

30 mph  44 ftsec

t

15 mph  22 ftsec at  a

s

vt  at  66

(b) 16.5t  66  22 t

ec

 132 when a  at  16.5 vt  16.5t  66

st  8.25t 2  66t

mp

h=

66

30

33  16.5. 2

44

ft/s

 

h=

 

(c)

66  66 a

mp

 

2

44 16.5  117.33 ft ft/s ec mp 0m h= ph 22 f t/se c

s

66 at  66  0 when t  . a

44

2.667 16.5

0

15

vt  0 after car moves 132 ft.

66 a 66  s a 2 a

22

1.333 16.5

22 16.5  73.33 ft

a st   t2  66t Let s0  0. 2

45

82.

132 73.33 feet

117.33 feet

It takes 1.333 seconds to reduce the speed from 45 mph to 30 mph, 1.333 seconds to reduce the speed from 30 mph to 15 mph, and 1.333 seconds to reduce the speed from 15 mph to 0 mph. Each time, less distance is needed to reach the next speed reduction.

Section 4.1

Antiderivatives and Indefinite Integration

 30

84. No, car 2 will be ahead of car 1. If v1t and v2t are the respective velocities, then

0

86. (a) v  0.6139t3  5.525t2  0.0492t  65.9881

 30



v2t dt >

455



v1t dt.

0



0.6139t4 5.525t3 0.0492t2    65.9881t 4 3 2 Note: Assume s0  0 is initial position

(b) st 

vtdt 

s6 196.1 feet

88. Let the aircrafts be located 10 and 17 miles away from the airport, as indicated in the figure. vAt  kA t  150

vB  kB t  250

1 sAt  kA t2  150t  10 2

Airport

A

B

0

10

17

1 sB  kB t2  250t  17 2

(a) When aircraft A lands at time tA you have vAtA  kA tA  150  100 ⇒ kA 

50 tA

1 sAtA  kA t2A  150tA  10  0 2

 

1 50 2 t  150tA  10 2 tA A 125tA  10 tA 

kA 

10 . 125

 

50 125 625 2 t  150t  10  50  625 ⇒ SAt  S1t  tA 10 2

Similarly, when aircraft B lands at time tB you have vBtB  kB tB  250  115 ⇒ kB 

135 tB

1 sBtB  kB t2B  250tB  17  0 2

 

1 135 2 t  250tB  17 2 tB B 365 t  17 2 B tB 

kB  (b)

34 . 365

 

135 365 49,275 49,275 2  135  ⇒ SBt  S2t  t  250t  17 tB 34 34 68 (c) d  sBt  sAt

20

20

Yes, d < 3 for t > 0.0505. sB

d 3

sA 0.1

0

0

0

90. True

0.1

0

92. True

456

Chapter 4

Integration

94. False. f has an infinite number of antiderivatives, each differing by a constant.

96.

d sx2  cx2  2sxsx  2cxcx dx  2sxcx  2cxsx 0 Thus, sx  cx2  k for some constant k. Since, 2

s0  0 and c0  1, k  1. Therefore,

sx2  cx2  1. [Note that sx  sin x and cx  cos x satisfy these properties.]

Section 4.2

Area 5

6

2.

 kk  2  31  42  53  64  50

4.

4

 i  1

2

1

1

1

47

j3

k3

6.

1

 j  3  4  5  60

 i  13  0  8  1  27  4  64  9  125  238

i1



10.

2

2 n 2i 1 1 n i1 n

18.

 i

10

15

 2i  3  2  i  315

i1





12.

j1

15

16.

j  1  4

4

5 1  i i1

2

i1

i1

10

2

 1 

i1

10

i

3

i1



10

i

22. sum seqx 15

 i

1011 102112   3080  4 2



3

 2i 

 



15 215  1 2 1515  1 2 4 2 152162  1516  14,160 4



2 1 55   3 2 6



2 1 1 9     4.5 3 2 3 2

26. S  5  2  1  s 21

 14  2 14   12  2 14   34  2 14  

i1

3  2x, x, 1, 15, 1  14,160 (TI-82)

i1

s  4  4  2  01  10

28. S8 

1  2





14

 54  2 14   32  2 14   74  2 14  

2  2



5 6 7 1 1 2 3 16    1    2 6.038 4 2 2 2 2 2 2

1 s8  0  2  4

10





24. S  5  5  4  21  16

i  1  n

1 n1 n i0

1



i1





2

14.

101121   10  375 6

 15216  45  195

 ii

2

i1

2

20.



10

i

 1 

>

15

8.

 14  2 14   12  2 14  . . .   74  2 14 5.685

14

2

Section 4.2

30. S5  1  s5 

15  1  15 15  1  25 15  1  35 15  1  45 15 2

2

n→ 

2

24 21 16 9 1 1 0.859    5 5 5 5 5





1  15 15  1  25 15  1  35 15  1  45 15  0 0.659 2

2

2

 64n nn  16 2n  1  646 lim  2n

3

32. lim

2

3

n→

2

 3n2  n 64 64  2  n3 6 3



 n1 nn 2 1  21 lim  n n n  211  21  2

34. lim n→

2

4j  3 1 n 1 4nn  1 2n  5  3n   Sn  2 4j  3  2 2 n j1 n 2 n j1 n n

36.

2

n→







S10 



25  2.5 10

S100  2.05 S1000  2.005 S10,000  2.0005 4 n 3 4 n2n  12 nn  12n  1 4i2i  1  4 i  i2  4  4 n n n 4 6 i1 i1 n

38.











4 n3  2n2  n 2n2  3n  1  n3 4 6



1 3n3  6n2  3n  4n2  6n  2 3n3



1 3n3  2n2  3n  2  Sn 3n3





S10  1.056 S100  1.006566 S1000  1.00066567 S10,000  1.000066657

40. lim

  n n 

42. lim

 1  n  n 

n

2i

2

n→  i1

n

n→  i1

2i

2

lim

n→ 

2

4 n 4 nn  1 4 1 i  lim 2 1 2  lim n→  n n→  2 n2i1 2 n





lim

n→ 

 2 lim

 n n

2

i1

i  4 i

n

n

i1

i1

 4n

2

2 3 nn  1 4nn  12n  1 n  4n  n3 2 6

n→ 







2 n→  n3 n→ 



2 n n  2i2 n3i1

 lim  lim









1  2  n2  34  n2  3n2

2 12

2



4 26  3 3



Area

457

458

Chapter 4

1  n n  2 lim n  n  2i   n

3

2i

44. lim n→

Integration

2

n

1

n→

i1

3

4

i1

1 n 3 n  6n2i  12ni 2  8i 3 n→  n4 i1



 2 lim  2 lim

1 4 nn  1 nn  12n  1 n2n  12 n  6n2  12n 8 n4 2 6 4

 2 lim

1  3  n3  4  n6  n2  2  n4  n2

n→ 







 2 lim 10 

46. (a)





2

n→ 

n→ 







2



4 13  2  20 n n

(b) x 

y

31 2  n n

4

Endpoints: 3

1 < 1

2 1

1 16,666.67, n > 129.10; let n  130. 12n2

Trapezoidal: Error ≤ f 4 x 



24 in 0, 1 1  x 5







(b) f 4 x is maximum when x  0 and f 4 0  24. Simpson’s: Error ≤

1 24 < 0.00001, n4 > 13,333.33, n > 10.75; let n  12. (In Simpson’s Rule n must be even.) 180n4

28. f x  x  1 23 (a) f x  

2 in 0, 2 . 9x  1 43 2

 f x  is maximum when x  0 and  f 0   9.

  < 0.00001, n

8 2 12n4 9

Trapezoidal: Error ≤ (b) f 4 x  

> 14,814.81, n > 121.72; let n  122.

2

56 in 0, 2 81x  1 103 56

 f 4 x  is maximum when x  0 and  f 4 0   81.

  < 0.00001, n

32 56 Simpson’s: Error ≤ 180n4 81 be even.)

4

> 12,290.81, n > 10.53; let n  12. (In Simpson’s Rule n must

30. f x  sinx2 (a) f x  2 2x2 sinx2  cosx2 in 0, 1 .

 f  x  is maximum when x  1 and  f  1   2.2853. 1  0 3 2.2853 < 0.00001, n2 > 19,044.17, n > 138.00; let n  139. 12n2 (b) f 4 x  16x4  12 sinx2  48x2 cosx2 in 0, 1 Trapezoidal: Error ≤

 f 4 x  is maximum when x  0.852 and  f 4 0.852   28.4285. Simpson’s: Error ≤

1  0 5 28.4285 < 0.00001, n4 > 15,793.61, n > 11.21; let n  12. 180n4

32. The program will vary depending upon the computer or programmable calculator that you use. 34. f x  1  x2 on 0, 1 . Ln

Mn

Rn

Tn

Sn

4

0.8739

0.7960

0.6239

0.7489

0.7709

8

0.8350

0.7892

0.7100

0.7725

0.7803

10

0.8261

0.7881

0.7261

0.7761

0.7818

12

0.8200

0.7875

0.7367

0.7783

0.7826

16

0.8121

0.7867

0.7496

0.7808

0.7836

20

0.8071

0.7864

0.7571

0.7821

0.7841

n

482

Chapter 4

Integration

sin x on 1, 2 . x

36. f x 

Ln

Mn

Rn

Tn

Sn

4

0.7070

0.6597

0.6103

0.6586

0.6593

8

0.6833

0.6594

0.6350

0.6592

0.6593

10

0.6786

0.6594

0.6399

0.6592

0.6593

12

0.6754

0.6594

0.6431

0.6593

0.6593

16

0.6714

0.6594

0.6472

0.6593

0.6593

20

0.6690

0.6593

0.6496

0.6593

0.6593

n

38. Simpson’s Rule: n  8



2

8 3

1  32 sin  d  2

0

3

 1  32 sin 0  4 1  32 sin 16  2 1  32 sin 8  . . .  1  32 sin 2

2

2

2

2

6  17.476

40. (a) Trapezoidal:



2

f x dx 

0

2 4.32  24.36  24.58  25.79  26.14  27.25  27.64  28.08  8.14  12.518 28

Simpson’s:



2

f x dx 

0

2 4.32  44.36  24.58  45.79  26.14  47.25  27.64  48.08  8.14  12.592 38

(b) Using a graphing utility, y  1.3727x3  4.0092x2  0.6202x  4.2844



2

Integrating,

y dx  12.53

0

42. Simpson’s Rule: n  6



1

4

0



4 4 2 4 2 4 1 1 dx  1      1  x2 36 1  16 2 1  26 2 1  36 2 1  4 6 2 1  56 2 2



 3.14159 44. Area 

120 75  281  284  276  267  268  269  272  268  256  242  223  0 212

 7435 sq m 46. The quadratic polynomial px 

x  x2 x  x3 x  x1 x  x3 x  x1 x  x2 y  y  y x1  x2 x1  x3 1 x2  x1 x2  x3 2 x3  x1 x3  x2 3

passes through the three points.

Review Exercises for Chapter 4

Review Exercises for Chapter 4 1.

y

3.



7.



f

2 1 2x2  x  1 dx  x3  x2  x  C 3 2

f

x

5.



x3  1 dx  x2



x



1 1 1 dx  x2   C x2 2 x

9. fx  2x, 1, 1 f x 

11.



2x dx  x2  C

When x  1:

4x  3 sin x dx  2x2  3 cos x  C

at  a vt 



a dt  at  C1

v0  0  C1  0 when C1  0.

y  1  C  1

vt  at

C2

st 

y  2  x2



a at dt  t2  C2 2

s0  0  C2  0 when C2  0. a st  t 2 2 a s30  302  3600 or 2 a

23600  8 ftsec2. 302

v30  830  240 ftsec 10

13. at  32

15. (a)

i1

vt  32t  96

n

(b)

st  16t2  96t (b) s3  144  288  144 ft

(d) s

i

3

i1

(a) vt  32t  96  0 when t  3 sec.

(c) vt  32t  96 

 2i  1

96 3 when t  sec. 2 2

32  1694  9632  108 ft

10

(c)

 4i  2

i1

209

210

Chapter 4

17. y 

Integration

1 10 , x  , n  4 x2  1 2



1 10 10 10 10    2 1 122  1 12  1 322  1

Sn  S4 



13.0385



10 10 10 10 1    2 122  1 1  1 322  1 22  1

s n  s4 



9.0385 9.0385 < Area of Region < 13.0385 4 19. y  6  x, x  , right endpoints n

8

n

6

f ci x  

Area  lim n→

y

 lim

4

i1

 n

n→  i1

2



4i 4 n n

6

 lim

4 4 nn  1 6n  n n 2

 lim

24  8

n→ 

n→ 



21. y  5  x2, x  Area  lim

x

−2

2



3 n

y 6

 f ci x 

n→  i1

4 3 2



3i 5  2  n

  



2

3 n 12i 9i2  2 1 n→  n i1 n n

 lim

1

3 n

−4 −3



3 12 nn  1 9 nn  12n  1 n  2 n n 2 n 6

 lim

3  18 n n 1  92 n  1n2n  1

n→ 

x

−1

1

2

3

4

−2

 lim

n→ 

8

n1  24  8  16 n

n→  i1

 lim

6



n

n

4

−2





2

 3  18  9  12

23. x  5y  y2, 2 ≤ y ≤ 5, y  Area  lim

3 n

y 6

 52  n   2  n   n  n

3i

3i

2

3

4

n→  i1

 lim

n→ 



n

9i2

3 15i i 10   4  12  2 n i1 n n n



3 n 3i 9i2  lim 6  2 n→  n i1 n n  lim

n→ 



3



 18 



9 27 9  2 2

1 x 1



3 3 nn  1 9 nn  12n  1 6n   2 n n 2 n 6



2



2

3

4

5

6

Review Exercises for Chapter 4

n

25.

2ci  3 xi   

lim

 →

i1



6

2x  3 dx

211

y

27.

4

12 9 6 3 x

−3

3

6

9

−3

 5

0



5

5  x  5 dx 

0

0

(triangle)

   

6

29. (a)

2

2 6

(c)





gx dx  210  33  11

2

f x dx  510  50

43



2  x dx  2x 

x2 2



xx dx 

4

3



0

9



 4 16  8  4  1 

x

9

4

0

4



2x  1 dx  x2  x

1

8

52

sin d  cos

3

4

3

34









3

1

9





0



8

25x

x3 2 dx 

4

34

41.

2

4x



3 x  1 dx  

1

39.

6

2

8

37.



f x dx  3

6

5f x dx  5

2

33.

gx dx  10  3  7

2

6

6

31.



2f x  3gx dx  2

2

(d)

6

f x dx 

2

gx dx  10  3  13

2

6

 f x  gx dx 

 

6

f x dx 

2

6

(b)

 

6

 f x  gx dx 





35.

1

2

2

11

2

2





43.



x2  9 dx 

3

y

6

4

2

x3

6

643  36  9  27



64 54 10   3 3 3

6 4 2 x

2

4

6

4



x 4

0

3

y

2

1

3  9x

8 2

1

2 4

6



4t 3  2t dt  t 4  t 2

2  2

3 1



2  9 5   4 5  52243  32  422 5 5

 

0

73 (c) 4 1

16  16 2

8



5

5  5  x dx 

x dx 

25 2

212

Chapter 4



Integration

1

45.

x  x3 dx 

0

2  4 x2

x4

1 0





9

1 1 1   2 4 4

47. Area 

1

4 x

dx 

12 4x12

9 1

 83  1  16

y

y 10 8

1

6 4

x 1

2 −2

1

49.

1 94



9

4

1 x

5 2x

9

1

dx 

4

2 2  3  2  Average value 5 5

x 2

−2

4

6

y

1

x 2

51. Fx  x21  x3



x2  13 dx 

x2 x3  3

dx 

4

6

8

10

53. Fx  x2  3x  2



x6  3x4  3x2  1 dx 

57. u  x3  3, du  3x2 dx



25 2 , 4 5

5 2

25 x 4

55.

10

2

2 1  5 x x 

8



x3  312 x2 dx 

x7 3 5  x  x3  x  C 7 5



1 2 x3  312 3x2 dx  x3  312  C 3 3

59. u  1  3x2, du  6x dx



x1  3x24 dx  

61.



63.



65.



67.



69.



sin3 x cos x dx 

sin 1  cos



1 1 1 1  3x246x dx   1  3x25  C  3x2  15  C 6 30 30

1 4 sin x  C 4



1  cos 12 sin d  21  cos 12  C  21  cos  C

dx 

tann x sec2 x dx 

tann1 x  C, n 1 n1

1  sec  x2 sec  x tan  x dx  2

1

xx2  4 dx 

1 2





1 1 1  sec  x2 sec  x tan  x dx  1  sec  x3  C  3

2

1

x2  42x dx 

1 x2  42 2 2



2

1 9  0  9   4 4 1

Review Exercises for Chapter 4



3

71.

0



3

1 dx  1  x





1  x12 dx  21  x12

0

3 0

213

422

73. u  1  y, y  1  u, dy  du When y  0, u  1. When y  1, u  0.



1

2

 

0

 y  11  y dy  2

0

 1  u  1u du

1 0

 2

u32  2u12 du  2

1





75.

cos

0







x dx  2 2



cos

0

2x  12 dx  2 sin2x 

0

25u

52



0

4  u32 3

1



28 15

2

77. u  1  x, x  1  u, dx  du When x  a, u  1  a. When x  b, u  1  b.



b

Pa, b 

a



15 4

15 15 x1  x dx  4 4



 1  uu du

1a

u32  u12 du 

1a





1b

1b

(a) P0.50, 0.75   (b) P0, b  



1  x32 3x  2 2





1  x32 3x  2 2



b 0



15 2 52 2 32 u  u 4 5 3 0.75 0.50



1b 1a







15 2u32 3u  5 4 15

1b 1a



 

1  x32 3x  2 2



b a

 0.353  35.3%

1  b32 3b  2  1  0.5 2

1  b 3b  2  1 32

b 0.586  58.6% 79. p  1.20  0.04t C

15,000 M



t1

p ds

t

(b) 2005 corresponds to t  15.

(a) 2000 corresponds to t  10. C 

15,000 M



11

1.20  0.04t dt

C

10





11

15,000 1.20t  0.02t2 M

 

2

81. Trapezoidal Rule n  4:

1

2

Simpson’s Rule n  4:

1

10





15,000 1.20t  0.02t2 M



16 15



27,300 M

24,300 M









1 1 1 2 2 2 1 dx     0.257 1  x3 8 1  13 1  1.253 1  1.53 1  1.753 1  23

1 1 1 4 2 4 1 dx     0.254 1  x3 12 1  13 1  1.253 1  1.53 1  1.753 1  23

Graphing utility: 0.254 83. Trapezoidal Rule n  4:



2

x cos x dx 0.637

85. (a) R < I < T < L

0

Simpson’s Rule n  4: 0.685

(b) S4 

Graphing Utility: 0.704

40  f 0  4f 1  2f 2  4f 3  f 4 34







1 1 1 4  42  21  4  5.417 3 2 4

214

Chapter 4

Integration

Problem Solving for Chapter 4



1

1. (a) L1 

1

(b) Lx 

1 dt  0 t

1 by the Second Fundamental Theorem of Calculus. x

L1  1



x

(c) Lx  1 

1



2.718

1 dt for x  2.718 t

1 dt  0.999896 t

1



x1

(d) We first show that

1

To see this, let u 



x1

Then

1

1 dt  t



1 dt  t



1

1 dt. 1x1 t

1 t and du  dt. x1 x1

1

1 x1 du  1x1 ux1

Lx1x2 

Now,

(Note: The exact value of x is e, the base of the natural logarithm function.)

  

x1x2

1



1

1 du  1x1 u x2

x2

1 du  1x1 u x1

1

1 du  u



1

1

1x1 t



dt.

t 1 du using u  u x 1x1 1

1 dt  t

1



   

1

x2

1



1 du u

1 du u

 Lx1  Lx2 .



x

3. Sx 

0

sin

2t  dt 2

y

(a)

y

(b)

2

3

1 2 x 1

3

1

−1

x

−2

1

2

The zeros of y  sin

3

2

5

 x2  x2 0 ⇒  n ⇒ x2  2n ⇒ x  2n, n integer. 2 2

Relative maximum at x  2  1.4142 and x  6  2.4495 Relative minimum at x  2 and x  8  2.8284 (d) S x  cos

2x  x  0 ⇒ 2x 2

2



  n ⇒ x2  1  2n ⇒ x  1  2n, n integer 2

Points of inflection at x  1, 3, 5, and 7.

72 23

 x2 correspond to the relative 2

extrema of Sx. (c) Sx  sin

6

Problem Solving for Chapter 4 y

5. (a) 5 4 3 2 1

(b) (6, 2)

(8, 3) f

x

0

1

Fx

0



(0, 0)

2

1 2

3

2



4

7 2

5

4



7 2

215

6

7

8

2

1 4

3

x 2

−1 −2 −3 −4 −5

4 5 6 7 8 9

(2, −2)





1, 1, (d) F x  fx  1, 2

0 ≤ x < 2 x, x  4, 2 ≤ x < 6 (c) f x  1 x  1, 6 ≤ x ≤ 8 2



0 ≤ x < 2  x22, Fx  f t dt  x22  4x  4, 2 ≤ x < 6 0 14x2  x  5, 6 ≤ x ≤ 8



x

0 < x < 2 2 < x < 6 6 < x < 8

x  2 is a point of inflection, whereas x  6 is not. ( f is not continuous at x  6.)

Fx  f x. F is decreasing on 0, 4 and increasing on 4, 8. Therefore, the minimum is 4 at x  4, and the maximum is 3 at x  8.

 



1

7. (a)

1

cos x dx  cos 

1

1



1 3

1

cos x dx  sin x

1



  cos 13  2 cos 13  1.6758



 2 sin1  1.6829



Error. 1.6829  1.6758  0.0071



1

(b)

1 1

1 1 3 1 dx     x2 1  13 1  13 2

(Note: exact answer is 2  1.5708)

(c) Let px  ax3  bx2  cx  d.



1

1



ax4

4

px dx 

p 

1 3





b

a



1 Fx dx 2



b

f x fx dx 

a

b

1



2b  2d 3



11. Consider



x5 dx 

0

1  Fx 2

1

  p 13  b3  d  b3  d  2b3  2d 1

9. Consider Fx   f x2 ⇒ Fx  2f x fx. Thus,



bx3 cx2   dx 3 2

x6 6



1 0

1  . 6

The corresponding Riemann Sum using right endpoints is Sn 

1 n

1n  2n 5

5

 

n . . . n

5

a

1  Fb  Fa 2 1  f b2  f a2 2



1 5 1  25  . . .  n5 n6

Thus, lim Sn  lim n→ 

n→ 

15  25  . . .  n5 1  . n6 6

216

Chapter 4

Integration

 

 

b

13. By Theorem 4.8, 0 < f x ≤ M ⇒

b

f x dx ≤

a

b

Similarly, m ≤ f x ⇒ mb  a 

b

f x dx.

m dx ≤

a



M dx  Mb  a.

a

a

b

Thus, mb  a ≤



f x dx ≤ Mb  a. On the interval 0, 1, 1 ≤ 1  x4 ≤ 2 and b  a  1.

a

1

Thus, 1 ≤



1  x4 dx ≤ 2.

0









15. Since  f x ≤ f x ≤ f x ,

 b



a

17.

1 365



365

0



b



f x dx ≤

a

100,000 1  sin

 b

f x dx ≤



1

Note:

1  x4 dx  1.0894

0



f x dx ⇒

a



b

a



f x dx ≤

 b

a





f x dx.

2t  60 100,000 365 2t  60 dt  t cos 365 365 2 365



365



0

 100,000 lbs.

C H A P T E R 5 Logarithmic, Exponential, and Other Transcendental Functions Section 5.1

The Natural Logarithmic Function: Differentiation . . . . 493

Section 5.2

The Natural Logarithmic Function: Integration . . . . . . 498

Section 5.3

Inverse Functions . . . . . . . . . . . . . . . . . . . . . . 503

Section 5.4

Exponential Functions: Differentiation and Integration . . 509

Section 5.5

Bases Other than e and Applications . . . . . . . . . . . . 516

Section 5.6

Differential Equations: Growth and Decay . . . . . . . . . 522

Section 5.7

Differential Equations: Separation of Variables

Section 5.8

Inverse Trigonometric Functions: Differentiation . . . . . 535

Section 5.9

Inverse Trigonometric Functions: Integration

. . . . . . 527

. . . . . . . 539

Section 5.10 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . 543 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

C H A P T E R 5 Logarithmic, Exponential, and Other Transcendental Functions Section 5.1

The Natural Logarithmic Function: Differentiation

Solutions to Even-Numbered Exercises 2. (a)

(b)

y

3

3 0.2

4

2 1 −4 x 1

2

3

4

The graphs are identical.

−1

4. (a) ln 8.3  2.1163



8.3

(b)

1

6. (a) ln 0.6  0.5108



0.6

1 dt  2.1163 t

(b)

1

8. f x  ln x

1 dt  0.5108 t

10. f x  ln x

Reflection in the x-axis

Reflection in the y-axis and the x-axis

Matches (d)

Matches (c)



14. f x  ln x

12. f x  2 ln x

16. gx  2  ln x

Domain: x  0

Domain: x > 0 y

Domain: x > 0 y

y 3

2

3

2 1 1

2

x 1

2

3

4

−3

−2

x

−1

1

2

3

−1

1

−2 −2

18. (a) ln 0.25  ln 14  ln 1  2 ln 2  1.3862

x

−3

1

2

3

20. ln23  ln 232  32 ln 2

(b) ln 24  3 ln 2  ln 3  3.1779 3 12  1 2 ln 2  ln 3  0.8283 (c) ln  3

1 (d) ln 72  ln 1  3 ln 2  2 ln 3  4.2765

22. ln xyz  ln x  ln y  ln z

1 24. lna  1  lna  112   2  lna  1

26. ln 3e2  ln 3  2 ln e  2  ln 3

28. ln

1  ln 1  ln e  1 e

493

494

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

30. 3 ln x  2 ln y  4 ln z  ln x3  ln y 2  ln z4  ln

x 3y 2 z4

32. 2 ln x  lnx  1  lnx  1  2 ln

34.



x x  ln 2 x  1x  1 x 1

3 3 x2  1 lnx2  1  lnx  1  lnx  1  ln  ln 2 2 x  1x  1

36.



2

 xx

1 1

2 2



3

38. lim ln6  x   

3

40. lim ln x →5

x →6

x x  4

f=g −1

5 −1

42. y  ln x32  y 

3 ln x 2

44. y  ln x12 

3 2x

y 

46. hx  ln2x2  1

50.

48.



1 lnx2  4 2

1 dy x  ln x  1  ln x dx x

52. f x  ln



dy 1 2x x   2 dx 2 x2  4 x 4 ln t t

54. ht 

58. y  ln y 

xx  11  31 lnx  1  lnx  1



fx 

56.

t1t  ln t 1  ln t ht   t2 t2

3



1 1 1 1 2 2    3 x1 x1 3 x2  1 3x2  1

y  x ln x



1 4x 4x  2 2x2  1 2x  1

y  lnx2  4 

1 2x

1 At 1, 0, y  2 .

3 At 1, 0, y  2.

hx 

1 ln x 2

x 2x 3  ln 2x  lnx  3

1 1 3   x x  3 xx  3

y  lnln x 1 dy 1x   dx ln x x ln x

60. f x  ln x  4  x2  fx  



1 x 1 4  x2 x  4  x2 1 4  x2



 ln 5  1.6094

Section 5.1

62.



 x2  4 1 2  x2  4  ln 2x2 4 x

y



x2  4

2x2

The Natural Logarithmic Function: Differentiation



dy 2x2 xx2  4  4xx2  4 1 1   dx 4x 4 4 2  x2  4



1 1 ln 2  x2  4   ln x 4 4

x x 4  4x1 2

Note that: 1 1  2  x2  4 2  x2  4 Hence,





2  x2  4 2  x2  4  x2 2  x2  4

x2  4 1 1  2  x2  4 x 1 dy     3 2 dx 2xx  4 x 4 x2 4x x2  4





1  12 2  x2  4 x2  4 1   3 2 x 4x 2xx  4



x2  4 x2  4 1  x2  4    3 2 x 4x x3 4xx  4



64. y  ln csc x y 

66.

csc x  cot x  cot x csc x





dy sec x tan x  sec2 x  dx sec x  tan x 

68.

y  ln1  sin2 x 



y  ln sec x  tan x

1 ln1  sin2 x 2

sec xsec x  tan x  sec x sec x  tan x



ln x

70. gx 

t 2  3dt

l



dy 1 2 sin x cos x sin x cos x   dx 2 1  sin2 x 1  sin2 x

gx  ln x2  3

d ln x2  3 ln x  dx x

(Second Fundamental Theorem of Calculus)

72. (a)

y  4  x2  ln

12 x  1 ,

0, 4



1 1 dy  2x  dx 12x  1 2  2x  When x  0,

1 x2 dy 1  . dx 2

1 Tangent line: y  4   x  0 2 1 y x4 2 (b)

8

−4

4

−4

74.

lnxy  5x  30 ln x  ln y  5x  30 1 1 dy  50 x y dx 1 dy 1  5 y dx x y  5xy y dy    5y   dx x x





495

496

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

y  xln x  4x

76.

y  x

1x  ln x  4  3  ln x

x  y  xy  x  x ln x  4x  x3  ln x  0 78. y  x  ln x

6

Domain: x > 0 y  1  y 

1  0 when x  1. x

(1, 1) −1

6 −1

1 > 0 x2

Relative minimum: 1, 1 80. y 

ln x x

2

(e, e−1)

3 2

3 − 23

,2e

−1

Domain: x > 0 y 

(e

) 6

x1x  ln x 1  ln x   0 when x  e. x2 x2

−4

x21x  1  ln x2x 2ln x  3 y    0 when x  e32. x4 x3 Relative maximum: e, e1 3 Point of inflection:  e32, 2 e32

x 82. y  x2 ln . 4 y  x2

Domain x > 0







x x 1  2x ln  x 1  2 ln  0 when x 4 4

x x 1 1  2 ln ⇒ ln   ⇒ x  4e12 4 4 2 y  1  2 ln



f x  x ln x,

84.

x 1 x  2x  3  2 ln 4 x 4

fx  1  ln x, 1 f x  , x

Point of inflection: 4e32, 24e3 4

(4e−3/2, −24e−3)

−4

−4

(4e−1/2, −8e−1)

f 1  1

P2x  f 1  f1x  1   x  1  P1x  1,

1 x  1 2, 2

P11  0

1 f 1x  12 2 P21  0

P11  1

P2x  1  x  1  x, P2 x  x,

8

f 1  1

P1x  f 1  f1x  1  x  1,

y  0 when x  4e32 Relative minimum: 4e12, 8e1

f 1  0

P21  1

P2 1  1

The values of f, P1, P2, and their first derivatives agree at x  1. The values of the second derivatives of f and P2 agree at x  1. 3

f P1

P2 −2

4 −1

Section 5.1 86. Find x such that ln x  3  x.

The Natural Logarithmic Function: Differentiation

88.

f x  x  ln x  3  0 fx  1  xn1

f xn  4  ln xn  xn   xn fxn  1  xn

n

1

xn

2

2

f xn 

 0.3069

y  x  1x  2x  3 ln y 

1 x



1 lnx  1  lnx  2  lnx  3

2

1 dy 1 1 1 1    y dx 2 x1 x2 x3



 3

2.2046

2.2079

 0.0049

0.0000

497

1 3x2  12x  11 2 x  1x  2x  3





dy 3x2  12x  11  dx 2y 

3x2  12x  11 2x  1x  2x  3

Approximate root: x  2.208

xx

2

y

90.

2

1 1

92.

dy  dx

x

x2 2

1 2x  1 x4  1

x  1x  2 x  1x  2

ln y  lnx  1  lnx  2  lnx  1  lnx  2

1 ln y  lnx2  1  lnx2  1

2 1 dy 1 2x 2x   y dx 2 x2  1 x2  1

y



1 1 dy 1 1 1     y dx x1 x2 x1 x2



dy 2 4 6x2  12 y 2  2 y 2 dx x 1 x 4 x  1x2  4





x2  1122x  2 x  112x2  1x2  1



x  1x  2 6x2  2  x  1x  2 x  1x  1x  2x  2



2x  2 x  132x2  112



6x2  2 x  12x  22

94. The base of the natural logarithmic function is e. 96. gx  ln f x, f x > 0 gx 

fx f x

(a) Yes. If the graph of g is increasing, then gx > 0. Since f x > 0, you know that fx  gxf x and thus, fx > 0. Therefore, the graph of f is increasing. 98. t  (a)

(b) No. Let f x  x2  1 (positive and concave up). gx  lnx2  1 is not concave up.

5.315 , 1000 < x 6.7968  ln x (d)

50



dt 1  5.3156.7968  ln x2 dx x 

4000

1000 0

(b) t1167.41  20 years T  1167.412012  $280,178.40 (c) t1068.45  30 years T  1068.453012  $384,642.00

5.315 x6.7968  ln x2

When x  1167.41, dtdx  0.0645. When x  1068.45, dtdx  0.1585. (e) There are two obvious benefits to paying a higher monthly payment: 1. The term is lower 2. The total amount paid is lower.

498

Chapter 5

100. (a)

Logarithmic, Exponential, and Other Transcendental Functions (b) T p 

350

34.96 3.955  p p

(c)

30

T10  4.75 deglbin2 0

T70  0.97 deglbin2

100

0

100 0

0

lim Tp  0

p→ 

102. y  10 ln (a)

10 

100  x2

x

 100  x

2

 10 ln 10  100  x2  ln x  100  x2 (c) lim

20

x→10

0

dy 0 dx

10 0

(b)

dy x 1 x  10   dx x 100  x2 10  100  x2 100  x2



 



x



10



10

100  x2 10  100  x2

x

100  x2 10  100  x2



  10x  100x  x

2



1 

10 x





100  x2 10 x  2 2 x 100  x 10  100  x



x 10  x 10  100  x2



2 x 10  100  x2  10   100  x x x x2

When x  5, dydx   3. When x  9, dydx   199. 104. y  ln x y 

106. False

 is a constant.

1 > 0 for x > 0. x

Since ln x is increasing on its entire domain 0, , it is a strictly monotonic function and therefore, is one-to-one.

Section 5.2 2.

6.



d ln   0 dx

The Natural Logarithmic Function: Integration

10 1 dx  10 dx  10 ln x  C x x



1 1 1 dx  3 dx 3x  2 3 3x  2 1  ln 3x  2  C 3





4. u  x  5, du  dx

1 dx  ln x  5  C x5





8. u  3  x3, du  3x2 dx



x2 1 1 dx   3x2 dx 3  x3 3 3  x3 1   ln 3  x3  C 3





Section 5.2

The Natural Logarithmic Function: Integration

499

10. u  9  x2, du  2x dx

12.

x 9  x2

x3

1 9  x2122x dx   9  x2  C 2

dx  

1 xx  2 3x2  6x dx  dx u  x3  3x2  4 2 3  3x  4 3 x  3x2  4 

14.

1 ln x3  3x2  4  C 3



2x2  7x  3 dx  x2





2x  11 



19 dx x2



16.

x3  6x  20 dx  x5



 x2  11x  19 ln x  2  C

18.

x3  3x2  4x  9 dx  x2  3



3  x 

 3x 









 3 ln 1  x13  C



x2  5x  19 



1

 x dx

1 ln ln x  C 3

xx  2 dx  x  13  

  



x2  2x  1  1 dx x  13

x  12 dx  x  13

1 dx  x1

1 dx x  13





 ln x  1 

26. u  1  3x, du 

1 dx  1  3x 

3 2 dx ⇒ dx  u  1 du 23x 3



12 u  1 du u3

2 3

1



1 du u

2  u  ln u  C 3







2 1  3x  ln1  3x  C 3

2 2  3x  ln1  3x   C1 3 3



115 dx x5

x3 5x2   19x  115 ln x  5  C 3 2

1 1 1 dx  x lnx3 3 ln x 

24.

1 1 1 dx  3 dx 1  x13 1  x13 3x23

x23

20.

x2 1  lnx2  3  C 2 2

1 dx 3x23

22. u  1  x13, du 



x dx x2  3





1 dx x  13

1 C 2x  12



500

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

28. u  x13  1, du 

3 x 

x  1 3

dx 

1 dx ⇒ dx  3u  12 du 3x23





u1 3u  12 du u u1 2 u  2u  1 du u

3 3

u2  3u  3 

 u3  3

3

 x

13

3

   C

3u2  3u  ln u 2

 13 3x13  12   3x13  1  ln x13  1 3 2



tan 5 d 

  C





 3 ln x13  1 

30.



1 du u

3x23  3x13  x  C1 2

1 5 sin 5 d 5 cos 5

32.

sec

1   ln cos 5  C 5





34. u  cot t, du  csc2 t dt

csc2



 2 ln sec

36.



x x  tan  C 2 2

sec t  tan t dt  lnsec t  tan t  lncos t  C



t dt  ln cot t  C cot t





x x 1 dx  2 sec dx 2 2 2



 ln



sec t  tan t C cos t





 ln sec tsec t  tan t  C

38. y 

2x dx x2  9

40. r 



 0, 4: 4  ln0  9  C ⇒ y  lnx2  9  4  ln 9  ln x2  9  C

sec2 t dt tan t  1









 ln tan t  1  C C  4  ln 9

, 4: 4  ln0  1  C ⇒ C  4 r  ln tan t  1  4 10

8

(0, 4)

−9

9 −8

(π , 4) −2

−4

42.

dy ln x  , 1, 2 dx x (a)

8

(b)

y

y

ln x ln x2 dx  C x 2

2

y1  2 ⇒ 2 

1 x

4 −1 −2

Hence, y 

ln 12  C ⇒ C  2 2

ln x2  2. 2

Section 5.2

1

44.

 

The Natural Logarithmic Function: Integration

1 1

1 dx  ln x  2 1 x  2

46. u  ln x, du 

2

e

 ln 3  ln 1  ln 3

e

1

48.

0

x1 dx  x1

1

1

1 dx 

0

0





2

1 dx  x ln x

e

e



e2

   

1 1 dx  ln ln x ln x x

e

 ln 2

2 dx x1

0  1  2 ln 2



1

 x  2 ln x  1



0.2

50.

1 dx x

0.2

csc 2  cot 2 2 d 

0.1

csc2 2  2 csc 2 cot 2  cot2 2  d

0.1 0.2



2 csc2 2  2 csc 2 cot 2  1 d

0.1



 cot 2  csc 2 



 



52. ln sin x  C  ln





 



 ln

0.2 0.1

 0.0024

1  C  ln csc x  C csc x

54. ln csc x  cot x  C  ln

56.











csc x  cot xcsc x  cot x csc2 x  cot2 x  C  ln C csc x  cot x csc x  cot x



1  C  ln csc x  cot x  C csc x  cot x





1  x 2 dx    1  x   6 1  x   4 ln 1  x   C1 1  x  4x  x  4 ln 1  x   C where C  C1  5.

58.

60.

tan2 2x 1 dx  ln sec 2x  tan 2x  sin 2x  C sec 2x 2



4



sin2 x  cos2 x dx  ln sec x  tan x  2 sin x cos x 4

 





2

 ln

2  1 2  1

4



4

2  1.066

Note: In Exercises 62 and 64, you can use the Second Fundamental Theorem of Calculus or integrate the function.

62. F x 

tan t dt

0

Fx  tan x

x2

x

64. F x 

1

1 dt t

2x 2 Fx  2  x x

501

502

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

4

66.

68. A 

y

1

x4 dx  x

4

  x  4 ln x

2 1

1

1

4 dx x 4 1

 4  4 ln 4  1

x 1

3

2

4

 3  4 ln 4  8.5452

−1 −2

6

A3 Matches (a) 9

0 0

4

70.



10 ln cos0.3x 3



10 10 ln cos1.2  1  ln cos0.3  11.7686 3 3

2x  tan0.3x dx  x2 

1

 16 

1



4

8

 



0

5

−2

72. Substitution: u  x2  4 and Power Rule

74. Substitution: u  tan x and Log Rule

76. Answers will vary.

78. Average value 

1 42

4

2

2

4

2

4x  1 dx x2



1 1  2 dx x x



1 x



1 1  ln 2  4 2



1 1  ln 4   1.8863 4 2

 2 ln x   2 ln 4   2 ln 2 

82. t  

84.

10 ln 2

300

250



80. Average value 







300 250



St 

k dt  k ln t  C  k ln t  C since t > 1. t



S2  k ln 2  C  200 S4  k ln 4  C  300 Solving this system yields k  100ln 2 and C  100. Thus, St 





100 ln t ln t  100  100 1 . ln 2 ln 2



x dx 6



3 ln2  3  ln1  0 



3 ln2  3 

   4.1504 units of time

dS k  dt t

sec





10 10 4 ln 200  ln 150  ln ln 2 ln 2 3

0

 12 6 ln sec 6x  tan 6x 

1 dT T  100

10 lnT  100 ln 2

2



4 2

1 20

2 0

Section 5.3 86. k  1: f1x  x  1 k  0.5: f0.5x  k  0.1: f0.1x 

y

x  1

0.5

 2 x  1

f1 8 6

1 x  1  10 10 0.1

10 x

f

4

f

0.1 x

2

88. False

Section 5.3

(b)

10



8

f 4

3x 3x 34 x 4 4







2 x

−2

3  3  4x g f x  g3  4x  x 4

2

f x  1  x3

(b) 2

g −2

x

−1



16 12

 16  16  x  x

f

8

g

g f x  g16  x2  16  16  x2

x 8

 x2  x

f x 

1 , x ≥ 0 1x

gx 

1x , 0 < x ≤ 1 x



20

20

f gx  f 16  x  16  16  x2



16

y

(b)

gx  16  x

1 g f x  g  1x

3

−2

3 x3  x  1  x3  

1 x x 

2 −1

x3

f x  16  x2, x ≥ 0

f gx  f

8

f 3

 1  1  x  x 3 1 

g

y

3 1  x  1   f gx  f     3 1  x 3

g f x  g1 

4

−2

3 1  x gx  

8. (a)

8

y

3x 4

f gx  f

6. (a)

6

Inverse Functions

f x  3  4x



4

90. False; the integrand has a nonremovable discontinuity at x  0.

d 1 ln x  dx x

4. (a)

0.5

2

k→0

gx 

503

10

lim fk x  ln x

2. (a)

Inverse Functions

(b)

1 1x x  1 1x 1x

y

3

g

2

1 1  x 1x 1 1 x x 1

12

1

f x 1



1x x 1

2

3

504

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

10. Matches (b)

12. Matches (d) x2 4 Not one-to-one; does not have an inverse

16. F x 

14. f x  5x  3 One-to-one; has an inverse y

18. gt 

x2

1 t 2  1

Not one-to-one; does not have an inverse

y −2

3

x

−1

1

2 1

−1

1 2

−3

3

x

−1

−3



1 2

1 2

1

1

−1

− 2

−1



20. f x  5xx  1





22. hx  x  4  x  4

One-to-one; has an inverse

Not one-to-one; does not have an inverse

12

9

−9

0

9

6 0

−9

24. f x  cos

3x 2

3 3x 2 4 fx   sin  0 when x  0, , , . . . 2 2 3 3 f is not strictly monotonic on  , . Therefore, f does not have an inverse. 28. f x  lnx  3, x > 3

26. f x  x3  6x2  12x fx  3x2  12x  12  3x  22 ≥ 0 for all x.

fx 

f is increasing on  , . Therefore, f is strictly monotonic and has an inverse.

f x  3x  y

30.

32.

f is increasing on 3, . Therefore, f is strictly monotonic and has an inverse.

f x  x3  1  y

y 3

3 y  1 x

x y 3

3 x  1 f1x  

x

1 > 0 for x > 3. x3

y

3 x 

f x  x2  y, 0 ≤ x

34.

x  y y  x

1 f

x  x

1

y

x x  3

f 1

5 4 3 2

y 3 2

−3

1

−3

2

3

f

2

−1

1

f x

−2

3

f −1 2 3 4 5

f −1

1

f

4

x

−5 − 4 −3

f

y

−4 −5

x 1

2

3

4

Section 5.3 f x  x2  4  y, x ≥ 2

36.

Inverse Functions

505

5 2x  1  y f x  3 

38.

y5  243 486 x5  243 y 486

x  y2  4

x

y  x2  4 f 1x  x2  4, x ≥ 0

f 1x 

y

x5  243 486

5

f

4

−1

6

f

f

3

The graphs of f and f 1 are reflections of each other across the line y  x.

f −1

2

−4

8

1 x 1

2

3

4

−6

5

f x  x3 5  y

40.

f x 

42.

x  y5 3

x2 y x

x

2 y1

y

2 x1

f 1x 

2 x1

y  x5 3

44.

x

0

2

4

f 1x

6

2

0

y

f 1x  x5 3 2

f −1 f −3

3

8 6 4

f

−1

(4, 0) f

The graphs of f and f 1 are reflections of each other across the line y  x.

−6

(2, 2)

2

4 −2

(0, 6)

2

4

6

x 8

6

−4

The graphs of f and f 1 are reflections of each other across the line y  x. 46. f x  k2  x  x3 is one-to-one for all k 0. Since f 13  2, f 2  3  k2  2  23  12k ⇒ k  14 .

x  2 1  1 f x 

48. f x  x  2 on 2,  x2

> 0 on 2, 

f is increasing on 2, . Therefore, f is strictly monotonic and has an inverse.

50. f x  cot x on 0,  fx  csc2 x < 0 on 0,  f is decreasing on 0, . Therefore, f is strictly monotonic and has an inverse.



2

52. f x  sec x on 0,

 2 

fx  sec x tan x > 0 on 0,

f is increasing on 0,  2. Therefore, f is strictly monotonic and has an inverse.

506

54.

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

3  y on 0, 10 x2

f x  2 

f −1

2x2  3  x2y

f

x22  y  3

10

0 0

 3 y  ± 2x 3 2y

x±

f 1x 

The graphs of f and f 1 are reflections of each other across the line y  x.

5

2 3 x, x < 2

56. (a), (b)

58. (a), (b)

2

f −1 f

h −1

−3

10

h

−10

3

10

−10

−2

(c) Yes, f is one-to-one and has an inverse. The inverse relation is an inverse function.

(c) h is not one-to-one and does not have an inverse. The inverse relation is not an inverse function. 60. f x  3

62. f x  ax  b

Not one-to-one; does not have an inverse

f is one-to-one; has an inverse ax  b  y x

yb a

y

xb a

f 1x 

64. f x  16  x4 is one-to-one for x ≥ 0. 16 

x4

x3y

x4

xy3

yx

yx3

4 16  x  y 

f 1

x 

f

fx 

16  x, x ≤ 16 70. Yes, the area function is increasing and hence one-to-one. The inverse function gives the radius r corresponding to the area A.

1 5 1 x  2x3; f 3  243  54  11  a. 27 27 1 5x4  6x2 27

 f 111 

x  x  3, x ≥ 0

1

4 

68. No, there could be two times t1 t2 for which ht1  ht2.

72. f x 



66. f x  x  3 is one-to-one for x ≥ 3.

y

16  y  4 16 



xb ,a 0 a

1 1 27 1    f f 111 f3 534  632 17

Section 5.3

Inverse Functions

f x  cos 2x, f 0  1  a

74.

fx  2 sin 2x

 f 11 

1 1 1 1  which is undefined.   f f 11 f0 2 sin 0 0

f x  x  4, f 8  2  a

76.

fx 

 f 12 

1 2x  4 1 1 1 1    4 f f 12 f8 1  28  4  1 4

78. (a) Domain f  Domain f 1   , 

(d)

f x  3  4x, 1, 1

(b) Range f  Range f 1   , 

fx  4

(c)

f1  4

y

f f

x

−5 −4 −3 −2 −1 −2 −3 −4 −5

2 3

80. (a) Domain f  0, , Domain f 1  0, 4 (b) Range f  0, 4, Range f 1  0,  (c)

y 4

2

1 4

 f 11  

1 4

f x 

4 1  x2

fx 

8x , f1  2 x2  12

x 1

2

4 x x 2

 f 1x 

f −1 f

82.

(d)

 f 1x  

f 1x 

3

1

3x , 1, 1 4

f 1x 

3 2

−1

3

4



x2

4x x

,  f 12  

1 2

x  2 lny2  3 12

dy 1 2y y2  3 dx

dy 16  3 13 dy y2  3  . At 0, 4,   . dx 4y dx 16 16 In Exercises 84 and 86, use the following. f x  18 x  3 and g x  x3 3 f1 x  8 x  3 and g1 x   x

84. g1 f 13  g1 f 13  g10  0

3 4 86. g1 g14  g1g14  g1 



3  3 9  4    4

507

508

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

In Exercises 88 and 90, use the following. f x  x  4 and g x  2x  5 f1 x  x  4 and g1 x 

x5 2

88.  f 1 g1x  f 1g1x  f 1

90. g f x  g f x

x 2 5



x5 4 2



x3 2

92. The graphs of f and f 1 are mirror images with respect to the line y  x.

 gx  4  2x  4  5  2x  3

Note: g f 1

94. Theorem 5.9: Let f be differentiable on an interval I. If f has an inverse g, then g is differentiable at any x for which fgx 0. Moreover, gx 

96. f is not one-to-one because different x-values yield the same y-value.

 34  53

Example: f 3  f 

x3 2  f 1 g1

Hence, g f 1x 

1 , fgx 0 fgx

98. If f has an inverse, then f and f 1 are both one-to-one. Let  f11x  y then x  f 1 y and f x  y. Thus,  f 11  f.

Not continuous at ± 2. 100. If f has an inverse and f x1  f x2, then f 1 f x1  f 1 f x2 ⇒ x1  x2. Therefore, f is one-to-one. If f x is one-toone, then for every value b in the range, there corresponds exactly one value a in the domain. Define gx such that the domain of g equals the range of f and gb  a. By the reflexive property of inverses, g  f 1. 102. True; if f has a y-intercept.

104. False Let f x  x or gx  1 x .

106. From Theorem 5.9, we have: gx 

1 fgx

g x 

fgx0  f gxgx  fgx2



f gx  1 fgx fgx2



f gx fgx3

If f is increasing and concave down, then f > 0 and f < 0 which implies that g is increasing and concave up.

Section 5.4

Section 5.4

Exponential Functions: Differentiation and Integration

e2  0.1353. . .

2.

Exponential Functions: Differentiation and Integration

4.

ln 0.1353. . .  2

ln 0.5  0.6931. . .

6. eln 2x  12 2x  12

1 e0.6931. . .  2

x6 10. 6  3ex  8

8. 4ex  83 ex 

3ex  14

83 4

ex 

 

83 x  ln  3.033 4

x  ln

12. 200e4x  15 e4x 

14 3

143  1.540

14. ln x2  10 x2  e10

15 3  200 40

x  ± e5  ± 148.4132

 

3 4x  ln 40 x

 

40 1 ln  0.648 4 3 18. lnx  22  12

16. ln 4x  1

x  22  e12

4x  e  e x

x  2  e6

e  0.680 4

x  2  e6  405.429

1 20. y  2 ex

22. y  ex2

y

y

4

4

3

3

2

2

1 x

−1

1

24. (a)

2

3

−2

(b)

10

−8

−1

10 −2

Horizontal asymptotes: y  0 and y  8

x 1

2

10

−8

10 −2

Horizontal asymptote: y  4

509

510

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

28. y 

26. y  Ceax

C 1  eax

Horizontal asymptote: y  0 lim

Reflection in the y-axis

x →

Matches (d)

lim

C C 1  eax

x →

C 0 1  eax

Horizontal asymptotes: y  C and y  0 Matches (b) 30. f x  ex3 gx  ln

32. f x  ex1

y

f

4

6

3

4

2

2

1 x

−2

lim

x →

y

8

−2

34. In the same way,

gx  1  ln x

 3 ln x

x3

g

2

36. 1  1 

4

6

x

 er for r > 0.

f

g

x

−1

8

1  xr 

1

3

2

4

−1

1 1 1 1 1 1       2.71825396 2 6 24 120 720 5040 e  2.718281828 e > 11

1 1 1 1 1 1      2 6 24 120 720 5040

38. (a) y  e2x

(b) y  e2x

y  2e2x

y  2e2x

At 0, 1, y  2.

At 0, 1, y  2.

40. f x  e1x

42.

fx  e1x

y  ex

2

44.

y  x2ex dy  x2ex  2xex dx

dy 2  2xex dx

 xex 2  x

46. gt  e3t

2

6 gt  e3t 6t 3  3 3t2 t e 2

48.

y  ln

11  ee  x

50.

x

 ln1  ex   ln1  ex  dy ex ex  x  dx 1  e 1  ex 

52.

y

ex  ex 2

dy ex  ex  dx 2

2ex 1  e2x

y  ln

x

 ex 2



 lnex  ex   ln 2 dy ex  ex  dx ex  ex 

54.

e

y  xex  ex  ex x  1 dy  ex  ex x  1  xex dx

e2x  1 e2x  1

Section 5.4

Exponential Functions: Differentiation and Integration

56. f x  e3 ln x

58.

e3 x

fx 

y  ln ex  x dy 1 dx

62. gx  x  ex ln x

exy  x2  y2  10

60.

x dxdy  ye

xy

 2x  2y

dy 0 dx

gx 

1 ex   ex ln x x 2x

dy xy xe  2y  yexy  2x dx

g x  

dy yexy  2x   xy dx xe  2y



1 xex  ex ex    ex ln x 32 4x x2 x ex2x  1 1   ex ln x x2 4xx

y  ex3 cos 2x  4 sin 2x

64.

y  ex6 sin 2x  8 cos 2x  ex3 cos 2x  4 sin 2x  ex10 sin 2x  5 cos 2x  5ex2 sin 2x  cos 2x y  5ex4 cos 2x  2 sin 2x  5ex2 sin 2x  cos 2x  5ex5 cos 2x  25ex cos 2x y  2y  25ex cos 2x  25ex2 sin 2x  cos 2x  5ex3 cos 2x  4 sin 2x  5y Therefore, y  2y  5y ⇒ y  2y  5y  0.

66. f x 

ex  ex 2

2

fx 

ex  ex > 0 2

fx 

ex  ex  0 when x  0. 2

−3

(0, 0)

3

−2

Point of inflection: 0, 0

68. gx  gx  g x 

1 2

1 2

1 2

ex3 2 2

x  3ex3 2 2

(

2,

x  2x  4ex3 2

e− 0.5 2π

( (

( 4,

0

e− 0.5 2π

( 6

0

  3, 0.399 1 1 e , 4, e    2, 0.242, 4, 0.242 2 2

1

2

12





12

70. f x  xex

2

fx  xex  ex  ex1  x  0 when x  1. f  x  ex  ex1  x  exx  2  0 when x  2. Relative maximum: 1, e1 Point of inflection: 2,

1 2π

2

3, Points of inflection: 2, Relative maximum:

(

3,

0.8

2e2



(1, e −1) −2

(2, e−2) 4

−2

511

512

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

72. f x  2  e3x4  2x

( 53 , 96.942) ( 70.798 )

100

fx  e3x2  3e3x4  2x  e3x10  6x  0 when x 

5 3.

4 , 3

fx  e3x6  3e3x10  6x  e3x24  18x  0 when x  43 . Relative maximum: Point of inflection:

 53 , 96.942  43 , 70.798

2.5 0

e

(b) Ax  xf c  x 10

f c  f c  x

74. (a)

− 0.5



c cx  cx ec e (d) c 

cex  c  x

x ex  1

2

cex  c  x c

x ex  1

0

10x2 x1ex  (c) Ax  x e e 1

4 0

lim c  1

x →0

lim c  0

6

x →

(2.118, 4.591)

9

0 0

The maximum area is 4.591 for x  2.118 and f x  2.547. 76. Let x0, y0 be the desired point on y  ex.

y

y  ex

3 2

Slope of tangent line

y  ex

1



1  ex y

Slope of normal line

y  ex0  ex0x  x0 We want 0, 0 to satisfy the equation: ex0  x0ex0 1  x0e2x0 x0e2x0  1  0 Solving by Newton’s Method or using a computer, the solution is x0  0.4263.

0.4263, e0.4263

( 0.4263, e − 0.4263 ) x

−1

1 −1

2

3



x x exe 1 1

10x2 x1ex  e  x e 1

10cec  10c  xecx

cecx  c  xec

x

Section 5.4

Exponential Functions: Differentiation and Integration

513

78. V  15,000e0.6286t , 0 ≤ t ≤ 10 (a)

(b)

20,000

10

0 0

dV  9429e0.6286t dt

(c)

When t  1,

dV  5028.84. dt

When t  5,

dV  406.89. dt

20,000

10

0 0

80. 1.56e0.22t cos 4.9t ≤ 0.25 (3 inches equals one-fourth foot.) Using a graphing utility or Newton’s Method, we have t ≥ 7.79 seconds.

2

10

0

−2

82. (a) V1  1686.79t  23,181.79 V2  109.52t2  3220.12t  28,110.36

(b) The slope represents the rate of decrease in value of the car.

20,000

0

10 0

(c) V3  31,450.770.8592t  31,450.77e0.1518t

(d) Horizontal asymptote: lim V3t  0 t→ 

As t → , the value of the car approaches 0. (e)

84.

dV3  4774.2e0.1518t dt For t  5,

dV3  2235 dollarsyear. dt

For t  9,

dV3  1218 dollarsyear. dt

f x  ex 2, f 0  1 2

2

P1

fx  xex 2, f0  0 2

fx 

2 x2ex 2



2 ex 2





2 ex 2

x2

 1, f0  1

P1x  1  0x  0  1, P10  1

f

−3

3

P2 −2

P1x  0, P10  0 P2x  1  0x  0 

1 x2 x  02  1  , P20  1 2 2

P2x  x, P20  0 P2x  1, P20  1 The values of f, P1, P2 and their first derivatives agree at x  0. The values of the second derivatives of f and P2 agree at x  0.

514

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions 88. Let u  x4, du  4x3 dx.

86. nth term is xnn! in polynomial: y4  1  x 

Conjecture: ex  1  x 



4

90.



94.



4



 e1  1  1 

1 e

92.

 



2

xex 2 dx   2

0

3



x2ex 2 dx 





ex 2x dx  ex 2 2

0

2



2

0

 1  e1 

3





1 1 e2x 2e2x dx  dx  ln1  e2x  C 1  e2x 2 1  e2x 2

e1 e





2ex  2ex dx  2 ex  ex2ex  ex dx ex  ex2 

e2x  2ex  1 dx  ex



ex  2  ex dx

 ex  2x  ex  C

108.



lne2x1 dx 



2x  1 dx

106.

1 e sec 2x sec 2x tan 2x dx  e sec 2x  C 2

u  sec 2x, du  2 sec 2x tan 2x

 



1 sin x  e2x dx  cos x  e2x  C1 2

f0  1 

1 1  C1  ⇒ C1  1 2 2

fx  cos x  f x 



1 2x e 1 2

cos x 



1 2x e  1 dx 2

1  sin x  e2x  x  C2 4 f 0 

1 1  C2  ⇒ C2  0 4 4

f x  x  sin x 

1 2x e 4

2 C ex  ex



110. y 

 x2  x  C

112. fx 

 

2 x32 3x2 2 3 e dx  ex 2  C 3 2 3

102. Let u  ex  ex, du  ex  ex dx.

ex  ex dx  lnex  ex  C ex  ex



C

96. Let u  1  e2x, du  2e2x dx.

100. Let u  ex  ex, du  ex  exdx.

104.

4

x

4x  dx  e

x2 , du  x dx. 2

2



4

x2 x3  ... 2! 3!

3

2

x

e

e1x 1 1 2 2 2 dx   e1x 3 dx   e1x  C x3 2 x 2

98. Let u 





e3x dx  e3x

3



x2 x3 x4   2! 3! 4!



ex  ex 2 dx

e2x  2  e2x  dx

1 1 2x e  2x  e2x  C 2 2

Section 5.4

114. (a)

Exponential Functions: Differentiation and Integration

(b)

y

4



y

xe0.2x dx 

x

−4

4

 −4

0,  23

dy 2  xe0.2x , dx 2

1 0.4



e0.2x 0.4x dx 2

1 0.2x2 2 e  C  2.5e0.2x  C 0.4

0,  23:  23  2.5e  C  2.5  C ⇒ C  1 0

y  2.5e0.2x  1 2



b

116.





ex dx  ex

a

b a



2

 ea  eb

118.

0





1 e2x  2 dx   e2x  2x 2

2 0

1 1   e4  4   4.491 2 2 a

4

b

−2

4 0



4

120. (a)



x

x ex dx, n  12

122.

0

0.30.3t dt 

0 x

e

Midpoint Rule: 92.1898

1 2

e0.3x  1 

1 2

e0.3x 

1 2

0

Simpson’s Rule: 92.7385 Graphing Utility: 92.7437



1 2



0.3t

Trapezoidal Rule: 93.8371

2

(b)

2xex dx, n  12

0.3x  ln

0

Midpoint Rule: 1.1906 x

Trapezoidal Rule: 1.1827

1  ln 2 2

ln 2  2.31 minutes 0.3

Simpson’s Rule: 1.1880 Graphing Utility: 1.18799 124.

t

0

1

2

3

4

R

425

240

118

71

36

6.052

5.481

4.771

4.263

3.584

ln R

515

(a) ln R  0.6155t  6.0609 R  e0.6155t6.0609  428.78e0.6155t (b)

450

−1

5 0



4

(c)

0



4

Rt dt 

0

428.78e0.6155t dt  637.2 liters

516

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

126. The graphs of f x  ln x and gx  ex are mirror images across the line y  x.

ln

130.

128. (a) Log Rule: u  ex  1 (b) Substitution: u  x2

ea  ln ea  ln eb  a  b eb

ln eab  a  b Therefore, ln

ea ea  ln eab and since y  ln x is one-to-one, we have b  eab. eb e

Section 5.5 2. y 

2 1

Bases Other than e and Applications

t8

4. y 

At t0  16, y 

8. loga

12

168



1 4

2 1

t5

6. log27 9  log27 2723  23

At t0  2, y 

1  loga 1  loga a  1 a

10. (a)

25

 0.7579

12. (a) log3 19  2

2723  9 log27 9 

(b)

12

32  19

2 3

4912  7

(b)

1634  8

log49 7  12

3 log16 8  4 18. y  3x

16. y  2x

14. y  3x1

2

x

1

0

1

2

3

x

2

1

0

1

2

x

0

±1

±2

y

1 9

1 3

1

3

9

y

16

2

1

2

16

y

1

1 3

1 9

y

y

12

y

8 1

10 6 8 4

6 4

−1

20. (a) log3

1

2

2 −2

x

−1

x 1

2

3

1 x 81 3x

1  81

x  4 (b) log6 36  x 6x  36 x2

4

−2

−1

−1

x 1

2

22. (a) logb 27  3 b3  27 b3 (b) logb 125  3 b3  125 b5

Section 5.5 24. (a) log3 x  log3x  2  1

Bases Other than e and Applications

(b) log10x  3  log10 x  1

log3 xx  2  1 xx  2  x2

log10

31

x3 1 x x3  101 x

 2x  3  0

x  1x  3  0

x  3  10x

x  1 OR x  3

3  9x

x  3 is the only solution since the domain of the logarithmic function is the set of all positive real numbers. 56x  8320

26.

x

35x1  86

28.

6x ln 5  ln 8320 x

5x1 

ln 8320  0.935 6 ln 5

86 3

x  1ln 5  ln

863

ln x1

863

ln 5 ln

x1

1  0.10 365 

30.

365t



ln 5

 3.085

t  3  102.6



0.10 365t ln 1   ln 2 365 1 365

863

32. log10t  3  2.6

2

t

t  3  102.6  401.107 ln 2  6.932 0.10 ln 1  365





34. log5 x  4  3.2 x  4  53.2

x  4  53.22  56.4 x  4  56.4  29,748.593 36. f t  3001.007512t   735.41 Zero: t  10

38. gx  1  2 log10 xx  3 Zeros: x  0.826, 3.826 5

10

(10, 0) 0

−10

20

1 3

−5

(− 0.826, 0) 5

(3.826, 0)

−5

517

518

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

40. f x  3x

x

gx  log3 x

2

1

0

1

2

1 9

1 3

1

3

9

f x

y

9

f 6

1 9

1 3

1

3

9

2

1

0

1

2

x g x

42. gx  2x

g x

−3

3

6

9

−3

46. f t 

y  x62x

44.

gx   ln 2 2x

3

dy  x 2ln 662x  62x dx

ft 

 62x 2xln 6  1



 62x1  2x ln 6 48. g  52 sin 2

50.

1 g  52 2 cos 2  2 ln 5 52 sin 2

52. hx  log3

54.







1 3x  2 ln 3 2xx  1





56. f t  t 32 log2 t  1  t 32 ft 

1 lnt  1 2 ln 2



y  log10 2x  log10 2  log10 x

y  log10

x2  1 x

dy 2x 1   dx x2  1 ln 10 x ln 10

1 0 x  1 ln 3

1 1 1   ln 3 x 2x  1

32t 2t ln 3  1 t2

 log10x2  1  log10 x

1 log3 x  1  log3 2 2

1 1  hx  x ln 3 2

t2 ln 3 32t  32t t2

dy 1 1 0  dx x ln 10 x ln 10

x x  1 2

 log3 x 

32t t

58.





1 1 2x  ln 10 x2  1 x



x2  1 1 ln 10 xx2  1





y  xx1 ln y  x  1ln x

1 1 3 t32  t12 lnt  1 2 ln 2 t1 2

 



1 dy 1  x  1  ln x y dx x dy x1 y  ln x dx x



 x x2 x  1  x ln x

60.

y  1  x1x ln y 

 

62.

1 ln1  x x





 



0

64.

2

 

0

33  52 dx 

2

27  25 dx

2 dx

2



 2x

lnx  1 1  x1x 1  x x1 x



5x C ln 5

0





5x dx 



1 1 1 dy 1   ln1  x  2 y dx x 1x x dy y 1 lnx  1   dx x x  1 x



0 2

4

Section 5.5

66.





2

3  x 7 3x dx   

70. (a)



1 3x2 23  x 7 dx 2

68.



sin x

2

Bases Other than e and Applications

519

cos x dx, u  sin x, du  cos x dx

1 sin x 2 C ln 2

1 2

73x  C 2 ln 7

(b)

y

dy  esin x cos x dx

6

y

4 2



sin x

e

 , 2 sin x

cos x dx  e

C

 , 2: 2  esin  C  1  C ⇒ C  1 x

y  esin x  1

10 −2

72. logb x 

ln x log10 x  ln b log10 b

74. f x  log10 x (a) Domain: x > 0

(d) If f x < 0, then 0 < x < 1.

y  log10 x

(e) f x  1  log10 x  log10 10

(b)

 log1010x

10y  x

x 

f 1 (c)

10x

x must have been increased by a factor of 10.

log10 1000  log10 103  3 log1010,000  log10

104

(f) log10

4

x   log x1

10 x1

 log10 x2

2

 3n  n  2n

If 1000 ≤ x ≤ 10,000, then 3 ≤ f x ≤ 4.

Thus, x1x2  102n  100n . 76. f x  ax (a) f u  v  auv  au av  f u f v

78. Vt  20,000 (a)

(b) f 2x  a2x  ax 2  f x 2

34

t

(b)

V

 34

3 dV  20,000 ln dt 4

t

(c)

V ′(x) x

20,000

dV When t  1:  4315.23 dt

16,000 12,000 8,000

When t  4:

4,000 t 2

V2  20,000

4

6

8

10

34  $11,250 2

dV  1820.49 dt

−1000

2

4

6

12

− 2000 − 3000 − 4000 − 5000 − 6000

Horizontal asymptote: v  0 As the car ages, it is worth less each year and depreciates less each year, but the value of the car will never reach $0.

520

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

80. P  $2500, r  6%  0.06, t  20



A  2500 1 

0.06 n



20n

n

1

2

4

12

365

Continuous

A

8017.84

8155.09

8226.66

8275.51

8299.47

8300.29

A  2500e0.0620  8300.29 82. P  $5000, r  7%  0.07, t  25



0.07 A  5000 1  n



n

1

2

4

12

365

Continuous

A

27,137.16

27,924.63

28,340.78

28,627.09

28,768.19

28,773.01

t

1

10

20

30

40

50

P

94,176.45

54,881.16

30,119.42

16,529.89

9071.80

4978.71

25n

A  5000e0.0725 84. 100,000  Pe0.06t ⇒ P  100,000e0.06t



86. 100,000  P 1 

0.07 365





365t

⇒ P  100,000 1 

0.07 365



365t

t

1

10

20

30

40

50

P

93,240.01

49,661.86

24,663.01

12,248.11

6082.64

3020.75

88. Let P  $100, 0 ≤ t ≤ 20. A  100e0.03t

(a)

A = 100e0.06t A = 100e

0.05t

(b)

A = 100e0.03t

A  100e0.05t A20  271.83

n→

400

A20  182.21 (b)

90. (a) lim

P 

or 86%

0.860.25e0.25n 0.215e0.25n  0.25n 1  e  1  e0.25n

P3  0.069

20

0

0.86  0.86 1  e0.25n

P10  0.016

0

A  100e0.06t

(c)

A20  332.01

92. (a)

(d)

12,000

p t  

38,000 t5 1  19et5 e  0 5 1  19et53



19et5  1 0

40 0

(b) Limiting size: 10,000 fish (c)

pt 

10,000 1  19et5

pt 

et5 19 10,000 1  19et52 5



 

38,000et5 1  19et52

p1  113.5 fishmonth p10  403.2 fishmonth

t  ln 19 5 t  5 ln 19  14.72

Section 5.5 94. (a) y1  6.0536x  97.5571

521

(c) The slope of 6.0536 is the annual rate of change in the amount given to philanthropy.

y2  100.0751  17.8148 ln x

(d) For 1996, x  6 and y1  6.0536, y2  2.9691,

y3  99.45571.0506x

y3  6.6015, y4  3.2321.

y4  101.2875x0.1471 (b)

Bases Other than e and Applications

y3 is increasing at the greatest rate in 1996.

150

0

8 100

y3 seems best.



3

96. A 

x

x

3 dx 

0

ln 3

3

3

0



98.

26  23.666 ln 3

y

x

1

101

102

104

106

1  x1x

2

2.594

2.705

2.718

2.718

30

20

10

x 1

100.

2

3

t

0

1

2

3

4

y

600

630

661.50

694.58

729.30

y  Ckt  When t  0, y  600 ⇒ C  600. y  600kt  630 661.50 694.58 729.30  1.05,  1.05,  1.05,  1.05 600 630 661.50 694.58 Let k  1.05. y  6001.05t

102. True.

104. True.

f en1  f en   ln en1  ln en n1n 1

n

d y  Cex dxn  y for n  1, 2, 3, . . .

106. True. f x  gxex  0 ⇒ gx  0 since ex > 0 for all x.

522

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

108. y  x sin x ln y  ln xsin x  sin x  ln x 1 y  sin x  cos x  ln x y x



y  xsin x At





sin x  cos x  ln x x

2 , 2 , y  

2 

sin2



sin2    cos ln 2 2 2

   

 2 0 1 2 





  1 x 2 2



Tangent line: y 



yx

Section 5.6 2.

Differential Equations: Growth and Decay

dy 4x dx y

dy 4y dx

4.



4  x dx  4x 

x2 C 2



y 

6.

dy  dx 4y 1 dy  4y







4  y  exC1  Cex

9y2  4x32  C

y  4  Cex y  x1  y



xy  y  100x

10.

y  100x  x y  x100  y

y x 1y y dx  1y



dy  1y



x dx x dx

x2 ln1  y   C1 2 1  y  ex 2 C1 2

y  eC1 ex 2  1



y x 100  y y dx  100  y

1 dy  100  y

ln100  y 



x dx x dx

x2  C1 2

2

 Cex 2  1 2



x dx

3y2 2 32  x  C1 2 3

ln 4  y dy  x  C1

8.

3y

3yy  x

3yy dx 

dx

x

ln100  y  

x2  C1 2

100  y  ex 2 C1 2

y  eC1 ex 2  100 2

y  100  Cex 2 2

Section 5.6 dP  k10  t dt

12.



dP dt  dt



Differential Equations: Growth and Decay dy  kxL  y dx

14.



1 dy  kx L  y dx

k10  t dt



k dP   10  t2  C 2 k P   10  t2  C 2

1 dy dx  L  y dx





kx dx

kx 2 1 dy   C1 Ly 2

lnL  y 

kx 2  C1 2

L  y  ekx 2 C1 2

y  L  eC1 ekx 2 2

y  L  Cekx 2 2

16. (a)

y

(b)

4

dy  xy, dx dy  x dx y

(0, 12 ) x

−4

0, 21

4



ln y 

x2 C 2

y  ex 2C  C1ex 2

−4

2

2

0, 21: 21  C e 1

18.

dy 3   t, 0, 10 dt 4

dy 

20.

15

3  t dt 4

0

1 y   t32  C 2

dy  y

10

ln y 

−5

3 dt 4

(0, 10) −5

3 t  C1 4

5 −5

10  Ce0 ⇒ C  10 y  10e3t4

dN  kN dt

24.

dP  kP dt P  Cekt

(Theorem 5.16)

0, 250: C  250

(Theorem 5.16)

0, 5000: C  5000

1, 400: 400  250ek ⇒ k  ln

400 8  ln 250 5

When t  4, N  250e4ln85  250eln85

4

 250

40

 eC1 e34t  Ce3t4

1 y   t 32  10 2

N  Cekt

1 1 2 ⇒ y  ex 2 2 2

y  e34tC1

1 10   032  C ⇒ C  10 2

22.

⇒ C1 

dy 3  y, 0, 10 dt 4



(0, 10)

0

85

4



8192 5

1, 4750: 4750  5000ek ⇒ k  ln

19 20 

When t  5, P  5000eln19205  5000

19 20 

5

3868.905

523

524

Chapter 5

26. y  Cekt, 0, 4,

Logarithmic, Exponential, and Other Transcendental Functions

5, 12

C4

3, 12, 4, 5

1  Ce3k 2

y  4ekt

5  Ce4k

1  4e5k 2 k

y  Cekt,

28.

2Ce3k 

ln18 0.4159 5

1 4k Ce 5

10e3k  e4k

y  4e0.4159t

10  ek k  ln 10 2.3026 y  Ce2.3026t 5  Ce2.30264 C 0.0005 y  0.0005e2.3026t

30. y 

dy  ky dt

32.

dy 1 2  xy dx 2 dy > 0 when y > 0. Quadrants I and II. dx

34. Since y  Ce ln121620t , we have 1.5  Ce ln1216201000 ⇒ C 2.30 which implies that the initial quantity is 2.30 grams. When t  10,000, we have y  2.30e ln12162010,000 0.03 gram. 36. Since y  Ce ln125730t, we have 2.0  Ce ln12573010,000 ⇒ C 6.70 which implies that the initial quantity is 6.70 grams. When t  1000, we have y  6.70e ln1257301000 5.94 grams. 38. Since y  Ce ln125730t, we have 3.2  Ce ln1257301000 ⇒ C 3.61. Initial quantity: 3.61 grams. When t  10,000, we have y 1.08 grams. 40. Since y  Ce ln1224,360t, we have 0.4  Ce ln1224,36010,000 ⇒ C 0.53 which implies that the initial quantity is 0.53 gram. When t  1000, we have y  0.53e ln1224,3601000 0.52 gram.

42. Since

dy  ky, y  Cekt or y  y0ekt. dx

1 y  y0e5730k 2 0 k

ln 2 5730

0.15y0  y0eln 25730t ln 0.15   t

ln 2t 5730 5730 ln 0.15 15,682.8 years. ln 2

44. Since A  20,000e0.055t, the time to double is given by 40,000  20,000e0.055t and we have 2  e0.055t ln 2  0.055t t

ln 2 12.6 years. 0.055

Amount after 10 years: A  20,000e0.05510 $34,665.06

Section 5.6 46. Since A  10,000ert and A  20,000 when t  5, we have the following. 20,000  10,000e5r

48. Since A  2000ert and A  5436.56 when t  10, we have the following. 5436.56  2000e10r

ln 2 0.1386  13.86% 5

r

Differential Equations: Growth and Decay

Amount after 10 years: A  10,000e ln 2510  $40,000

r

ln5436.562000 0.10  10% 10

The time to double is given by 4000  2000e0.10t t



0.06 12

50. 500,000  P 1 

ln 2 6.93 years. 0.10





1240

0.09 12

52. 500,000  P 1 

P  500,0001.005480 $45,631.04



1225



P  500,000 1 

0.09 12



300

$53,143.92



(c) 2000  1000 1 

54. (a) 2000  10001  0.6t 2  1.06t



2 1

ln 2  t ln1.06 t

ln 2 11.90 years ln 1.06



(b) 2000  1000 1 



2 1

0.06 12

0.06 12





12t



1 12





0.055 12



ln 2  12t ln 1  1 t 12





12t



0.055 365

0.055 365





ln 2  365t ln 1  t

12t

1 365



365t

365t

0.055 365



ln 2 12.60 years 0.055 ln 1  365





(d) 2000  1000e0.055t

0.055 12



ln 2 12.63 years 0.055 ln 1  12





ln 2 11.55 years 0.06



ln 2 12.95 years ln 1.055



t

2 1

0.055 2 1 12



0.06 365 1 ln 2 t 11.55 years 0.06 365 ln 1  365



ln 2  t ln1.055





ln 2  365t ln 1 

(c) 2000  1000 1 

2  1.055t

(b) 2000  1000 1 

365t

ln 2  0.06t

56. (a) 2000  10001  0.055t

t

365t

2  e0.06t

ln 2 11.58 years 0.06 ln 1  12







(d) 2000  1000e0.06t

0.06 ln 2  12t ln 1  12 t

12t

0.06 365

0.06 365



2  e0.055t ln 2  0.055t t

ln 2 12.60 years 0.055

525

526

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

58. P  Cekt  Ce0.031t

60. P  Cekt  Ce0.004t

P1  11.6  Ce0.0311 ⇒ C  11.9652

P1  3.6  Ce0.0041 ⇒ C  3.5856

P  11.9652e0.031t

P  3.5856e0.004t

P10 16.31

or

P10 3.45

16,310,000 people in 2010

62. (a) N  100.15961.2455t

C  742,000 632,000  742,000e2k

Analytically, 400  100.15961.2455t 1.2455t 

k

400  3.9936 100.1596

t

When t  4, y $538,372.

ln 3.9936 6.3 hours. ln 1.2455

20  301  e30k 

e0.0366t 

ln13 ln 3  0.0366 30 30 e0.0366t

25  301  e0.0366t 

(b)

30e30k  10

N 301 

ln632742 0.0802 2

y 742,000e0.0802t

t ln 1.2455  ln 3.9936

k

3,450,000 people in 2010

y  Cekt, 0, 742,000, 2, 632,000

64.

(b) N  400 when t  6.3 hours (graphing utility)

66. (a)

or

t



1 6 ln 6 49 days 0.0366

68. S  251  ekt (a) 4  251  ek1 ⇒ 1  ek 

 

4 21 21 ⇒ ek  ⇒ k  ln 0.1744 25 25 25

(b) 25,000 units  lim S  25 t→ 

(c) When t  5, S 14.545 which is 14,545 units.

(d)

25

0

8 0

70. (a) R  979.39931.0694t  979.3993e0.0671t I  0.1385t4  2.1770t3  9.9755t2  23.8513t  266.4923 (b)

2000

Rate of growth  Rt  65.7e0.0671t 0

10 0

(c)

(d) Pt 

500

I R

1

0

10 0

0

10 0

Section 5.7

72.

93  10 log10

I  10log10 I  16 1016

Differential Equations: Separation of Variables



6.7  log10 I ⇒ I  106.7 I 80  10 log10 16  10log10 I  16 10

1 dy  y  80



k dt

When t  0, y  1500. Thus, C  ln 1420.

 10 106.7

10

Percentage decrease:

dy  ky  80 dt

lny  80  kt  C.

8  log10 I ⇒ I  108 6.7

Since

74.

8

100  95%

When t  1, y  1120. Thus, k1  ln 1420  ln1120  80 k  ln 1040  ln 1420  ln Thus, y  1420eln104142 t  80. When t  5, y  379.2.

76. True

78. True

Section 5.7

Differential Equations: Separation of Variables

2. Differential equation: y 

2xy x2  y2

Solution: x 2  y 2  Cy Check: 2x  2yy  Cy y 

2x 2y  C

y 

2xy 2xy 2xy 2xy    2y 2  Cy 2y 2  x 2  y 2 y 2  x 2 x 2  y 2

4. Differential equation: y  2y  2y  0 Solution: y  C1ex cos x  C2ex sin x y   C1  C2ex sin x  C1  C2ex cos x

Check:

y  2 C1ex sin x  2C2ex cos x y  2y  2y  2C1ex sin x  2C2ex cos x  2 C1  C2ex sin x  C1  C2ex cos x  2C1ex cos x  C2ex sin x  2C1  2C1  2C2  2C2ex sin x  2C2  2C1  2C2  2C1ex cos x  0 2 6. y  3 e2x  ex 

y  23 2e2x  ex  y  23 4e2x  ex 2 2 Substituting, y  2y  3 4e2x  ex  2 3 2e2x  ex   2ex.

104 . 142

527

528

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

In Exercises 8 –12, the differential equation is y 4  16y  0. 8.

y  3 cos 2x

y  5 ln x

10.

y4  48 cos 2x y4  16y  48 cos 2x  48 cos 2x  0,

y4   Yes. y4  16y  

12.

30 x4 30  80 ln x  0, x4

No.

y  3e2x  4 sin 2x y4  48e2x  64 sin 2x y4  16y  24e2x  64 sin 2x  163e2x  4 sin 2x  0,

Yes

In 14–18, the differential equation is xy  2y  x3ex. 14. y  x 2ex, y  x 2ex  2xex  ex x2  2x xy  2y  x  ex

x2

 2x  2



x2ex

x3ex,

16. y  sin x, y  cos x xy  2y  xcos x  2sin x  x3ex,

Yes.

18. y  x2ex  5x2, y  x2ex  2xex  10x xy  2y  xx2ex  2xex  10x  2x2ex  5x2  x3ex,

Yes. 22. 2x 2  y 2  C passes through 3, 4

20. y  A sin t

29  16  C ⇒ C  2

d 2y  A 2 sin t dt 2

Particular solution: 2x 2  y 2  2

Since d 2ydt 2  16y  0, we have A 2 sin t  16A sin t  0. Thus, 2  16 and  ± 4. 24. Differential equation: yy  x  0 General solution: x 2  y 2  C Particular solutions: C  0, Point C  1, C  4, Circles

26. Differential equation: 3x  2yy  0 General solution: 3x2  2y2  C 6x  4yy  0 23x  2yy  0 3x  2yy  0 Initial condition: y1  3: 312  232  3  18  21  C Particular solution: 3x2  2y2  21

y 2 1

1

2

x

No.

Section 5.7

Differential Equations: Separation of Variables Initial conditions: y2  0, y2 

28. Differential equation: xy  y  0 General solution: y  C1  C2 ln x



0  C1  C2 ln 2

 

1 1 y  C2 , y  C2 2 x x 1 1 xy  y  x C2 2  C2  0 x x



1 2

y 



C2 x

1 C2 ⇒ C2  1, C1  ln 2  2 2 Particular solution: y  ln 2  ln x  ln

x 2

30. Differential equation: 9y  12y  4y  0 General solution: y  e2x3C1  C2 x



2 2 2 y  e2x3C1  C2x  C2e2x3  e2x3 C1  C2  C2 x 3 3 3 y 









2 2 2 2x3 2 2 2 2 e C  C2  C2 x  e2x3 C2  e2x3 C1  2C2  C2 x 3 3 1 3 3 3 3 3

9y  12y  4y  9

23 e 23 C 2x3

1

 2C2 









2 2 2 C x  12e2x3 C1  C2  C2 x  4e2x3C1  C2 x  0 3 2 3 3

Initial conditions: y0  4, y3  0 0  e2C1  3C2 4  1C1  0 ⇒ C1  4 0  e24  3C2 ⇒ C2  

4 3





4 Particular solution: y  e2x3 4  x 3

32.

dy  x3  4x dx y

36.

34.



x4  2x2  C 4

x3  4x dx 

dy  x cos x 2 dx y

x cosx2 dx 

1 sinx2  C 2

u  x 2, du  2x dx

40.

dy  x 5  x. Let u  5  x, u2  5  x, dx  2u du dx y

y

38.





x 5  x dx   



5  u2u2u du

10u2  2u4 du

10u3 2u5  C 3 5



10 2 5  x32  5  x52  C 3 5

dy ex  dx 1  ex



ex dx  ln1  ex  C 1  ex

dy  tan2 x  sec2 x  1 dx y



sec2 x  1 dx  tan x  x  C

529

530

42.

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

dy  5ex2 dx y

dy x 2  2  dx 3y 2

44.







 21 dx

5ex2 dx  52 ex2 

3y 2 dy 

 10ex2  C

dr  0.05s ds

46.

y3 

48.



dr 

dy  y

r  0.025s 2  C

x 2  2dx

x3  2x  C 3

xy  y



0.05s ds



y

50.



dx x

dy  6 cos x dx

y dy 

y2 

dy  5x dx



dy 

4y

54. 5x

x2  9



y  5x2  912  C 56. x  y y  0



dy  3ex dx

4y dy 

dx



3ex dx

2y2  3ex  C 58. 2xy  ln x2  0



y12 dy   x12 dx

2x

dy  2 ln x dx



2 32 2 y   x32  C1 3 3

dy 

ln x dx x

y

ln x2 C 2

y32  x32  C Initial condition: y 1  4, 432  132  8  1  9  C

y1  2: 2  C 1 y  ln x2  2 2

Particular solution: y32  x32  9

y 1  x2

60.



dy  x 1  y 2 dx

1  y212 y dy 



1  x212 x dx

 1  y212   1  x212  C y0  1:

0  1  C ⇒ C  1

1  y 2  1  x 2  1

62.



6 cos x dx

y2 6  sin x  C1 2

ln y  ln x  ln C  ln Cx y  Cx

52. x2  9



dr  er2s ds

erdr 



e2s ds

1 er   e2s  C 2 1 1 r0  0: 1    C ⇒ C   2 2 1 1 er   e2s  2 2 1 1 er  e2s  2 2 r  ln r  ln

12e

2s



1  e2s 1  ln 2 2

1 2e  2s







12 sin x  C

Section 5.7

64. dT  kT  70 dt  0



Differential Equations: Separation of Variables dy 2y  dx 3x

66.





dT  k dt T  70

lnT  70  k t  C1

3 dy  y



2 dx x

ln y3  ln x2  ln C

T  70  Cekt

y3  Cx2

Initial condition: T0  140; 140  70  70  Ce0  C

Initial condition: y8  2, 23  C82, C 

Particular solution: T  70  70ekt, T  701  ekt 

Particular solution: 8y3  x2, y 

m

68.

dy y  0 y   dx x  0 x



dy  y

70.

1 23 x 2

f x, y  x3  3x2y2  2y2 f tx, ty  t3x3  3t4x2y2  2t2y2

dx x

Not homogeneous

ln y  ln x  C1  ln x  ln C  ln Cx y  Cx f x, y 

72.

f t x, t y  

xy

x2  y2

74.

f t x, t y  tantx  t y  tant x  y

tx ty x2  t 2 y 2

t 2

f x, y  tanx  y

Not homogeneous

2

xy t xy t

x 2  y 2 t x 2  y 2

Homogeneous of degree 1

f x, y  tan

76.

f t x, t y  tan

y x ty y  tan tx x

Homogeneous of degree 0

78. y 

x3  y3 xy2

y 

80.

x y 2 dy  x3  y3 dx y  vx,

dy  x dv  v dx

xvx x dv  v dx  x3  vx3 dx 2

x4 v2 dv  x3 v3 dx  x3 dx  v3 x3 dx xv 2 dv  dx



v 2 dv 

vx



1 dx x

v3  ln x  C 3



yx  3 lnx  C 3



y3  3x3 ln x  Cx3

dv x 2  v 2 x 2  dx 2x 2 v

2v dx  2x dv 



x2  y2 , y  vx 2xy

1  v2 dx v



2v dx dv   v2  1 x

lnv 2  1  ln x  ln C  ln v2  1 

C x

y2 C 1 x2 x y 2  x2  Cx

C x

1 8

531

532

Chapter 5

82.

y 

Logarithmic, Exponential, and Other Transcendental Functions

2x  3y , y  vx x

dv 2x  3vx vx   2  3v dx x dv  2  2v ⇒ dx

x





ln 1  v  ln

x2



x 2 v 2 dx  x 2  x 2 vv dx  x dv  0





dv dx 2 1v x

 ln C  ln

y 2 dx  xx  y dy  0, y  vx

84.

x2C



1v dx dv   v x

v  ln v  ln x  ln C1  ln

C1 x

v  ln

C1 xv

1vxC 2

1

y  x2C x

C1  ev vx

y  x2C  1 x

C1  eyx y

y  Cx3  x

y  Ceyx Initial condition: y1  1, 1  Ce1 ⇒ C  e Particular solution: y  e1yx

86. 2x 2  y 2 dx  xy d y  0

88.

dy x  dx y

Let y  vx, dy  x dv  v dx.





v 2x 2





2x 2 v 2

2 

2v 2

2x 2

y

 dx  xv xx d v  v d x  0

2x 2

 dx 

x3v

dv  0

 d x  x v d v

x2  C1  v 212



12

C  x2  y212 x

1  Cx2  y212 x y1  0: 1  C1  0 ⇒ C  1 1  x2  y2 x 1  x x2  y2

2

4

−4

ln x2  ln1  v 212  ln C



x

−2 −2

1 ln1  v 2  C1 2

1 y2 C 1 2 x2 x

2 −4

2 v dx  dv x 1  v2 2 ln x 

4

y dy  x dx y 2 x 2   C1 2 2 y 2  x2  C

Section 5.7 dy  0.25x4  y dx

90.



y

8

dy  0.25x dx 4y



dy  y4

Differential Equations: Separation of Variables

4

0.25x dx

 

−4



x

−2

2

4

−2

1 x dx 4

1 ln y  4   x 2  C1 8





y  4  eC1  18x  Ce18x 2

2

y  4  Ce18x

2

dy  2  y, y0  4 dx

92.

94.

dy  0.2x2  y, y0  9 dx

9

10

−5

5

−5

−1

96.

dy  ky, y  Cekt dt Initial conditions: y0  20, y1  16 20  Ce  C 0

98.

5 0

dy  kx  4 dx The direction field satisfies dydx  0 along x  4: Matches (b).

16  20ek k  ln

4 5

Particular solution: y  20et ln45 When 75% has been changed: 5  20et ln45 1  et ln45 4 t

100.

ln14  6.2 hr ln45

dy  ky2 dx

The direction field satisfies dydx  0 along y  0, and grows more positive as y increases. Matches (d).

102. From Exercise 101, w  1200  Cekt, k  1 w  1200  Cet w0  w0  1200  C ⇒ C  1200  w0 w  1200  1200  w0et

533

534

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

104. Let the radio receiver be located at x0, 0. The tangent line to y  x  x2 joins 1, 1 and x0, 0.

y

2

Transmitter (−1, 1) 1

y=x−

x2

Radio

−1

(b) Now let the transmitter be located at 1, h.

(a) If x, y is the point of tangency on the y  x  x2, then

1  2x 

y  1 x  x2  1 1  2x   x1 x1

x2  2x  h  1  0

 2x  2  0



2 ± 4  8 x 2

  1 

x

3

1  3 3  5

10   1  x0 1  1  3



3  1  x0 6  3 3

(c)

 3 2  h  h  4

 3



Then,

h0 h   3 2  h  h  4  1  x0 1   1  2  h 

4 3  6  1.155 6  3 3



2h  4  3 2  h  2  h

x0  1

2  h  h 2h  4  3 2  h

10

x0  0.25

2

y  x  x2

6  3 3

 6  3 3  x0 6  3 3  x0 

 2 ± 4  4h  1 

 1  2  h

y  x  x2  3 3  5 Then

y  h x  x2  h  x1 x1

x  2x 2  1  2x  x  x 2  h

x  2x2  1  2x  x  x2  1 x2

x

x 1 x0

h 2  h 1 2h  4  3 2  h

3

−2

There is a vertical asymptote at h  14 , which is the height of the mountain. x2  2y2  C

106. Given family (hyperbolas):

2x  4yy  0 y  y 

Orthogonal trajectory:



2yy  2C

x 2y

2y x

y 



−2

2x y



y dy   2x dx y2  x 2  K1 2

k x2

2x 2  y 2  K 4

2

3

y  



ln y  2 ln x  ln k

−3



C y2 1 y   y 2x y 2x

Orthogonal trajectory (ellipse):

dy 2  dx y x

y  kx2 

y 2  2Cx

108. Given family (parabolas):

−6

6

−4

Section 5.8

Inverse Trigonometric Functions: Differentiation

110. Given family (exponential functions): y  Cex y 

Cex

y  

Orthogonal trajectory (parabolas):



535

4

y −6

1 y

6



−4

y dy   dx y2  x  K1 2 y2  2x  K 114. Two families of curves are mutually orthogonal if each curve in the first family intersects each curve in the second family at right angles.

112. The number of initial conditions matches the number of constants in the general solution.

116. True dy  x  2y  1 dx 118. True x 2  y 2  2Cy

x 2  y 2  2Kx dy K  x  dx y

x dy  dx C  y x Cy



Kx Kx  x2 2Kx  2x2 x2  y 2  2x2 y 2  x2    2  2  1 2 2 2 2 y Cy  y 2Cy  2y x  y  2y x  y2

Section 5.8

Inverse Trigonometric Functions: Differentiation

2. y  arccos x (a)

1

x y

 0.8

3.142

(b)

 0.6

2.499

y

 0.4

2.214

1.982

 0.2 1.772

0 1.571

0.2

0.4

0.6

0.8

1

1.369

1.159

0.927

0.634

0

(d) Intercepts:



(c)

π

No symmetry −1

1 0

x

−1

4.

1

   1, 4 4

  



,



,

  3,

3     , 6 3 6

 

0, 2  and 1, 0

6. arcsin 0  0



   3,  3 

536

Chapter 5

8. arccos 0 



12. arccos 

Logarithmic, Exponential, and Other Transcendental Functions

 2

3

2

10. arc cot 3  

  56



18. (a) tan arccos

2

2

14. arcsin0.39  0.40

  tan4   1

16. arctan3  1.25



(b) cos arcsin 2

5 6



5 12  13 13

13 5

θ

2

12

θ 2

 53 



20. (a) sec arctan 

34

5

 65   5 1111





(b) tan arcsin 

θ

5

−3

11

θ

34 −5

6

22. y  secarc tan 4x

24. y  cosarccot x

1 + 16x 2

  arctan 4x

θ

y  sec   1  16x2

1

y  cos  



26. y  sec arcsinx  1

  arcsinx  1

x−1

θ

1 y  sec   2x  x2

30.

2x −

  arcsin x2

xh r

x



r

θ r 2 − (x − h)2

r 2  x  h2

r

32. arctan2x  5  1 2x  5  tan1

f=g −2

2

1 x  tan1  5  1.721 2

−5

Asymptote: x  0 x  2

2 4 − x2

x cos   2 tan  

x x2  1

xh r

y  cos  

5

arccos

1

θ

28. y  cos arcsin 1

x2 + 1

  arccot x

4x

θ x

4  x2

x

x−h

Section 5.8

Inverse Trigonometric Functions: Differentiation

537

34. arccos x  arcsec x x  cosarcsec x x

1 x

x

x2 − 1

θ 1

x2  1 x  ±1





36. (a) arcsinx   arcsin x, x ≤ 1.

(b) arccosx    arccos x, x ≤ 1.

Let y  arcsinx. Then,

Let y  arccosx. Then,

x  sin y ⇒ x  sin y ⇒ x  siny.

x  cos y ⇒ x  cos y ⇒ x  cos  y.

Thus, y  arcsin x ⇒ y  arcsin x. Therefore, arcsinx  arcsin x.

38. f x  arctan x 

 x  tan y  2



 2

Thus,   y  arccos x ⇒ y    arccos x. Therefore, arccosx    arccos x.

y

40. f x  arccos

π



π 2

−6 −4 −2

2

4

2t

fx 

1 1 x21 x  2x11  x  2

52. y  lnt2  4  y 





 

1 x x4  x2  4 arcsin 2 2

56.

1 1 1 x 4  x212 2x  4  x2  2 1  x22 2 2 1 x2 4  4  x2  4  x2 2 4  x2

 4 

x2



2

2x 4x2  1

hx  2x arctan x 

fx  0



2

4

x

6



1



x 4x2  1

48. hx  x2 arctan x

50. f x  arcsin x  arccos x 

y 

−2

44. f x  arcsec 2x

1  t 4



−6 −4

Range: 0, 

46. f x  arctan x

54. y 

π

(4, 0)

Domain: 4, 4

6

42. f t  arcsin t 2

fx 

(−4, π )

x  4 cos y x

f x is the graph of arctan x shifted 2 units upward.

ft 

y

x  cos y 4

Domain:  ,  Range: 0, 

4x 





2t 1  t2  4 2



x2 1  x2

1 t arctan 2 2 1



t 1 2

2

12

1 2t  1 2t   2 t2  4 t2  4 t 4

y  x arctan 2x 

1 ln1  4x2 4





dy 2x 1 8x   arctan2x   arctan2x dx 1  4x2 4 1  4x2

538

Chapter 5

58. y  25 arcsin y  5

Logarithmic, Exponential, and Other Transcendental Functions x  x25  x2 5

1 1  x22

60. y  arctan

1  25  x2  x 25  x212 2x 2

y 

1 1 1  x2  422x 2 1  x22 2



25 x2 25  x2   2 2 25  x 25  x 25  x2



2 x  x2  4 x2  42



2x2 25  x2



2x2  8  x x2  42

y

62. f x  arctan x, a  1 fx 

1 1  x2

f x 

2x 1  x22

P1 (x) π 2

f

π 4 −4

−2

x 2

P2 (x)

P1x  f 1  f  1x  1 

 1  x  1 4 2

P2x  f 1  f  1x  1 

1  1 1 f 1x  12   x  1  x  12 2 4 2 4

64. f x  arcsin x  2x

66. f x  arcsin x  2 arctan x

1 1 fx   2  0 when 1  x2  or 2 2 1  x x± f x  f

1 x  2 2x2  4

3

2

1 1  x2

x4  6x2  3  0 x  ± 0.681



Relative minimum:



3

2

 2 , 0.68 3

 23, 0.68 

68. arctan 0  0.  is not in the range of y  arctan x. x 3

3x 

3 dx d  2 dt x  9 dt If x  10,

70. The derivatives are algebraic. See Theorem 5.18.

74. cos  

  arccot

If x  3,

By the First Derivative Test, 0.681, 0.447 is a relative maximum and 0.681, 0.447 is a relative minimum.

 0

(b)

fx 

d  11.001 radhr. dt

d  66.667 radhr. dt

A lower altitude results in a greater rate of change of .

750 s

s

  arccos d d  dt ds 



750s 

θ 750

ds 1 750 ds  2 dt s2 dt 1  750s

750 ds ss2  7502 dt





Section 5.9 76. (a) Let y  arcsin u. Then

Inverse Trigonometric Functions: Integration (b) Let y  arctan u. Then

1

sin y  u y

cos y  y  u

1 − u2

sec2 y

u u dy   . dx cos y 1  u2

u y

dy  u dx

1

dy u u .   dx sec2 y 1  u2

(c) Let y  arcsec u. Then

(d) Let y  arccos u. Then

u

sec y  u

u2− 1

1

cos y  u

y

dy sec y tan y  u dx

1 + u2

tan y  u

u

539

1

1 − u2

y

sin y

dy u u   . dx sec y tan y  u u2  1



dy  u dx

u

u u dy   . dx sin y 1  u2

Note: The absolute value sign in the formula for the derivative of arcsec u is necessary because the inverse secant function has a positive slope at every value in its domain.

(f) Let y  arccsc u. Then u

csc y  u

1

y

(e) Let y  arccot u. Then

csc y cot y

1 + u2

cot y  u

1

dy  u dx

u2 − 1

dy u u   dx csc y cot y u u2  1

y

csc2 y

dy  u dx



u

Note: The absolute value sign in the formula for the derivative of arccsc u is necessary because the inverse cosecant function has a negative slope at every value in its domain.

u u dy   . dx csc2 y 1  u2

78. f x  sin x

3

gx  arcsinsin x

f

(a) The range of y  arcsin x is  2 ≤ y ≤ 2.

− 2

2

g

(b) Maximum: 2

−3

Minimum:  2 82. False

80. False

  The range of y  arcsin x is  , . 2 2



Section 5.9



1 

6.



4 4 3 4 dx  dx  arctan3x  C 1  9x2 3 1  9x2 3

10.



1 1 x1 dx  arctan C 4  x  12 2 2

3 4x2

2

1

Inverse Trigonometric Functions: Integration



2.

2

arcsin2 0  arccos2 0  0 

dx 

3



2

2 1 

4x2

dx 

3 2

arcsin2x  C









1

4.

0

8.



12.





1 x 2 dx  arcsin 2 4  x

3





1 x 1 arctan 2 dx  3 3 3 9  x x4  1 dx  x2  1



1



0



3 3

 6



 36

1 x2  1 dx  x3  x  C 3

540

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

14. Let u  t 2, du  2t dt.



t4

16. Let u  x2, du  2x dx.





t 1 1 t2 1 dt  2t dt  arctan  C 2 2 2  16 2 4  t  8 4



1 1 1 dx  2x dx 2 x2x22  22 xx 4  4 

18. Let u  arccos x, du  



12

0



1 dx. 1  x2

12

arccos x dx   1  x2

0





2

22.

1

1 dx  3  x  22



2

24.

0

20. Let u  1  x2, du  2x dx. 0

12



 2

1



arccos x dx 1  x2

1   arccos2 x 2

0

3







2





0

x 1 dx  1  x2 2

32 0.925  32

1 1 x2 dx  arctan 32  x  22 3 3

cos x dx  arctansin x 1  sin2 x

1 x2 arcsec  C 4 2

 4

26.



2 1





0

3

1 2x dx 1  x2

 12 ln1  x 

0

2

3

 ln 2

3

18



3 1 dx. u  x, du  dx, dx  2u du 2x1  x 2x



3 2u du du 3  3 arctan u  C 2 u1  u2 1  u2  3 arctanx  C

28.



1  x2

30.



x2 2x  2 1 dx  dx  x  12  4 2 x  12  4

4x  3



dx  2



2

2

34.

36.

x2

2 x2  4x

dx  





dx  41  x2  3 arcsin x  C

3 dx x  12  4





2



dx 1 x2  arctan 2 3 3 2 x  2  9









2 2





4 1 arctan 3 3

2x  2 1 dx  7 dx  ln x2  2x  2  7 arctanx  1  C x2  2x  2 1  x  12



2 4  x2  4x  4

2 dx 4  x  22

 2 arcsin

40.

1 1  x2

3 x1 1 lnx2  2x  5  arctan C 2 2 2

dx   4x  13

2x  5 dx  x2  2x  2





dx  3





32.

2x 1  x2

1 dx  x  1x2  2x





dx





38. Let u  x2  2x, du  2x  2 dx.



x1 x2  2x

x2 C 2



1 dx  arcsecx  1  C x  1x  12  1

dx 



1 x2  2x122x  2 dx 2

 x2  2x  C

Section 5.9

Inverse Trigonometric Functions: Integration

42. Let u  x2  4, du  2x dx.



x 9  8x2  x4



1 2x 1 x2  4 dx  arcsin C 2 25  x2  42 2 5

dx 



44. Let u  x  2, u2  2  x, 2u du  dx



x  2

x1

dx 



2u2 du  3

u2

 2u 

46. The term is

48. (a) (b)

50. (a) (b) (c)



32

2









2u2  6  6 1 du  2 du  6 2 du u2  3 u 3

u 6 arctan  C  2x  2  23 arctan 3 3



9 9 9 3  : x2  3x  x2  3x    x  4 4 4 2



2



9 4

(c)



x 3 2  C

2

ex dx cannot be evaluated using the basic integration rules. xex dx 



2

1 x2 e  C, u  x2 2

1 1x 1 e dx  e1x  C, u  x2 x

1 dx cannot be evaluated using the basic integration rules. 1  x4



x 1 2x 1 dx  dx  arctanx2  C, u  x2 1  x4 2 1  x22 2

x3 1 4x3 1 dx  dx  ln1  x 4  C, u  1  x 4 4 1x 4 1  x4 4

52. (a)

54.

y

4

dy 2y , y0  2  dx 16  x2 3

x

−1.25

1.25 −3 −4

(b)

−1

dy  x16  y2, 0, 2 dx dy 16  y2

 x dx

4y  x2  C 2

arcsin

42  C ⇒ C   6

0, 2: arcsin 

4y  x2  6 2

arcsin

3

y x2   sin  4 2 6



y  4 sin



x2  6

2

541

542

Chapter 5



1

56. A 

0

Logarithmic, Exponential, and Other Transcendental Functions



x 1 dx  arcsin 2 4  x2



1 0





1

 6

58.

arcsin x dx 0.571

0

y

y

π

1

2

π 4

x

60. Fx 

1 2

x

1

1 2



x2

x

1 2

1

2 dt t2  1

(a) Fx represents the average value of f x over the interval x, x  2. Maximum at x  1, since the graph is greatest on 1, 1.





(b) Fx  arctan t Fx 

62.



1 6x  x2

x2 x

 arctanx  2  arctan x

1 1 4x  1 1  x2  x2  4x  5    2  0 when x  1. 2 2 1  x  2 1x x2  1x2  4x  5 x  1x2  4x  5

dx

(a) 6x  x2  9  x2  6x  9  9  x  32



1 dx  6x  x2



(c)

4

y2

dx x3  arcsin C 3 9  x  32





y1 −1

(b) u  x, u2  x, 2u du  dx



1 6u2  u4

2u du 



7

−2

2 6  u2

du  2 arcsin

u6  C  2 arcsin 6  C x

The antiderivatives differ by a constant, 2. Domain: 0, 6

64. Let f x  arctan x  fx 

x 1  x2

1 1  x2 2x2   > 0 for x > 0. 1  x2 1  x22 1  x2

y 5

x Since f 0  0 and f is increasing for x > 0, arctan x  > 0 for x > 0. Thus, 1  x2 x arctan x > . 1  x2 Let gx  x  arctan x gx  1 

1 x2 > 0 for x > 0. 2  1x 1  x2

Since g0  0 and g is increasing for x > 0, x  arctan x > 0 for x > 0. Thus, x > arctan x. Therefore, x < arctan x < x. 1  x2

y3

4 3 2

y2

1

y1 2

4

6

x 8

10

Section 5.10

Section 5.10

Hyperbolic Functions

e0  e0 1 2

2. (a) cosh0 

4. (a) sinh10  0 (b) tanh10  0

2 (b) sech1   0.648 e  e1

6. (a) csch12  ln (b) coth13 

8.

1 2 5  0.481 



1 4 ln  0.347 2 2

1  cosh 2x 1  e2x  e2x2 e2x  2  e2x ex  ex    2 2 4 2



10. 2 sinh x cosh x  2

e

x

 ex 2

e

x



2

 cosh2 x

 ex e2x  e2x  sinh 2x  2 2



xy2

12. 2 cosh

Hyperbolic Functions

x 2 y coshx 2 y  2 e e

x

2

 exy2 2

xy2

e

 exy2 2



 ey  ey  ex ex  ex ey  ey   4 2 2



 cosh x  cosh y tanh x 

14.

 1 2

2

Putting these in order:

1 2

 sech2 x  1 ⇒ sech2 x 

3

3 ⇒ sech x  4 2

23 1  cosh x  3 32 1 2 coth x  12 sinh x  tanh x cosh x  csch x 

1 33

122 3 3  

3

3

csch x  3

cosh x 

23 3

sech x 

3

tanh x 

1 2

coth x  2

3

3

 3

16. y  coth3x y  3

sinh x 

18. gx  lncosh x

3x

csch2

20. y  x cosh x  sinh x y  x sinh x  cosh x  cosh x  x sinh x

gx 

1 sinh x  tanh x cosh x

22. ht  t  coth t ht  1  csch2 t  coth2 t

2

543

544

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

24. gx  sech2 3x

28. y  sechx  1

26. f x  esinh x

gx  2 sech3x sech3x tanh3x3

y  sechx  1 tanhx  1

fx  cosh xesinh x

 6 sech 3x tanh 3x 2

30. f x  x sinhx  1  coshx  1

6

fx  x coshx  1  sinhx  1  sinhx  1  x coshx  1 fx  0 for x  0. By the First Derivative Test,0, cosh1  0, 1.543 is a relative minimum.

−6

6 (0, −1.543) −2

32. hx  2 tanh x  x

34.

y  a cosh x y  a sinh x

2

y  a cosh x

(0.88, 0.53) −3

3

Therefore, y  y  0.

(− 0.88, − 0.53) −2

Relative maximum: 0.88, 0.53 Relative minimum: 0.88, 0.53 36. f x  cosh x

f 1  cosh0  1

f x  sinh x

f 1  sinh0  0

f  x  cosh x

f  1  cosh0  1

3

f P2 P1 −2

P1x  f 0  f0x  0  1

2 0

1 P2x  1  2 x2

38. (a) y  18  25 cosh

x , 25 ≤ x ≤ 25 25

(b) At x  ± 25, y  18  25 cosh1  56.577. At x  0, y  18  25  43.

80

x (c) y  sinh 25. At x  25, y  sinh1  1.175 −25

25 −10

40. Let u  x, du 



1 dx. 2x



42. Let u  cosh x, du  sinh x dx.





cosh x 1 dx  2 cosh x dx  2 sinhx  C x 2x

44. Let u  2x  1, du  2 dx.



sech22x  1 dx  



1 sech22x  12 dx 2 1 tanh2x  1  C 2



sinh dx  1  sinh2 x



sinh x 1 dx  C cosh2 x cosh x

 sech x  C 46. Let u  sech x, du  sech x tanh x dx.





sech3 x tanh x dx   sech2 xsech x tanh x dx 1   sech3 x  C 3

Section 5.10

48.



cosh2 x dx  







4

1  cosh 2x dx 2

50.

0

Hyperbolic Functions



1 x dx  arcsin 2 5 25  x



4 0



1 sinh 2x x C 2 2

1 1  x  sinh 2x  C 2 4

52.





2 1 1  1  4x2 dx  2 2 dx  2 ln C 2 2 2x x1  4x 2x1  2x





56. y  tanh1

54. Let u  sinh x, du  cosh x dx.



cosh x 9  sinh2 x

dx  arcsin  arcsin

sinh3 x  C e

x

58. y  sech1cos 2x, 0 < x < y 



e 6

x

y 

C

2x  

1 1 2  1  x22 2 4  x2

 4

1 2 sin 2x 2 2 sin 2x    2 sec 2x, cos 2x sin 2x cos 2x cos 2x1  cos2 2x





since sin 2x ≥ 0 for 0 < x < 4. 60. y  csch1 x2 csch x  x 11  x   2 x 1x

y  2 csch1 x

1





2

2

62. y  x tanh1 x  ln1  x2  x tanh1 x  y  x

1 1 x   tanh

1

2

x

1 ln1  x2 2

64. See page 401, Theorem 5.22.

x  tanh1 x 1  x2

66. Equation of tangent line through P  x0, y0: y  a sech1

y

a2  x02 x0  a2  x02   x  x0 a x0

When x  0,

Q

a P

y  a sech1

x0 x  a2  x02  a2  x02  a sech1 0. a a

Hence, Q is the point 0, a sech1x0a.







x02 2

a



x 1 2x 1 1 3  x2 dx   dx   ln C 4 2 2 9x 2 9  x  2 6 3  x2 



1 3 ln C 12 3  x2 x2



x

L

Distance from P to Q: d  x02   a2 

68.

(a, 0)

 arcsin

4 5

545

546

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

3 70. Let u  x32, du  x dx. 2



72.

x 1  x3



dx 







2 2 1 3 2 x dx  sinh1x32  C  ln x32  1  x3   C 3 1  x322 2 3 3

dx  x  2x2  4x  8



dx x  2x  22  4





2  x  22  4 1 C   ln 2 x2

74.



1 dx  x  12x2  4x  8 







1 dx x  12x  12  6



3  x  12  3 1 1 dx   1 ln C x1 2 x  1x  12   32 6





76. Let u  2x  1, du  2 dx. y



78. y 



1 dx  x  14x2  8x  1 1  2x dx  4x  x2





 ln 4x  x2 







2 2x  1 3  2x  12 2



4  2x 1 dx  3 dx 4x  x2 x  22  4











3

e2x

0

2

1 2

0

 e2x dx  e2x

2 lne



1 1 lne4  e4  ln 2 2 2

e

 ln

4

dx



1 2e2x  e2x dx e2x  e2x 2x

6 x2  4



 6 ln x  x2  4 



1



5

2 2x e





82. A 

tanh 2x dx

0





3  4x2  8x  1 1 ln C 2x  1 3

3 x  2  2 3 x4 ln  C  ln 4x  x2  ln C 4 x  2  2 4 x

2

80. A 

dx  



 e2x

2 0

5 3

 6 ln 5  21   6 ln 3  5   6 ln

53 215   3.626 



 e4  1.654 2

84. (a) vt  32t

(b) st 



vt dt 



32t dt  16t2  C

s0  1602  C  400 ⇒ C  400 st  16t2  400 —CONTINUED—

Section 5.10

Hyperbolic Functions

547

84. —CONTINUED— dv  32  kv2 dt

(c)



dv  kv2  32



t→ 

dt









st 



32  k v 1 ln  t  C 232 32  k v

Since v0  0, C  0. ln

32  k v 32  k v



32  k v 32  k v

v



 k e2

32k t

  e32k t  e32k t

32  e 32 k

ex  ex tan y   sinh x. 2

1

k 32k

ln cosh 32k t  C

s2t  0 when t  8.3 seconds



e32k t

32k t



When air resistance is not neglected, it takes approximately 3.3 more seconds to reach the ground.

tanh 32k t

x

e +e

−x x

e −e

−x

y 2

Thus, y  arctansinh x. Therefore, arctansinh x  arcsintanh x. y  sech1 x sech y  x  sech ytanh yy  1 1 1 1   sech ytanh y sech y1  sech2 y x1  x2

y  sinh1 x sinh y  x

cosh yy  1 y 

32

tanh 32k t dt

s1t  0 when t  5 seconds.

86. Let y  arcsintanh x. Then, ex  ex and ex  ex

k

s1t  16t2  400.

 e 32k t  1  e





32

s2t  400  100 ln cosh0.32 t 32k t

k



When k  0.01,

32 e232k t  1



90.

.

 400 ⇒ 400  1k ln cosh 32k t.





y 

k

When t  0, s0  C

 e232k t

v k  k e232k t  32e232k t  1

88.

32

1   ln cosh 32k t  C. k

 232k t









32  k v  e232k t 32  k v

sin y  tanh x 

k



tanh32k t  

(e) Since tanhct dt  1c ln coshct (which can be verified by differentiation), then

Let u  k v, then du  k dv. 1

32

The velocity is bounded by  32k.

dv   dt 32  kv2

k



(d) lim 

1 1 1   cosh y sinh2 y  1 x2  1

548

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

Review Exercises for Chapter 5 2. f x  lnx  3

4. lnx2  1x  1  lnx2  1  lnx  1

y 3

Horizontal shift 3 units to the right Vertical asymptote: x  3

x=3

2 1

x 1

2

4

5

6

−1 −2 −3

 x 25x  1  3

6. 3ln x  2 lnx2  1  2 ln 5  3 ln x  6 lnx2  1  ln 52  ln x3  lnx2  16  ln 25  ln

8. ln x  lnx  3  0

10. hx  ln

ln xx  3  0

hx 

xx  3  e0

2

6

xx  1  ln x  lnx  1  lnx  2 x2

1 1 1 x2  4x  2    x x  1 x  2 x3  3x2  2x

x2  3x  1  0 x

3 ± 13 2

x

3  13 3  13 < 0. only since 2 2

12. f x  lnxx2  22 3  ln x  fx 

16.

2 lnx2  2 3

1 2 2x 7x2  6   3 x 3 x2  2 3x  6x



y 





a  bx  bx 1  2 ax2a  bx x a  bx

lnx x



0

tan

dx 







e

1 dx x





x 2x 1 1 dx  dx  ln x2  1  C x2  1 2 x2  1 2



1 b a 1 b   2 ax2 a2 xa  bx ax axa  bx

 4

24.





20. u  ln x, du 



18. u  x2  1, du  2x dx





1 a  bx  a lna  bx b2



1 b  lna  bx  ln x ax a2



y

dy 1 ab x  b  dx b2 a  bx a  bx

1 b a  bx  ln ax a2 x

1 b dy 1 b 1   2  2  dx a x a a  bx x



14.

22.

1



1 1 1 2 ln x dx  ln x  C 2 x 4



 4

4  x dx  ln cos 4  x   0  ln

0

12  2 ln 2 1

ln x dx  x



e

1

ln x1





e



1 1 dx  ln x2 x 2

1



1 2

Review Exercises for Chapter 5 26. (a)

f x  5x  7

(b)

y  5x  7

6

f

−10

−1 6

y7 x 5 x7 y 5 x7 f 1x  5

28. (a)

f x  x3  2

f

−10

(c) f 1 f x  f 15x  7  f  f 1x  f

(b)

x 5 7  5 x 5 7  7  x f

f

−1

−4

3  y2x

5x  7  7 x 5

3

y  x3  2

5

3  x2y 3 x  2 f 1x  

549

−3

3 x3  2  2  x (c) f 1 f x  f 1x3  2   3 x  2   f  f 1x  f   3 x  2  2  x 3

30. (a)

f x  x2  5, x ≥ 0

(b)

4

f −1

y  x2  5

−6

6

y  5  x

f

x  5  y

f 1

x  x  5

−6

(c) f 1 f x  f 1x2  5  x2  5  5  x for x ≥ 0. f  f 1x  f  x  5    x  5   5  x 2

f x  xx  3

32.

f x  ln x

34.

f 4  4

x  ex

f 1

 f 1x  ex

1 fx  x  3  xx  31 2 2

 f 10  e0  1

f4  1  2  3

 f 14 

36. (a)

1 1  f4 3

f x  e1x

(b)

4

y  e1x ln y  1  x x  1  ln y y  1  ln x f 1x  1  ln x

f

−4

f

−1

5

−2

(c) f 1 f x  f 1 e1x   1  lne1x   1  1  x  x f  f 1x  f 1  ln x  e1 1ln x  eln x  x

550

Chapter 5

38. y  4ex

Logarithmic, Exponential, and Other Transcendental Functions 40. gx  ln

2

y

1 e e

x

x

 ln ex  ln1  ex  x  ln1  ex

5 4

ex 1  1  ex 1  ex

gx  1  1 x

−5 − 4 −3 −2 −1

1 2 3 4 5

−2 −3 −4 −5

42. hz  ez 2

1 46. f   esin 2 2

44. y  3e3 t

2

hz  zez 2 2

y  3e3 t3t2 

2x sin x2  xey



dy  ey dx

dy 2x sin x2  ey  dx xey 52. Let u  e2x  e2x, du  2e2x  e2x dx.











dx 

3 1

x2ex



1 x3 1 2 1 3 e 3x  dx  ex 1  C 3 3

1 lne2x  e2x  C 2



e2x 1 1 dx  2e2x dx e2x  1 2 e2x  1 



e1 x 1 dx   e1 x  2 dx  e1 x  C x2 x

54. Let u  x3  1, du  3x2 dx.

e2x  e2x 1 2e2x  2e2x dx  dx 2x 2x e e 2 e2x  e2x 

56.

f  cos 2 esin 2

1 1 50. Let u  , du  2 dx. x x

cos x2  xey

48.

9e3 t t2

58. (a), (c)

10,000

1 lne2x  1  C 2 0

5 0

V  8000e0.6t, 0 ≤ t ≤ 5

(b)

Vt  4800e0.6t V1  2634.3 dollars year V4  435.4 dollars year



2

60. Area 





2ex dx  2ex

0

62. gx  62x 

2 0

 2e2  2  2 

2  1.729 e2 64. y  log4 x2

2

y

y

5 4 3 2 1

8 6

−5 − 4 −3 −2 −1 2

−4

−2

x 2

4

−2 −3 −4 −5

x 1 2 3 4 5

Review Exercises for Chapter 5 68. y  x4x

66. f x  4xex

y  4x  x  4x ln 4

fx  4xex  ln 44xex  4xex1  ln 4 x  log5 x  log5x  1 x1

70. hx  log5 hx 

1 1 1 1 1   ln 5 x x1 ln 5 x x  1



74. t  50 log10







72.

21 t 1 1 t dt  2 C t2 ln 2



18,000 18,000  h

t  50 log10

(c)

(a) Domain: 0 ≤ h < 18,000 (b)

551

10t 50 

t

18,000 18,000  h

18,000 18,000  h

18,000  h  18,00010t 50

100

h  18,0001  10t 50

80

As h → 18,000, t → .

60 40 20 h 4000

12,000

(d) t  50 log10 18,000  50 log1018,000  h dt 50  dh ln 1018,000  h 50 d 2t  dh2 ln 1018,000  h2

Vertical asymptote: h  18,000

No critical numbers As t increases, the rate of change of the altitude is increasing.

76. 2P  Pe10r

y5

78.

2  e10r y600  5

ln 2  10r r

dy  0.012y, s > 50 ds

1 0.012

dy  y

ds

1 ln y  s  C1 0.012 y  Ce0.012s When s  50, y  28  Ce0.01250 ⇒ C  28e0.6 y  28e0.60.012s, s > 50 e2x dy  dx 1  e2x

dy 

12

t 1620

600 1620

 3.868 grams

ln 2  6.93% 10

80. (a)

82.

12



e2x 1 2e2x dx   dx 2x 1e 2 1  e2x

1 y   ln1  e2x  C 2

(b) Speed(s)

50

55

60

65

70

Miles per Gallon (y)

28

26.4

24.8

23.4

22.0

552

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

84. y  ey sin x  0 dy  ey sin x dx



ey dy 



sin x dx

ey  cos x  C1 ey 

1 cos x  C

y  ln

86.

C  C1

1  ln cos x  C cos x  C



dy 3x  y (homogeneous differential equation)  dx x 3x  y dx  x dy  0 Let y  vx, dy  x dv  v dx. 3x  vx dx  xx dv  v dx  0

3x  2vx dx  x2 dv  0 3  2v dx  x dv



1 dx  x



ln x 



1 dv 3  2v

1 ln 3  2v  C1  ln3  2v1 2  ln C2 2



x  C23  2v1 2



x2  C3  2v  C 3  2

yx

x3  C3x  2y  3Cx  2Cy y

88.

dv  kv  9.8 dt (a)



dv  kv  9.8

x3  3Cx 2C



(b) lim vt  t→

dt



9.8 k

1 9.8  kv0  9.8ekt dt k



(c) st 





1 1 9.8t  kv0  9.8ekt  C k k



1 9.8t  2kv0  9.8ekt  C k k

1 ln kv  9.8  t  C1 k ln kv  9.8  kt  C2 kv  9.8 

ektC2



 C3

ekt



1 v  9.8  C3ekt k At t  0,

1 v0  9.8  C3 ⇒ C3  kv0  9.8 k 1 v  9.8  kv0  9.8ekt k

Note that k < 0 since the object is moving downward.





s0 

1 1 kv  9.8  C ⇒ C  s0  2kv0  9.8 k2 0 k

st 

9.8t 1 1  2kv0  9.8ekt  s0  2kv0  9.8 k k k



9.8t 1  2kv0  9.8ekt  1  s0 k k

Review Exercises for Chapter 5 90. hx  3 arcsin2x

92. (a) Let   arccot 2

5

cot   2

y

1

θ

4

1 tanarccot 2  tan   . 2 −π 2

553

−π 4

π 4

x

π 2

2

(b) Let   arcsec 5

−2

sec   5

5 2

−4

1 . cosarcsec 5   cos   5

θ 1

94. y  arctanx2  1 y 

96. y 

2x 2x  1  x2  12 x4  2x2  2

y 

1 arctan e2x 2





1 1 e2x 2e2x  4x 2 1e 1  e4x

x 98. y  x2  4  2 arcsec , 2 < x < 4 2 y 

x  x  4 2

x2  4 1 4 x x2  4     2 2 2 2 x x 2x 2  1 x  4 x x  4 x x  4







100. Let u  5x, du  5 dx.



1 1 dx  3  25x2 5

102.



104.





3

1 5x 1 5 dx  arctan C 3  5x2 53

1 1 x dx  arctan  C 16  x2 4 4





4x 1 1 x dx  4 dx  4  x21 22x dx  4 arcsin  4  x2  C 2 2 2 2 4  x 4  x

106. Let u  arcsin x, du 





2

1 dx. 1  x2

arcsin x 1 dx  arcsin x2  C 2 1  x2

y

108. π 2

y = arcsin x π 4

x 0.25

0.5

0.75

1



 2

Since the area of region A is 1



0

1

the shaded area is

arcsin x dx 

0

110. y  x tanh1 2x y  x

  1  0.571. 2

112. Let u  x3, du  3x2 dx.

1 2 4x  tanh 2



sin y dy ,

1

2x 

2x  tanh1 2x 1  4x2



x2sech x32 dx 



1 1 sech x323x2 dx  tanh x3  C 3 3

554

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

Problem Solving for Chapter 5 2. (a)

y

(b)

y

4

2

3

1

π 2

−1

π

3π 2

2

x



1

−2

π 2





sin x dx  

0



2



sin x dx ⇒



2



2

sin x dx  0

0

(d) 1

π 2

1 2

1

π 4

1

1

arccos x dx  2

2   

y

4. y  0.5x and y  1.2x intersect y  x. y

π 2

y = 0.5 x

4 , 12. 6



2

0

y = 2x y = x

does not intersect y  x. y = 1.2 x −6

Suppose y  x is tangent to y  ax at x, y.

6 −2

ax  x ⇒ a  x1x. y  ax ln a  1 ⇒ x ln x1x  1 ⇒ ln x  1 ⇒ x  e, a  e1e For 0 < a ≤ e1e 1.445, the curve y  ax intersects y  x. 6. (a) y  f x  arcsin x sin y  x Area A 



Area B 

126   12 0.2618



4

6

22

(b)

arcsin x dx  AreaC 

12



6



2

2



3

2



3  2

2

4  22   A  B 

2 3  2    8 2 12

 —CONTINUED—

4



sin y  dy  cos y

 82  121   

2  3

2

0.1346

x

1 is symmetric with respect to the 1  tan x2

point

2x

x

sin x  2 dx  22  4

x





y

π

−1

3π 2

0

y

(c)

π

0.1589

1  1  dx   1  tan x2 2 2 4



Problem Solving for Chapter 5

555

6. —CONTINUED—



y

ln 3

(c) Area A 

ey dy

y = ln x

0



ln 3

 ey

0



ln 3

312

ey = x

A B

3

Area B 

ln x dx  3ln 3  A  3 ln 3  2  ln 27  2 1.2958

x 1

2

3

1

(d)

tan y  x Area A 



3

tan y dy

4 3

4



 ln cos y

y

y = arctan x

2 1 1  ln  ln  ln2  ln 2 2 2 2



3

Area C 

arctan x dx 

1



A

3 3  21 ln 2  4 1

C

B

x 1

3

 43  3  21 ln 2 0.6818 12 10. Let u  tan x, du  sec2 x dx

y  ex

8.

π 3 π 4

y 

ex

yb

ea

Area 

x  a



4

0

1 dx  sin x  4 cos2 x 2

y  eax  aea  b Tangent line

bx  ab  b b  ea



sec2 x dx tan2 x  4

du u2  4

12 arctanu2

1 0

xa1 ca1



Thus, a  c  a  a  1  1. dy 1  y1  y, y0  dt 4



1 1  dy  y 1y



0

0

eax  aea  b



4

1



If y  0,

12. (a)

 





1 1 arctan 2 2

y

(b)



1

dt



ln y  ln 1  y  t  C



y ln tC 1y y  etC  C1et 1y y  C1et  yC1et y y0 

C1et 1  1  C1et 1  C2et

1 1 ⇒ C2  3  4 1  C2

Hence, y 

1 . 1  3et

—CONTINUED—

−6

−4

−2

x 2

4

6

dy  y1  y  y  y2 dt d2y 1  y  y  2yy ⇒ y  0 for y  dt 2 2 d2y 1 1 d2y > 0 if 0 < y < and 2 < 0 if < y < 1. 2 dt 2 2 dt 1 Thus, the rate of growth is maximum at y  , the 2 point of inflection.

556

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

12. —CONTINUED— (c) y  y1  y, y0  2 1 1  C2et

As before, y  y0  2  Thus, y 

1 1 ⇒ C2   1  C2 2

1 2  . 1 t 2  et 1 e 2

The graph is different: y 6 4 2 −6

−4

−2

x 2

4



6

14. (a) u  985.93  985.93 



v  985.93 

0.095 120,0000.095 1 12 12



0.095 120,0000.095 1 12 12





12t

(d) t  12.7 years Again, the larger part goes for interest.

v



(c) The slopes are negatives of each other. Analytically,

u15  v15  14.06.

u

12t

(b) The larger part goes for interest. The curves intersect when t 27.7 years.

du dv u  985.93  v ⇒ dt   dt

1000

0

35 0

C H A P T E R 5 Logarithmic, Exponential, and Other Transcendental Functions Section 5.1

The Natural Logarithmic Function: Differentiation . . . . 218

Section 5.2

The Natural Logarithmic Function: Integration . . . . . . 223

Section 5.3

Inverse Functions . . . . . . . . . . . . . . . . . . . . . . 227

Section 5.4

Exponential Functions: Differentiation and Integration . . 233

Section 5.5

Bases Other than e and Applications . . . . . . . . . . . . 240

Section 5.6

Differential Equations: Growth and Decay . . . . . . . . . 246

Section 5.7

Differential Equations: Separation of Variables

Section 5.8

Inverse Trigonometric Functions: Differentiation . . . . . 259

Section 5.9

Inverse Trigonometric Functions: Integration

. . . . . . 251

. . . . . . . 263

Section 5.10 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . 267 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

C H A P T E R 5 Logarithmic, Exponential, and Other Transcendental Functions Section 5.1

The Natural Logarithmic Function: Differentiation

Solutions to Odd-Numbered Exercises 1. Simpson’s Rule: n  10 x



0.5

x

1

1 dt t

 0.6932



0.5

Note:

1

1 dt   t

1.5

2

2.5

3

3.5

4

0.4055

0.6932

0.9163

1.0987

1.2529

1.3865



1

1 dt 0.5 t

3. (a) ln 45  3.8067



45

(b)

1

5. (a) ln 0.8  0.2231



0.8

1 dt  3.8067 t

(b)

1

7. f x  ln x  2

1 dt  0.2231 t

9. f x  ln x  1

Vertical shift 2 units upward

Horizontal shift 1 unit to the right

Matches (b)

Matches (a)

11. f x  3 ln x

13. f x  ln 2x

Domain: x > 0

15. f x  lnx  1

Domain: x > 0

Domain: x > 1 y

y

y 3

2

2 2

1 1

1

x 3

x 1

2

3

4

1

1

2

3

1

1

2

4

x

5

2

3

17. (a) ln 6  ln 2  ln 3  1.7917

2 19. ln 3  ln 2  ln 3

(b) ln 23  ln 2  ln 3  0.4055 (c) ln 81  ln 34  4 ln 3  4.3944 (d) ln 3  ln 312  12 ln 3  0.5493

21. ln

218

xy  ln x  ln y  ln z z

3 a2  1  lna2  113  23. ln 

1 lna2  1 3

Section 5.1

x x 1 2

25. ln

3

3

The Natural Logarithmic Function: Differentiation

27. ln zz  12  ln z  lnz  12

 3lnx2  1  ln x3

 ln z  2 lnz  1

 3lnx  1  lnx  1  3 ln x

29. lnx  2  lnx  2  ln

31.

x2 x2

1 xx  32 1 2 lnx  3  ln x  lnx2  1  ln 2  ln 3 3 x 1

33 . 2 ln 3 

35.

xxx  31

2

3

2

1 9 lnx2  1  ln 9  lnx2  1  ln 2 x2  1 37. lim lnx  3   

3

x →3

f=g 9

0

−3

39. lim lnx23  x  ln 4  1.3863

41. y  ln x3  3 ln x

x →2

y 

3 x

At 1, 0, y  3. 45. gx  ln x 2  2 ln x

43. y  ln x2  2 ln x y 

2 x

gx 

47.

y  ln x4 dy 1 4ln x3  4ln x3  dx x x



2 x

At 1, 0, y  2.

49.

y  ln xx2  1  ln x 

1 lnx2  1 2

51. f x  ln

dy 1 1 2x 2x2  1    dx x 2 x2  1 xx2  1





ln t t2

53. gt 

55.

t 21t  2t ln t 1  2 ln t gt   t4 t3

57.

xx  11  21 lnx  1  lnx  1

y  ln



fx 

1 dy 1 1 1    dx 2 x  1 x  1 1  x2

x  ln x  lnx2  1 x2  1

1 2x 1  x2  2  x x  1 xx2  1

y  lnln x2 1 d 2xx2 2 1 dy  ln x2    2 dx ln x dx ln x2 x ln x2 x ln x

59. f x  ln fx 

4  x2

x



1 ln4  x2  ln x 2

x 1 4   4  x2 x xx2  4

219

220 61.

Chapter 5 y

Logarithmic, Exponential, and Other Transcendental Functions

 x2  1  lnx  x2  1  x

dy xxx2  1   x2  1 1   dx x2 x  x2  1





63.



1 1  x 1 x  x2  1

2 2

x





x2  1  x x  1 2



y  ln sin x

1 

x

x x2  1



1 1 1  x2 x2  1   2 2  2 x  1 x  1 x x  1 x2

2 2

65.



y  ln

dy cos x   cot x dx sin x

cos x cos x  1











 ln cos x  ln cos x  1

dy sin x sin x sin x    tan x  dx cos x cos x  1 cos x  1

67.



y  ln

1  sin x 2  sin x





69. f x  sin 2x ln x2  2 sin 2x ln x







fx  2 sin 2x

 ln 1  sin x  ln 2  sin x dy cos x cos x   dx 1  sin x 2  sin x 



3 cos x sin x  1sin x  2 (b)

4

(1, 3)

1 dy  6x  dx x When x  1,

2 sin 2x  2x cos 2x ln x x

2  sin 2x  x cos 2x ln x2 x

y  3x2  ln x, 1, 3

71. (a)

1x  4 cos 2x ln x

−1

dy  5. dx

2

−3

Tangent line: y  3  5x  1 y  5x  2 0  5x  y  2 73.

x2  3 ln y  y2  10 2x 

3 dy dy  2y 0 y dx dx 2x 

y 



dy 3  2y dx y



x2  2x  0

2

Domain: x > 0 1 x  1x  1   0 when x  1. x x

y  1 

1 > 0 x2

1 Relative minimum:  1, 2 

2 x2

xy  y  x 

x2  ln x 2

y  x 

2 x

y  

dy 2x 2xy   dx 3y  2y 3  2y 2

77. y 

y  2ln x  3

75.

(1, 12 ) 0

3 0

2

Section 5.1

The Natural Logarithmic Function: Differentiation

79. y  x ln x

221

2

Domain: x > 0 y  x

1x  ln x  1  ln x  0 when x  e

1.

0

3

(e−1 , −e−1 ) −1

1 > 0 x

y 

Relative minimum: e1, e1

81. y 

x ln x

4

( e, e )

Domain: 0 < x < 1, x > 1

(e2, e2/2)

0

y 

ln x1  x1x ln x  1   0 when x  e. ln x2 ln x2

y 

ln x21x  ln x  12x ln x 2  ln x   0 when x  e 2. ln x4 xln x3

9

−4

Relative minimum: e, e Point of inflection: e2, e22 83.

f x  ln x,

f 1  0

1 fx  , x

The values of f, P1, P2, and their first derivatives agree at x  1. The values of the second derivatives of f and P2 agree at x  1.

f1  1

2

1 f  x   2, x

f  1  1

P1 f

P1x  f 1  f1x  1  x  1, P2x  f 1  f1x  1   x  1  P1x  1,

P11  0

1 x  12, 2

P21  0

P21  1

P21  1

85. Find x such that ln x  x.

87.

f x  ln x  x  0 1 1 x



n

1

xn

0.5  0.1931

y  xx2  1 ln y  ln x 

f xn  1  ln xn  xn   xn fxn  1  xn

f xn 

−2

P11  1

P2x  1,

xn1

5

P2

1 f  1x  12 2

P2x  1  x  1  2  x,

fx 

−1

2



1 dy 1 x   2 y dx x x 1

2x2  1 2x2  1 dy y  2 dx xx  1 x2  1



3

0.5644

0.5671

 0.0076

 0.0001

Approximate root: x  0.567

1 lnx2  1 2

222

Chapter 5

y

89.

Logarithmic, Exponential, and Other Transcendental Functions

x23x  2 x  12

ln y  2 ln x 

y

91.

1 ln3x  2  2 lnx  1 2

xx  132 x  1

ln y  ln x 





3 1 lnx  1  lnx  1 2 2







1 dy 3 2 2    y dx x 23x  2 x  1

1 3 1 1 dy 1 1    y dx x 2 x1 2 x1

dy 3x2  15x  8 y dx 2x3x  2x  1

dy y 2 3 1    dx 2 x x1 x1







3x3  15x2  8x 2x  133x  2





y 4x2  4x  2 2x2  2x  1x  1  2 xx2  1 x  132



93. Answers will vary. See Theorem 5.1 and 5.2.

95. ln ex  x because f x  ln x and gx  ex are inverse functions.

97. (a) f 1  f 3

(b) fx  1 

 10 log10

99.

1010 

10I  ln1010 ln 10I  ln1010ln I  16 ln 10  160  10 log 16

16

10

I

10 10 10 ln 1010  16 ln 10  10 ln 10  16 ln 10  6 ln 10  60 decibels ln 10 ln 10 ln 10

101. (a) You get an error message because ln h does not exist for h  0. (b) Reversing the data, you obtain h  0.8627  6.4474 ln p. (c)

2  0 for x  2. x

(d) If p  0.75, h  2.72 km. (e) If h  13 km, p  0.15 atmosphere. (f)

h  0.8627  6.4474 ln p 1  6.4474

25

1 dp (implicit differentiation) p dh

p dp  dh 6.4474 0

1 0

For h  5, p  0.55 and dpdh  0.0853 atmos/km. For h  20, p  0.06 and dpdh  0.00931 atmos/km. As the altitude increases, the rate of change of pressure decreases.

103. (a) f x  ln x, gx  x

4 x (b) f x  ln x, gx   15

25

g g

f f

0

500 0

20,000

0 0

1 1 fx  , gx  x 2x

1 1 fx  , gx  4 3 x 4x

For x > 4, gx > fx. g is increasing at a faster rate than f for “large” values of x.

For x > 256, gx > fx. g is increasing at a faster rate than f for “large” values of x. f x  ln x increases very slowly for “large” values of x.

Section 5.2

The Natural Logarithmic Function: Integration

105. False ln x  ln 25  ln25x  lnx  25

Section 5.2

1.



The Natural Logarithmic Function: Integration



5 1 dx  5 dx  5 ln x  C x x



3. u  x  1, du  dx



5. u  3  2x, du  2 dx



1 dx  ln x  1  C x1



7. u  x2  1, du  2x dx





1 1 1 dx   2 dx 3  2x 2 3  2x



x 1 1 dx  2x dx x2  1 2 x2  1

1   ln 3  2x  C 2









1 lnx2  1  C 2

 lnx2  1  C

9.



x2  4 dx  x 



x



4 dx x

11. u  x3  3x2  9x, du  3x2  2x  3 dx



x2  4 ln x  C 2





x2  2x  3 1 3x2  2x  3 dx  dx x3  3x2  9x 3 x3  3x2  9x 

13.



x2  3x  2 dx  x1 

17.



x4  x  4 dx  x2  2





6 dx x1

x4





x2  2 

1

dx 

x3  3x2  5 dx  x3





x dx x2  2

21. u  x  1, du  dx x  1



x2  4x  6 ln x  1  C 2



19. u  ln x, du 



x3 1  2x  lnx2  2  C 3 2





15.

23.



x  11 2 dx

 2x  1

1 2

C

 2x  1  C

1 ln x3  3x2  9x  C 3







x2 



5 dx x3

x3  5 ln x  3  C 3





1 dx x

1 ln x2 3 dx  ln x  C x 3



2x dx  x  12 

  

2

2x  2  2 dx x  12

 

2x  1 1 dx  2 dx x  12 x  12 1 1 dx dx  2 x1 x  12





 2 ln x  1 

2 C x  1

223

224

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions 1 dx ⇒ u  1 du  dx 2x

25. u  1  2x, du 



1 dx  1  2x



u  1 du  u





 u  ln u  C1



1 du u

u





  1  2x   ln 1  2x  C1  2x  ln 1  2x   C where C  C1  1.

27. u  x  3, du 



x x  3



dx  2

1 dx ⇒ 2u  3 du  dx 2x



2  6u  9 lnu  C

2



u  32 u2  6u  9 du  2 du  2 u u

u2

1

u6



9 du u



 u2  12u  18 ln u  C1





  x  3  12 x  3  18 ln x  3  C1 2





 x  6x  18 ln x  3  C where C  C1  27.

29.



cos  d  ln sin   C sin 





31.



csc 2x dx 

u  sin , du  cos  d

33.



1   ln csc 2x  cot 2x  C 2



cos t dt  ln 1  sin t  C 1  sin t

37. y 







35.

3 dx 2x



 3

(1, 0) −10



 3 ln x  2  C



tan2 d

(0, 2)

4

−3

3



−3

1 0, 2: 2   lncos 0  C ⇒ C  2 2



1 s   ln cos 2  2 2



dy 1  , 0, 1 dx x  2 (a)

 



y  3 ln x  2

41.



1 tan22 d 2 1   ln cos 2  C 2

−10



sec x tan x dx  ln sec x  1  C sec x  1



10

1, 0: 0  3 ln1  2  C ⇒ C  0





39. s 

10

1 dx x2





1 csc 2x2 dx 2

(b)

y

(0, 1)

y





1 dx  ln x  2  C x2





3

3

y0  1 ⇒ 1  ln 2  C ⇒ C  1  ln 2 x

−2

4

−3





 

Hence, y  ln x  2  1  ln 2  ln

x2  1. 2

−3

6

−3

Section 5.2



4

43.

0



47.



0





2 x



2

x1

0

1

   





49.





 cos  d  ln   sin    sin 



21

1



 0  ln 3 2

 ln



e



1



7 3

 1 2

2  sin 2 1.929 1  sin 1

1  C  ln sec x  C cos x

 ln





1 dx x1

225

1 dx x

1  ln x2 1 dx  1  ln x3 x 3 1 e



53. ln sec x  tan x  C  ln

55.



 x  ln x  1

2

51. ln cos x  C  ln



45. u  1  ln x, du 

5 ln 13 4.275 3

2 dx  x1

2 2 x

4

 0

5 5 dx  ln 3x  1 3x  1 3 

The Natural Logarithmic Function: Integration











sec x  tan xsec x  tan x sec2 x  tan2 x  C  ln C sec x  tan x sec x  tan x



1  C  ln sec x  tan x  C sec x  tan x





1 dx  2 1  x   2 ln 1  x   C1 1  x  2 x  ln 1  x   C where C  C1  2.

57.

 

cos1  x dx  sin1  x  C  2

59.

 4



 2



csc x  sin x dx  lncsc x  cot x  cos x

 4

 ln2  1 

2

2

0.174

Note: In Exercises 61 and 63, you can use the Second Fundamental Theorem of Calculus or integrate the function.



63. F x 

Fx 

1 x

Fx 



3x

x

61. F x 

1 dt 1 t

x

1 dt  t



3x

1

1 dt  t



x

1

1 dt t

65.

y

2

3 1  0 3x x

x

−1

−1 2

A 1.25 Matches (d)

67. A 



4 2 x

1

4 dx  x

 4

1

x



4 dx x

10



2  4 ln x



15  8 ln 2 13.045 square units 2

x2

4 1

 8  4 ln 4 

1 2 0

6 0

1 2

1

226

Chapter 5



2

69.

2 sec

0

Logarithmic, Exponential, and Other Transcendental Functions

x 12 dx  6 



2

sec

0



6x6 dx

10





12 ln sec 6x  tan 6x



  12 12 ln sec  tan  ln 1  0  3 3 



12 ln 2  3  5.03041 





1 42

77. Average value 



4

2



8 dx  4 x2



0



4 0

4

75. Divide the polynomials: x2 1 x1 x1 x1

79. Average value 

x2dx

2



 4  4



0

73. Substitution: u  x2  4 and Log Rule

71. Power Rule

81. Pt 

2

1 x

1 e1



e

1

ln x 1 ln x2 dx  x e1 2





4 2

14  21  1



e



1





1 1 e1 2



1 0.291 2e  2

3000 0.25 dt  30004 dt  12,000 ln 1  0.25t  C 1  0.25t 1  0.25t









P0  12,000 ln 1  0.250  C  1000 C  1000









Pt  12,000 ln 1  0.25t  1000  1000 12 ln 1  0.25t  1 P3  1000 12ln 1.75  1 7715

83.

1 50  40



50

40





50

 40 $168.27

90,000 dx  3000 ln 400  3x 400  3x

85. (a) 2x2  y2  8

(b) y2  e1 xdx  eln xC  eln1 xeC  

y2  2x2  8 Let k  4 and graph y2 

y1  2x2  8 y2 

 2x2

8

4 x

1 k x

yy  2 2 x x 1

2





10

10 − 10 − 10

10

10 − 10 − 10

(c) In part (a),

2x2  y2  8 4x  2yy  0 y 

2x . y

In part (b),

y2  2yy  y 

4  4x1 x 4 x2 2 2y 2y y  2 2  . yx 2 y x 4x 2x

Using a graphing utility the graphs intersect at 2.214, 1.344. The slopes are 3.295 and 0.304  1 3.295, respectively.

Section 5.3 87. False

Inverse Functions

89. True



1 ln x  lnx12  ln x12 2

1 dx  ln x  C1 x

 

 

 

 ln x  ln C  ln Cx , C  0

Section 5.3 1. (a)

Inverse Functions

f x  5x  1 gx 

(b) 3

x1 5

f 2 1

x1 x1 5 1x f gx  f 5 5





g( f x  g5x  1 

3. (a)

y





g x

−3

1

2

3

5x  1  1 x 5

f x  x3

(b)

y

3 x gx  

3

f

2

3 x   f gx  f    3 x 3  x

g

1

x

3 3 g f x  gx3   x x

−3 −2

1

2

3

−2 −3

5. (a)

f x  x  4

(b)

gx  x2  4, x ≥ 0

g 10

f gx  f x2  4

8 6

 x2  4  4  x2  x

4

g f x  g x  4 

f x 

1 x

f

2 x

  x  4 2  4  x  4  4  x

7. (a)

y 12

2

4

6

(b)

8

10

12

y 3

1 gx  x f gx 

1 x 1x

g f x 

1 x 1x

9. Matches (c)

2

f=g

1 x −1

11. Matches (a)

1

2

3

227

228

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

13. f x  34 x  6

1 3 s2 One-to-one; has an inverse

17. hs 

15. f   sin  Not one-to-one; does not have an inverse

One-to-one; has an inverse y

1 −4

y

8

8 1 6 4

π 2

2

−8

−6

−4

−7

θ

3π 2

x

−2

−1

19. f x  ln x

21. gx  x  53

One-to-one; has an inverse

One-to-one; has an inverse

2

200

−1

5 −10

2 − 50

−2

23. f x  x  a3  b

25. f x 

fx  3x  a2 ≥ 0 for all x.

x4  2x2 4

f x  x3  4x  0 when x  0, 2, 2.

f is increasing on  , . Therefore, f is strictly monotonic and has an inverse.

f is not strictly monotonic on  , . Therefore, f does not have an inverse.

27. f x  2  x  x3 fx  1  3x2 < 0 for all x. f is decreasing on  , . Therefore, f is strictly monotonic and has an inverse. 29.

f x  2x  3  y x y

31.

f x  x5  y

y3 2 x3 2

f x  x  y

33.

5 y x 

x  y2

5 x y 

y  x2 f 1x  x2, x ≥ 0

5 x  x15 f 1x   y

x3 x  2

f 1

y

f 2

f y

3

1

f

1

1

2 4

f

x 2

1

2

1

2

f

1

x 2

2 2

f

4

2

x 1

2

3

Section 5.3 f x  4  x2  y, 0 ≤ x ≤ 2

35.

Inverse Functions

229

3 x  1  y f x  

37.

x  4  y2

x  y3  1

y  4  x2

y  x3  1 f 1x  x3  1

f 1x  4  x2, 0 ≤ x ≤ 2

2

y

f −1 f

3

−3

f

2

3

1

f

The graphs of f and f 1 are reflections of each other across the line y  x.

−2

1

x 1

2

3

f x  x23  y, x ≥ 0

39.

f x 

41.

x  y32 y  x32 y

f 1x  x32, x ≥ 0 4

f −1

The graphs of f and f 1 are reflections of each other across the line y  x.

f

0

f 1x 

x x2  7

x

7y 1  y2

7x 1  x2 7x 1  x2

, 1 < x < 1

2

f −1 f

6 −3

0

y

3

The graphs of f and f 1 are reflections of each other across the line y  x.

−2

43.

x

1

2

3

4

f 1x

0

1

2

4

y

45. (a) Let x be the number of pounds of the commodity costing 1.25 per pound. Since there are 50 pounds total, the amount of the second commodity is 50  x. The total cost is y  1.25x  1.6050  x

(4, 4)

4

 0.35x  80

0 ≤ x ≤ 50.

3 2

(b) We find the inverse of the original function:

(3, 2)

y  0.35x  80

(2, 1)

1

(1, 0) 1

x 2

3

4

0.35x  80  y x  100 35 80  y 20 Inverse: y  100 35 80  x  7 80  x.

x represents cost and y represents pounds. (c) Domain of inverse is 62.5 ≤ x ≤ 80. (d) If x  73 in the inverse function, 100 y  100 35 80  73  5  20 pounds.

230

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

47. f x  x  42 on 4, 

4 on 0,  x2

49. f x 

fx  2x  4 > 0 on 4, 

fx  

f is increasing on 4, . Therefore, f is strictly monotonic and has an inverse.

8 < 0 on 0,  x3

f is decreasing on 0, . Therefore, f is strictly monotonic and has an inverse.

51. f x  cos x on 0, fx  sin x < 0 on 0,  f is decreasing on 0, . Therefore, f is strictly monotonic and has an inverse. x  y on 2, 2 x2  4

f x 

53.

Domain: all x Range: 2 < y < 2

x 2 y  4y  x x2 y  x  4y  0 a  y, b  1, c  4y

f

1 ± 1  4 y4y 1 ± 1  16y2  x 2y 2y y  f 1x 

1 0,

55. (a), (b)

The graphs of f and f 1 are reflections of each other across the line y  x.

2



−3

3

f

−1

−2

1  16x2 2x, if x  0

if x  0 57. (a), (b)

6

4

f

g

f −1 −5

−6

10

6

g−1 −4

(c) Yes, f is one-to-one and has an inverse. The inverse relation is an inverse function. 59. f x  x  2, Domain: x ≥ 2 fx 

1 > 0 for x > 2. 2x  2

f is one-to-one; has an inverse x  2  y

x  2  y2 x  y2  2 yx 2

−4

(c) g is not one-to-one and does not have an inverse. The inverse relation is not an inverse function.





61. f x  x  2 , x ≤ 2   x  2 2x f is one-to-one; has an inverse 2xy 2yx f 1x  2  x, x ≥ 0

2

f 1

x  x2  2, x ≥ 0

63. f x  x  32 is one-to-one for x ≥ 3.

x  3  y 2

x  3  y x  y  3 y  x  3 f 1x  x  3, x ≥ 0 (Answer is not unique)





65. f x  x  3 is one-to-one for x ≥ 3. x3y

xy3 yx3 f 1x  x  3, x ≥ 0 (Answer is not unique)

Section 5.3 67. Yes, the volume is an increasing function, and hence one-to-one. The inverse function gives the time t corresponding to the volume V.

f x  x3  2x  1, f 1  2  a

71.



1 1 1  2    f f 12 f1 312  2 5

 6   21  a

f x  sin x, f

73.

fx  cos x

1

 f 1

12  f f 

1 1

1 32



12 

1 1  f 6 cos 6

23 3

4 f x  x3  , f 2  6  a x

75.

fx  3x2 

 f 16 

4 x2

1 1 1 1    f f 16 f2 322  422 13

77. (a) Domain f  Domain f 1   , 

79. (a) Domain f  4, , Domain f 1  0, 

(b) Range f  Range f 1   , 

(b) Range f  0, , Range f 1  4, 

(c)

(c)

y

f f −1

8 6

x 1

2

3

4

x

−3

2

f x  x3,

(d)

6

8

10

12

f x  x  4, 5, 1 fx 

1 2x  4

12  43

f5 

1 2

3 x, f 1x  



12, 18

4

fx  3x2 f

f 1

f

2

−2

(d)

f −1

10

2

−3 −2

y 12

3

1

x 

 f 1

18, 12

1 3 2 3 x

18  34

231

69. No, Ct is not one-to-one because long distance costs are step functions. A call lasting 2.1 minutes costs the same as one lasting 2.2 minutes.

fx  3x2  2 f 1

Inverse Functions

f 1x  x2  4, 1, 5

 f 1x  2x  f 11  2

232 81.

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

x  y3  7y2  2 1  3y2

dy dy  14y dx dx

1 1 1 dy dy  . At 4, 1,   . dx 3y2  14y dx 3  14 11 Alternate solution: let f x  x3  7x2  2. Then fx  3x2  14x and f1  11. Hence,

1 1 dy   . dx 11 11

In Exercises 83 and 85, use the following. f x  18 x  3 and g x  x3 3 x f1 x  8 x  3 and g1 x  

83.  f 1 g11  f 1g11  f 11  32

85.  f 1 f 16  f 1 f 16  f 172  600

In Exercises 87 and 89, use the following. f x  x  4 and g x  2x  5 f1 x  x  4 and g1 x 

x5 2

87. g1 f 1x  g1 f 1x  g1x  4 

x  4  5 2



x1 2

89.  f gx  f gx  f 2x  5  2x  5  4  2x  1 x1 2  g1 f 1

Hence,  f g1x 

Note:  f g1 91. Answers will vary. See page 335 and Example 3.

93. y  x2 on  ,  does not have an inverse.

95. f is not one-to-one because many different x-values yield the same y-value.

97. Let  f gx  y then x   f g1y. Also,

Example: f 0  f    0

2n  1 Not continuous at , where n is an integer 2

 f gx  y f gx  y gx  f 1y x  g1 f 1y  g1 f 1y Since f and g are one-to-one functions,  f g1  g1 f 1.

99. Suppose gx and hx are both inverses of f x. Then the graph of f x contains the point a, b if and only if the graphs of gx and hx contain the point b, a. Since the graphs of gx and hx are the same, gx  hx. Therefore, the inverse of f x is unique.

Section 5.4

Exponential Functions: Differentiation and Integration 103. True

101. False Let f x  x2.



x

105. Not true

f x 

107.

Let f x 

1  x, x,

0 ≤ x ≤ 1 1 < x ≤ 2

2

.

fx 

f is one-to-one, but not strictly monotonic.

Section 5.4

dt 1  t 4

, f 2  0

1 1  x 4

 f 10 

1 1   17 f2 1 17

Exponential Functions: Differentiation and Integration

1. e0  1

3.

ln 2  0.6931

5. eln x  4 x4

e0.6931. . .  2

ln1  0

9. 9  2ex  7

7. ex  12

2ex  7

x  ln 12  2.485

ex  1 x0 13. ln x  2

11. 50ex  30 ex 

x  e2  7.3891

3 5

x  ln x  ln

35 53  0.511

15. lnx  3  2 x3

17. lnx  2  1 x  2  e1  e

e2

x  2  e2

x  3  e2  10.389

x  e2  2  5.389 19. y  ex

21. y  ex

y

2

Symmetric with respect to the y-axis Horizontal asymptote: y  0

4 3

y

2

x 1

1

2

3

x 1

1

233

234

Chapter 5

23. (a)

Logarithmic, Exponential, and Other Transcendental Functions (b)

7

(c)

3

g

f

7

f

f

q

−2 −5

4

h

7 −1

−4

Horizontal shift 2 units to the right

8 −1

−3

Vertical shift 3 units upward and a reflection in the y-axis

A reflection in the x-axis and a vertical shrink 27. y  C1  eax 

25. y  Ceax Horizontal asymptote: y  0

Vertical shift C units

Matches (c)

Reflection in both the x- and y-axes Matches (a)

29. f x  e2x

31. f x  ex  1

gx  lnx 

gx  lnx  1

1 ln x 2

y y 6

f

6

f

4

4

g

2 2

g

x 2

x

−2

2

4

4

6

6

−2

33.

35.

3

1 1  1,000,000 

1,000,000

g

 2.718280469

e  2.718281828

f −1

4

e >

−1

1 1  1,000,000 

As x → , the graph of f approaches the graph of g. 0.5 x  e0.5 lim 1  x → x





37. (a) y  e3x

(b) y  e3x

y  3e3x

y  3e3x

At 0, 1, y  3.

At 0, 1, y  3.

39. f x  e2x

41. f x  e2xx

2

fx  2e2x

45. gt  et  et 3 gt  3et  et 2et  et 

43.

dy ex  dx 2x

dy 2  2x  1e2xx dx

47.

y  ln ex  x2 2

dy  2x dx

y  ex

49.

y  ln1  e2x  2e2x dy  dx 1  e2x

1,000,000

Section 5.4

51.

y

Exponential Functions: Differentiation and Integration

2  2ex  ex 1 ex  ex

dy  ex2x  2  exx2  2x  2  x2ex dx

dy  2ex  ex 2ex  ex  dx 

y  x2ex  2xex  2ex  ex x2  2x  2

53.

2ex  ex  ex  ex 2

55. f x  ex ln x fx  ex

y  ex sin x  cos x

57.

1x   e

x

ln x  ex

1x  ln x

dy  excos x  sin x  sin x  cos xex  dx  ex2 cos x  2ex cos x 61. f x  3  2xe3x

xey  10x  3y  0

59. xey

fx  3  2x3e3x  2e3x

dy dy  ey  10  3 0 dx dx

 7  6xe3x

dy y xe  3  10  ey dx

fx  7  6x3e3x  6e3x  36x  5e3x

dy 10  ey  y dx xe  3 y  ex cos2x  sin2x

63.

y  ex  2 sin 2x  2 cos 2x  ex cos2x  sin 2x  ex  1  2 cos2x   1  2 sin2x

y  ex   2  2sin 2x   2  2cos 2x  ex  1  2 cos2x   1  2sin 2x  ex  1  22 sin 2x   1  22 cos 2x

2y  3y  2ex  1  2cos 2x   1  2sin 2x  3ex cos2x  sin 2x  ex  1  22 cos 2x   1  22 sin 2x  y

Therefore, 2y  3y  y ⇒ y  2y  3y  0. 65. f x  fx 

ex  ex 2

6

ex  ex  0 when x  0. 2 (0, 1)

−3

ex  ex fx  > 0 2

3

0

Relative minimum: 0, 1 67. gx 

1 2

ex2 2 2

2,

1 2 gx  x  2ex2 2 2

(

1,

1 2 g x  x  1x  3ex2 2 2

2, Points of inflection: 1, Relative maximum:

(

0.8

0

  2, 0.399 1 e , 3, 12 e   1, 0.242, 3, 0.242 2

1

2 

1 2



1 2

e− 0.5 2π

1 2π

( (

(

3,

e− 0.5 2π

( 4

0

235

236

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

69. f x  x2ex

3

fx  x2ex  2xex  xex2  x  0 when x  0, 2. f  x  ex2x  x2  ex2  2x

(2, 4 e −2 )

(0, 0)

 exx2  4x  2  0 when x  2 ± 2.

−1

5 0

Relative minimum: 0, 0

(2 ±

2, (6 ± 4

2)e− (2 ± 2)

Relative maximum: 2, 4e2 x  2 ± 2 y   2 ± 22e2 ± 2 Points of inflection: 3.414, 0.384, 0.586, 0.191 71. gt  1  2  tet

5

(− 1, 1 + e)

gt  1  tet g t  tet

(0, 3)

−6

6

Relative maximum: 1, 1  e  1, 3.718

−3

Point of inflection: 0, 3 73.

A  baseheight  2xex

2

y

dA 2 2  4x2ex  2ex dx

3 2

 2ex 1  2x2  0 when x  2

2

2

(

. −2

A  2e1 2

75. y 





a aL x b e L  ex b b b y   1  aex b2 1  aex b2

y 

 

1  aex b2

e aL   aLb e 21  ae b x b

2

x b

x b

1  aex b4

1  aex b

e aL   2aLb e ab e  b x b

2

x b

x b

1  aex b3

Laex b aex b  1 1  aex b3 b2

y  0 if aex b  1 ⇒ yb ln a 

x 1  ln ⇒ x  b ln a b a



L L L   1  aeb ln a b 1  a1 a 2

Therefore, the y-coordinate of the inflection point is L 2.



ab e  x b

) x

−1

1 −1

L , a > 0, b > 0, L > 0 1  aex b

2 −1 2 ,e 2

2

)

Section 5.4

Exponential Functions: Differentiation and Integration

77. ex  x ⇒ f x  x  ex

79. (a)

237

4

fx  1  ex xn1  xn 

f xn x  exn  xn  n fxn 1  exn

−4

−2

x1  1 x2  x1 

f x1  0.5379 fx1

x3  x2 

f x2  0.5670 fx2

x4  x3 

f x3  0.5671 fx3

(b) When x increases without bound, 1 x approaches zero, and e1 x approaches 1. Therefore, f x approaches 2 1  1  1. Thus, f x has a horizontal asymptote at y  1. As x approaches zero from the right, 1 x approaches , e1 x approaches  and f x approaches zero. As x approaches zero from the left, 1 x approaches  , e1 x approaches zero, and f x approaches 2. The limit does not exist since the left limit does not equal the right limit. Therefore, x  0 is a nonremovable discontinuity.

We approximate the root of f to be x  0.567.

81.

h

0

5

10

15

20

P

10,332

5,583

2,376

1,240

517

ln P

9.243

8.627

7.773

7.123

6.248

(a)

5

(b) ln P  ah  b

12

P  eahb  ebeah P  Ceah, C  eb −2

For our data, a  0.1499 and C  e9.3018  10,957.7

22 0

P  10,957.7e0.1499h

y  0.1499h  9.3018 is the regression line for data h, ln P. (c)

(d)

12,000

dP  10,957.710.1499e0.1499h dh  1642.56e0.1499h

0

22

For h  5,

0

83.

f x  ex 2, f 0  1

dP dP  776.3. For h  18,  110.6. dh dh

7

f

1 1 fx  ex 2, f0  2 2 1 1 f  x  ex 2, f  0  4 4 P1x  1 

P1

P2 −6

6 −1

1 x x  0   1, P10  1 2 2

1 1 P1x  , P10  2 2 1 1 x2 x P2x  1  x  0  x  02    1, P20  1 2 8 8 2 1 1 1 P2x  x  , P20  4 2 2 1 1 P2x  , P20  4 4 The values of f, P1, P2 and their first derivatives agree at x  0. The values of the second derivatives of f and P2 agree at x  0.

238

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

85. (a) y  ex

(b) y  ex

y1  1  x

y2  1  x  4

x2  2

4

y

y

y1 −2

y2

2 −2

−1

2 −1

(c) y  ex y3  1  x 

x2 x3  2 6

4

y y 3

−2

2 −1

87. Let u  5x, du  5 dx.



5x

89. Let u  2x, du  2 dx.



1

5x

e 5dx  e  C

91.

0



xex dx   2



1 x2 1 2 e 2xdx   ex  C 2 2

93.



1 2



1



1 e2x 2 dx   e2x 2 0 1 e2  1  1  e2  2 2e2

e2x dx  

 

e x 1 dx  2 ex dx  2ex  C x 2x

95. Let u  1  ex, du  ex dx.





ex ex ex dx   dx  ln1  ex   C  ln x  C  x  lnex  1  C x x 1e 1e e 1



3 3 97. Let u  , du   2 dx. x x



3 e3 x

1

x2

dx  

1 3



99. Let u  1  ex, du  ex dx.

e3 x 

1



1   e 3 x 3

3 1

105.

2   1  e x3 2  C 3

e  e2  1 3

103.

ex  ex dx  ln ex  ex  C ex  ex





e sin x cos x dx  



ex1  ex dx   1  ex1 2ex  dx

2

101. Let u  ex  ex, du  ex  ex dx.





 x3  dx

3









1 sin x e  cos  x dx  1 sin x e C 

5  ex dx  e2x



5e2x dx 



ex dx

5   e2x  ex  C 2

107.



ex tanex dx  





tanex  ex  dx



 ln cosex   C

1 0

Section 5.4

109. Let u  ax2, du  2ax dx. Assume a 0



y

Exponential Functions: Differentiation and Integration

111. fx 

1 x 1 e  ex  dx  ex  ex   C1 2 2

xeax dx

f0  C1  0



f x 

2

1 2 1 ax2 e 2ax dx  eax  C 2a 2a





1 x 1 e  ex  dx  ex  ex   C2 2 2

f 0  1  C2  1 ⇒ C2  0 1 f x  ex  ex  2

113. (a)

y

dy  2ex 2, dx

(b)

5

y (0, 1)







1 2ex 2 dx  4 ex 2  dx 2



 4ex 2  C

x

−2

0, 1

5

0, 1: 1  4e0  C  4  C ⇒ C  5

−2

y  4ex 2  5 6

−4

8 −2



5

115.



ex dx  ex

0

5 0



6

 e5  1  147.413

117.

xex 4dx  2ex 4 2

0



150

2



6

0

2e3 2

 2  1.554

3

0

−4.5

6

4.5

0

−3

119. (a) f u  v  euv  eu ev   (b) f k x  e

kx



x

123.



eu f u  ev f v

 e   f x . x k

k



60

121. 0.0665

e0.0139t48 dt 2

48

Graphing Utility: 0.4772  47.72%

x

et dt ≥

0

1 dt

0

x

e  t

0



t

x

0

ex  1 ≥ x ⇒ ex ≥ 1  x for x ≥ 0

125. f x  ex. Domain is  ,  and range is 0, . f is continuous, increasing, one-to-one, and concave upwards on its entire domain. lim ex  0 and lim ex  .

x→

x→ 



2

127. Yes. f x  Cex, C a constant.

129. ex > 0 ⇒

0

exdx > 0.

239

240

Chapter 5

131. f x 

Logarithmic, Exponential, and Other Transcendental Functions

ln x x

(a) fx 

y

1  ln x  0 when x  e. x2

1 2

On 0, e, fx > 0 ⇒ f is increasing. On e, , fx < 0 ⇒ f is decreasing.

x

e

2

6

4

8

− 12

(b) For e ≤ A < B, we have: ln A ln B > A B B ln A > A ln B ln AB > ln BA AB > BA. (c) Since e < , from part (b) we have e >  e.

Section 5.5 1. y 

2 1

Bases Other than e and Applications

t3

3. y 

At t0  6, y 

12

63



1 4

2 1

t7

5. log2 18  log2 23  3

At t0  10, y 

7. log7 1  0

12

107

 0.3715

11. (a) log10 0.01  2

23  8

9. (a)

102  0.01

log2 8  3 (b)

31 

(b) log0.5 8  3

1 3

0.53  8

1 log3  1 3

15. y 

13. y  3x x

2

1

0

1

2

y

1 9

1 3

1

3

9

 12 3  8

13  3 x

17. hx  5x2

x

x

2

1

0

1

2

y

9

3

1

1 3

1 9

y

x

1

0

1

2

3

y

1 125

1 25

1 5

1

5

y y

4

4 4

3

3

3 2

2 1

x 2

1

1

2

x 2

1

1

2

x 1

2

3

4

Section 5.5 19. (a) log10 1000  x

Bases Other than e and Applications

21. (a) log3 x  1

10x  1000

31  x x  13

x3

(b) log2 x  4

(b) log10 0.1  x 10x  0.1

24  x

x  1

x  16

1

x2  x  log5 25

23. (a)

x2

 x  log5

52

(b) 3x  5  log2 64 2

3x  5  log2 26  6

x2  x  2  0

3x  1

x  1x  2  0

x  13

x  1 OR x  2 32x  75

25.

3  xln 2  ln 625

2x ln 3  ln 75 x

23x  625

27.

1 ln 75  1.965 2 ln 3

3x

ln 625 ln 2

x3

1  0.09 12 

29.



12t

31. log2x  1  5

3

x  1  25  32



0.09 12t ln 1   ln 3 12 t

ln 625  6.288 ln 2

1 12

x  33

ln 3  12.253 0.09 ln 1  12





33. log3 x2  4.5 x2  3 4.5 x  ± 34.5  ± 11.845 37. hs  32 log10s  2  15

35. gx  621x  25

Zero: s  2.340

Zero: x  1.059

40

30

(− 1.059, 0) −4

10 −1

−30

8

(2.340, 0) −20

241

242

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

39. f x  4x

x

gx  log4 x

y

2

1

0

1 2

1

1 16

1 4

1

2

4

f x

f

3 2

g

1 16

1 4

1

2

4

2

1

0

1 2

1

x gx

41. f x  4x

x

43.

fx  ln 4 4x

1

2

3

1

45. gt  t2 2t

y  5x2

gt  t 2 ln 2 2t  2t 2t

dy  ln 5 5x2 dx

 t 2t t ln 2  2  2t t2  t ln 2

47. h  2 cos  

49.

h  2  sin    ln 22 cos   

2

51. f x  log2

1 dy  dx x ln 3

ln 2 cos    sin 

x2 x1

53.

 2 log2 x  log2 x  1 fx  

55. gt  gt  

y  log3 x

y  log5 x2  1  dy 1  dx 2

2 1  x ln 2 x  1 ln 2

1 log5 x2  1 2

2x

x

x2  1ln 5  x2  1ln 5

x2 ln 2xx  1

 

10 log4 t 10 ln t  t ln 4 t 10 t 1t  ln t ln 4 t2



y  x2x

57.

ln y 



 

2 ln x x



 

2 1 2 2 1 dy   ln x  2  2 1  ln x y dx x x x x

10 5 1  ln t  2 1  ln t t 2 ln 4 t ln 2

dy 2y  2 1  ln x  2x2x 21  ln x dx x

59.

y  x  2x1

61.

ln y  x  1 lnx  2

 





1 dy 1  x  1  lnx  2 y dx x2 dy x1 y  lnx  2 dx x2





xx  21  lnx  2

 x  2x1

x

x

3 dx 

3 C ln 3

Section 5.5

2

63.

x

x

1

2 dx  

ln 2

2

2

65.

1



1 1 4 ln 2 2

Bases Other than e and Applications

x

2

x5

dx  





7 7   2 ln 2 ln 4

67.



1 x2 5 2x dx 2 1 5x C 2 ln 5



2

1 2 5x   C 2 ln 5

32x dx, u  1  32x, du  2ln 332x dx 1  32x 1 2 ln 3

69.



243

2x 1 2 ln 33 2x ln1  3   C 2x dx  13 2 ln 3

 

1 dy  0.4x3, 0, dx 2 y

x3

0.4

(a)

x3

dx  3 0.4



(b)

4

4

13 dx

−6

6

x

−4

3 0.4x3  C  3ln 2.50.4x3  C  ln 0.4 y  3 ln 2.50.4x3 

y

(0, 12 (

4

−4

−4

1  3 ln 2.5 2

31  0.4x3 1  ln 2.5 2

71. Answers will vary. Example: Growth and decay problems. 73.

y

x

1

2

8

y

0

1

3

4

(8, 3)

3

(a) y is an exponential function of x: False (b) y is a logarithmic function of x: True; y  log2 x (c) x is an exponential function of y: True, 2y  x

2

(d) y is a linear function of x: False

(2, 1)

1

(1, 0) x 2

4

6

8

1 x ln 2 gx  xx ⇒ gx  xx 1  ln x

75. f x  log2 x ⇒ fx 

77. Ct  P1.05t (a) C10  24.951.0510

[Note: Let y  gx. Then: ln y  ln xx  x ln x 1 1 y  x  ln x y x y  y1  ln x y  x 1  ln x  gx.

x

hx  x ⇒ hx  2x 2

kx  2x ⇒ kx  ln 22x From greatest to smallest rate of growth: gx, kx, hx, f x

$40.64 (b)

dC  Pln 1.051.05t dt When t  1:

dC  0.051P dt

When t  8:

dC  0.072P dt

dC t (c) dt  ln 1.05 P1.05

 ln 1.05Ct The constant of proportionality is ln 1.05.

244

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

79. P  $1000, r  312 %  0.035, t  10



0.035 A  1000 1  n



n

1

2

4

12

365

Continuous

A

1410.60

1414.78

1416.91

1418.34

1419.04

1419.07

n

1

2

4

12

365

Continuous

A

4321.94

4399.79

4440.21

4467.74

4481.23

4481.69

10n

A  1000e0.03510  1419.07 81. P  $1000, r  5%  0.05, t  30



0.05 A  1000 1  n



30n

A  1000e0.0530  4481.69 83. 100,000  Pe0.05t ⇒ P  100,000e0.05t



85. 100,000  P 1 

0.05 12



t

1

10

20

30

40

50

P

95,122.94

60,653.07

36,787.94

22,313.02

13,583.53

8208.50



12t

⇒ P  100,000 1 

0.05 12



12t

t

1

10

20

30

40

50

P

95,132.82

60,716.10

36,864.45

22,382.66

13,589.88

8251.24



87. (a) A  20,000 1 

0.06 365



3658

89. (a) lim 6.7e48.1t  6.7e0  6.7 million ft3

 $32,320.21

t →

(b) A  $30,000



(c) A  8000 1 

(b) 0.06 365



3658



 20,000 1 

0.06 365



3654

1  0.06 365 

3658



 1

0.06 365



3654

322.27 48.1t e t2

V20  0.073 million ft3yr V60  0.040 million ft3yr

 $12,928.09  25,424.48  $38,352.57 (d) A  9000

V 



1

 $34,985.11 Take option (c).

91. y  (a)

300 3  17e0.0625x (c) If y  66.67%, then x  38.8 or 38,800 egg masses.

100

(d) y  3003  17e0.0625x 1

0

y 

318.75e0.0625x 3  17e0.0625x2

y 

19.921875e0.0625x 17e0.0625x  3 3  17e0.0625x 3

100 0

(b) If x  2 (2000 egg masses), y  16.67  16.7%.

17e0.0625x  3  0 ⇒ x  27.8 or 27,800 egg masses.

Section 5.5 93. (a) B  4.75396.7744d  4.7539e1.9132d (b)

Bases Other than e and Applications

245

Bd  9.0952e1.9132d

(c)

B0.8  42.03 tonsinch

120

B1.5  160.38 tonsinch

0

2 0



4

95. (a)

(c) The functions appear to be equal: f t  gt  ht

f t dt  5.67

0

Analytically,

4

gt dt  5.67

f t  4

0 4

ht dt  5.67

2t3

8  4 4   gt

4

3

913

23 t

t

ht  4e0.653886t  4 e0.653886 t  40.52002t

0

(b)

38

6

gt  4

−1

94   40.52002 13 t

t

No. The definite integrals over a given interval may be equal when the functions are not equal.

5 −1

10

97. P 

2000e0.06t dt

99.

0



2000 e 0.06



0.06t

10

t

0

1

2

3

4

y

1200

720

432

259.20

155.52

0

y  Ckt 

 $15,039.61

When t  0, y  1200 ⇒ C  1200. y  1200kt  720 432 259.20 155.52  0.6,  0.6,  0.6,  0.6 1200 720 432 259.20 Let k  0.6. y  12000.6t

101. False. e is an irrational number.

103. True.

105. True.

f gx  2  elnx2 2x2x g f x  ln2  ex  2  ln ex  x

d x d e  ex and ex  ex dx dx ex  ex when x  0.

e0e0  1

246

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions





dy 8 5  y  y , y0  1 dt 25 4

107.

8 4 dy  dt ⇒ y54  y 25 5 ln y  ln ln





1 1  dy  y 54  y



8 dt ⇒ 25

54  y  52 t  C

54y  y  52 t  C y  e25tC  C1e25t 54  y

y 0  1 ⇒ C1  4 ⇒ 4e25t  ⇒ 4e25t

54  y  y ⇒ 5e

⇒ y

5e25t 5 1.25    1 4  e0.4t 1  0.25e0.4t

Section 5.6

1.

25t

 4e25t y  y  4e25t  1y

4e25t

Differential Equations: Growth and Decay

dy x2 dx y

y 54  y

dy y2 dx

3.



x  2dx 

x2  2x  C 2



dy  dx y2 1 dy  y2





dx



ln y  2  x  C1 y  2  exC1  Cex y  Cex  2

y 

5.



5x y

yy  5x

yy dx  y dy 



5x dx 5x dx

1 2 5 2 y  x  C1 2 2

y  x y

7.



y  x y



y dx  y

x dx

dy  y

x dx

ln y 

2 32 x  C1 3

y  e23x

32

y 2  5x 2  C

C1

 eC1 e23x

32

 Ce23x

32

Section 5.6

9. 1  x2y  2xy  0 y 





2x y  y 1  x2



k dQ  2 dt t

11.

2xy 1  x2

Differential Equations: Growth and Decay

dQ dt  dt



dN  k250  s ds

13.





k dt t2

dN ds  ds



2x dx 1  x2

dy  y

2x dx 1  x2



k250  s ds

k dN   250  s 2  C 2

k dQ    C t

y dx  y

247

k N   250  s2  C 2

k Q C t

ln y  ln1  x2  C1 ln y  ln1  x 2  ln C ln y  ln C1  x2 y  C1  x 2 15. (a)

dy  x6  y, 0, 0 dx

(b)

y 9

7

dy  x y6





ln y  6  x

−5

−1

−6

x 2 C 2

6 −1

y  6  ex 2C  C1ex 2 2

5

(0, 0)

2

y  6  C1ex

22

0, 0: 0  6  C1 ⇒ C1  6 ⇒ y  6  6ex 2 2

17.

dy 1  t, 0, 10 dt 2

dy 

19.

16

1 t dt 2 −4

dy  y

4

21.

0, 4: 4 

y  10et2

23.

(Theorem 5.16)

0, 20,000: C  20,000

C

3, 10: 10  4e3k ⇒ k 



1 5 ln 3 2

4, 12,500: 12,500  20,000e4k ⇒ k 

When x  6, y  4e13 ln526  4eln52

2

52

dV  kV dt V  Cekt

(Theorem 5.16)

4

10 −1

10  Ce0 ⇒ C  10

dy  ky dx

Ce0

−1

y  et2 C1  eC1 et2  Cet2

1 2 t  10 4

y  Cekx

(0, 10)

1  dt 2

1 ln y   t  C1 2

−1

1 10  02  C ⇒ C  10 4 y

16



(0, 10)

1 y  t2  C 4

dy 1   y, 0, 10 dt 2

2

 25



1 5 ln 4 8

When t  6, V  20,000e14 ln586  20,000eln58

32

 20,000

58

32

9882.118

248

Chapter 5

25. y  Cekt,

Logarithmic, Exponential, and Other Transcendental Functions

0, 12, 5, 5

27.

1  Cek

1 C 2 y

y  Cekt, 1, 1, 5, 5 5  Ce5k 5Cek  Ce5k

1 kt e 2

5ek  e5k

1 5  e5k 2 k

ln 10 0.4605 5

y

1 0.4605t e 2

5  e4k k

ln 5 0.4024 4

y  Ce0.4024t 1  Ce0.4024 C 0.6687 y  0.6687e0.4024t

29. A differential equation in x and y is an equation that involves x, y and derivatives of y.

31.

dy 1  xy dx 2 dy > 0 when xy > 0. Quadrants I and III. dx

33. Since the initial quantity is 10 grams, y  10eln121620t . When t  1000, y  10eln1216201000 6.52 grams. When t  10,000, y  10eln12162010,000 0.14 gram. 35. Since y  Celn121620t, we have 0.5  Celn12162010,000 ⇒ C 36.07. Initial quantity: 36.07 grams. When t  1000, we have y  Celn1216201000 23.51 grams. 37. Since the initial quantity is 5 grams, we have y  5.0eln125730t. When t  1000, y 4.43 g. When t  10,000, y 1.49 g. 39. Since y  Celn1224,360t, we have 2.1  Celn1224,3601000 ⇒ C 2.16. Thus, the initial quantity is 2.16 grams. When t  10,000, y  2.16eln1224,36010,000 1.63 grams.

41. Since

dy  ky, y  Cekt or y  y0ekt. dx

1 y  y0e1620k 2 0 k

ln 2 1620

y  y0eln 2t 1620. When t  100, y  y0eln 216.2 y00.9581. Therefore, 95.81% of the present amount still exists.

43. Since A  1000e0.06t, the time to double is given by 2000  1000e0.06t and we have 2  e0.06t ln 2  0.06t t

ln 2 11.55 years. 0.06

Amount after 10 years: A  1000e0.0610 $1822.12

Section 5.6 45. Since A  750ert and A  1500 when t  7.75, we have the following.

ln 2 0.0894  8.94% 7.75

Amount after 10 years: A  750e0.089410 $1833.67

r

ln1292.85500 0.0950  9.50% 10

The time to double is given by 1000  500e0.0950t t



0.075 12

49. 500,000  P 1 

1220



0.075 12

P  500,000 1 



240



2 1

ln 2 10.24 years ln 1.07



0.07 12

0.007 12





1 t 12

t



ln 2 9.90 years 0.07





0.085 12





12t

0.085 365

0.085 365





ln 2  365t ln 1  t

12t

1 365



365t

365t

0.085 365



ln 2 8.16 years 0.085 ln 1  365





(d) 2000  1000e0.085t

0.085 12



ln 2 8.18 years 0.085 ln 1  12



0.07 365

ln 2 9.90 years 365 ln1  0.07365

(c) 2000  1000 1 

ln 2 8.50 years ln 1.085



365t

ln 2  0.07t

ln 2  t ln1.085

ln 2  12t ln 1 

365t





2 1

0.085 2 1 12

0.07 365



2  e0.07t

2  1.085t



420

(d) 2000  1000e0.07t

55. (a) 2000  10001  0.085t



0.07 365

ln 2  365t ln 1  t

ln 2 9.93 years 12 ln1  0.0712

(b) 2000  1000 1 



12t



t

0.08 12

12t



0.07 ln 2  12t ln 1  12 t





ln 2  t ln 1.07

2 1

1235

P  500,000 1 

(c) 2000  1000 1 

2  1.07t





 $30,688.87

53. (a) 2000  10001  0.07t

(b) 2000  1000 1 

0.08 12

51. 500,000  P 1 

$112,087.09

t

ln 2 7.30 years. 0.095







249

47. Since A  500ert and A  1292.85 when t  10, we have the following. 1292.85  500e10r

1500  750e7.75r r

Differential Equations: Growth and Decay

2  e0.085t ln 2  0.085t t

ln 2 8.15 years 0.085

250

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

57. P  Cekt  Ce0.009t

59. P  Cekt  Ce0.036t

P1  8.2  Ce0.0091 ⇒ C  8.1265

P1  4.6  Ce0.0361 ⇒ C  4.7686

P  8.1265e0.009t

P  4.7686e0.036t

P10 7.43

or

P10 6.83

7,430,000 people in 2010

61. If k < 0, the population decreases.

or

6,830,000 people in 2010

P  Cekx, 0, 760, 1000, 672.71

63.

C  760

If k > 0, the population increases.

672.71  760e1000x x

ln672.71760 0.000122 1000

P 760e0.000122x When x  3000, P 527.06 mm Hg. 65. (a)

19  301  e20k  30e20k  11 k

25  301  e0.0502t 

(b)

e0.0502t 

ln1130 0.0502 20

t

N 301  e0.0502t 

1 6 ln 6 36 days 0.0502

67. S  Cekt (a)

S  5 when t  1

(b) When t  5, S 20.9646 which is 20,965 units.

5

(c)

Cek

30

lim Cekt  C  30

t →

5  30ek 0

k  ln 16 1.7918

40 0

S 30e1.7918t 69. At  Vte0.10t  100,000e0.8 t e0.10t  100,000e0.8 t0.10t





0.4 dA  100,000  0.10 e0.8 t0.10t  0 when 16. dt t The timber should be harvested in the year 2014, 1998  16. Note: You could also use a graphing utility to graph At and find the maximum of At. Use the viewing rectangle 0 ≤ x ≤ 30 and 0 ≤ y ≤ 600,000. I 71. I   10 log10 , I0  1016 I0 (a) 1014  10 log10 (b) 109  10 log10

1014  20 decibels 1016

109  70 decibels 1016

106.5 (c) 106.5  10 log10 16  95 decibels 10 (d) 104  10 log10

73. R 

ln I  0 , I  eR ln 10  10R ln 10

(a) 8.3 

ln I  0 ln 10

I  108.3 199,526,231.5 (b) 2R 

ln I  0 ln 10

I  e2R ln 10  e2R ln 10  eR ln 102  10R 2

104  120 decibels 1016

Increases by a factor of e2R ln 10 or 10R. (c)

1 dR  dI I ln 10

Section 5.7

Differential Equations: Separation of Variables

75. False. If y  Cekt, y  Ckekt  constant.

Section 5.7

77. True

Differential Equations: Separation of Variables

1. Differential equation: y  4y Solution: y  Ce4x Check: y  4Ce4x  4y 3. Differential equation: y  y  0 Solution: y  C1 cos x  C2 sin x y  C1 sin x  C2 cos x

Check:

y  C1 cos x  C2 sin x y  y  C1 cos x  C2 sin x  C1 cos x  C2 sin x  0





5. y  cos x ln sec x  tan x y  cos x 

1 sec x  tan x  sec2 x  sin x ln sec x  tan x sec x  tan x





cos x sec xtan x  sec x  sin x ln sec x  tan x sec x  tan x









 1  sin x ln sec x  tan x

1 y  sin x sec x  tan x  sec2 x  cos x ln sec x  tan x sec x  tan x









 sin xsec x  cos x ln sec x  tan x Substituting,









y  y  sin xsec x  cos x ln sec x  tan x  cos x ln sec x  tan x  tan x. In Exercises 7–11, the differential equation is y4  16y  0. y  3 cos x

7.

y  e2x

9.

y4  3 cos x

y4  16e2x

y4  16y  45 cos x  0,

y4  16y  16e2x  16e2x  0,

No.

Yes. y  C1e2x  C2e2x  C3 sin 2x  C4 cos 2x

11.

y4  16C1e2x  16C2e2x  16C3 sin 2x  16C4 cos 2x y4  16y  0, Yes.

251

252

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

In 13–17, the differential equation is xy  2y  x3ex. 15. y  x 22  ex , y  x 2ex   2x2  ex 

13. y  x 2, y  2x xy  2y  x2x  2x2  0  x3ex

xy  2y  xx2ex  2xex  4x  2x2ex  2x2  x3ex,

No.

Yes.

1 x 1 xy  2y  x  2 ln x  x3ex, x

17. y  ln x, y 



19.

No.

21. y 2  Cx3 passes through 4, 4

y  Cekx

16  C64 ⇒ C  14

dy  Ckekx dx Since dy dx  0.07y, we have Thus, k  0.07.

Ckekx



Particular solution: y2  14 x3 or 4y 2  x 3

0.07Cekx.

23. Differential equation: 4yy  x  0

2

C=0

General solution: 4y 2  x 2  C

−3

Particular solutions: C  0, Two intersecting lines C  ± 1, C  ± 4, Hyperbolas 2

−2

2

2

C = −1

C=1 −3

3

3

−3

−2

3

−2

2

C = −4

C=4 −3

−3

3

3

−2

−2

25. Differential equation: y  2y  0 General Solution: y  Ce2x y  2y  C2e2x  2Ce2x   0 Initial condition: y0  3, 3  Ce0  C Particular solution: y  3e2x

27. Differential equation: y  9y  0 General solution: y  C1 sin 3x  C2 cos 3x y  3C1 cos 3x  3C2 sin 3x, y  9C1 sin 3x  9C2 cos 3x y  9y  9C1 sin 3x  9C2 cos 3x  9C1 sin 3x  C2 cos 3x  0

Initial conditions: y 2  C1 sin

6  2, y 6  1

2  C

2

cos

2 ⇒ C

1

2

y  3C1 cos 3x  3C2 sin 3x 1  3C1 cos

2  3C sin 2

2

 3C2 ⇒ C2  

1 3

Particular solution: y  2 sin 3x 

1 cos 3x 3

Section 5.7

Differential Equations: Separation of Variables Initial conditions: y2  0, y2  4

29. Differential equation: x 2 y  3xy  3y  0 General solution: y  C1 x  C2 x 3

0  2C1  8C2

y  C1  3C2 x2, y  6C2 x

y  C1  3C2 x 2

x2y  3x y  3y  x26C2 x  3xC1  3C2 x2 

4  C1  12C2 C1  4C2  0

3C1x  C2 x3  0



C1  12C2  4

1 C2  , C1  2 2

1 Particular solution: y  2x  x3 2

31.

dy  3x2 dx y

33.

3x 2 dx  x 3  C

x dy  dx 1  x2 y

1 x dx  ln1  x2  C 1  x2 2

u  1  x 2, du  2x dx

35.

2 dy x  2  1 dx x x y



1

37.



y



u  2x, du  2dx

dy  xx  3 dx y



xx  3 dx 

u2  3u2udu

dy 2  xex dx y

u5  u  C  52 x  3 5

3

5 2

 2x  33 2  C

43.

xex dx  2

1 sin 2x dx   cos 2x  C 2

Let u  x  3, then x  u2  3 and dx  2u du.

 2 u4  3u 2 du  2

41.

2 dx x

 x  2 ln x  C  x  ln x 2  C

39.

dy  sin 2x dx

1 x2 e C 2

u  x 2, du  2x dx

dy x  dx y

y dy 

x dx

y2 x2   C1 2 2 y2  x2  C

45.

dr  0.05r ds

dr  r

0.05 ds



ln r  0.05s  C1 r  e0.05sC1  Ce0.05s

47. 2  xy  3y

dy  y

3 dx 2x

ln y  3 ln2  x  ln C  ln C2  x3 y  Cx  23

253

254

Chapter 5

49.

yy  sin x

y dy  y2 2 y2

Logarithmic, Exponential, and Other Transcendental Functions

51. 1  4x2

sin x dx

dy x dx dy 

x 1  4x2



 cos x  C1

dy 

 2 cos x  C

dx

x 1  4x2



1 8

dx

1  4x21 28x dx

1 y   1  4x21 2  C 4 53. y ln x  x y  0

dy  y

55. yy  ex  0 ln x dx x

u  ln x, du  dxx

y dy 

2 C 1

ex dx

y2  ex  C1 2

1 ln y  ln x 2  C1 2 y  e1 2lnx

y 2  2ex  C

 Celnx 2 2

Initial condition: y0  4, 16  2  C, C  14 Particular solution: y 2  2ex  14 57. yx  1  y  0

59. y1  x2

dy   x  1 dx y

ln y  

dy  x1  y 2 dx

y x dy  dx 1  y2 1  x2

x  12  C1 2

1 1 ln1  y 2  ln1  x 2  C1 2 2 ln1  y 2  ln1  x 2  ln C  lnC1  x 2

y  Cex1 2 2

Initial condition: y2  1, 1  Ce1 2, C  e1 2 Particular solution: y  e1 x1  2  ex 2

 2

2 2x

1  y 2  C1  x2 y0  3: 1  3  C ⇒ C  4 1  y2  41  x2 y 2  3  4x 2

61.

du  uv sin v 2 dv

63. dP  kP dt  0



du  u

v sin v 2 dv

dP  k dt P

ln P  kt  C1

1 ln u   cos v 2  C1 2

P  Cekt

u  Cecos v  2 2

Initial condition: P0  P0, P0  Ce0  C

Initial condition: u0  1, C 

1  e1 2 e1 2

Particular solution: u  e1cosv  2 2

Particular solution: P  P0 ekt

Section 5.7 dy 9x  dx 16y

65.

Differential Equations: Separation of Variables

67.

0y y dy   dx x  2  x 2

dy  y

16y dy   9x dx 8y 2 

m

9 2 x C 2

1  dx 2

1 ln y   x  C1 2 y  Cex 2

9 25 Initial condition: y 1  1, 8    C, C  2 2 Particular solution: 8y 2 

9 2 25 x  , 2 2

16y 2  9x 2  25

69.

71. f x, y 

f x, y  x 3  4xy 2  y 3 f t x, t y  t 3 x 3  4t xt 2 y 2  t3 y3

f tx, ty 

 t 3x3  4xy 2  y3

f x, y  2 ln x y

75.

f t x, t y  2 ln t x t y

vx x

2

xy , y  vx 2x

tx x  2 ln ty y

y 

79.

dv x  v x  dx 2x

vx

dv 1  v  v dx 2

dv  1v

x y

Homogeneous degree 0

Not homogeneous y 

f x, y  2 ln f t x, t y  2 ln

 2 ln t 2 x y  2ln t 2  ln x y

77.

t4x2y2 x2y2  t3 2 2 2 x  y2 ty

t2x2

Homogeneous of degree 3

Homogeneous of degree 3

73.

x2y2 x2  y2



 

ln1  v 2  ln x  ln C  ln Cx 1  Cx 1  v 2

 

dv x  xv  dx x  xv

v dx  x dv 

dx x

xy , y  vx xy

1v dx 1v

v1 dx dv   v2  2v  1 x







C

1  Cx 1  y x2  



x2  Cx x  y2

 

x  Cx  y

2



C1 1 ln v 2  2v  1  ln x  ln C1  ln 2 x

v 2  2v  1  x 2



y2 y C 2 1  2 x2 x x

y 2  2xy  x 2 C

255

256

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

y 

81.

xy , y  vx x2  y 2

xv dx  x dv  2xev  vx dx  0

x2 v dv  2 vx dx x  x2 v 2 v dx  x dv 

1v dv  v3 2

ev dv 

v dx 1  v2



2 dx x

ev  ln C1 x 2

dx x

ey x  ln C1  ln x 2 ey x  C  ln x 2

1  2  ln v  ln x  ln C1  ln C1 x 2v



x dy  2xey x  y dx  0, y  v x

83.



 

Initial condition: y1  0, 1  C

1  ln C1x v 2v 2



Particular solution: ey x  1  ln x 2



x 2  ln C1 y 2y 2

 

y  Cex 2y 2

2

x sec xy  y dx  x dy  0, y  v x

85.

87.

dy x dx

x sec v  xvdx  xv dx  x dv  0



cos v dv 

y 4

sec v  v dx  v dx  x dv dx x

x 2

2

sin v  ln x  ln C1 4

x  Cesin v  Cesiny x Initial condition: y1  0, 1 

y Ce0

C

x dx 

1 2 x C 2

Particular solution: x  esiny x

89.

dy 4y dx

y 8



dy  4y

dx



ln 4  y  x  C1 4  y  ex C1

4

y  4  Cex −4 −3

91.

x 1

2

3

4

dy  0.5y, y0  6 dx

93.

dy  0.02y10  y, y0  2 dx

12

−6

12

6 −4

− 12

48 −2

Section 5.7

95.

dy  ky, y  Cekt dt Initial conditions:

Differential Equations: Separation of Variables

97. y0  y0

dy  k y  4 dx The direction field satisfies dy dx  0 along y  4; but not along y  0. Matches (a).

y0 y1620  2 C  y0 y0  y0e1620k 2 k

ln1 2 1620

Particular solution: y  y0etln 2 1620 When t  25, y  0.989y0, y  98.9% of y0.

99.

dy  k yy  4 dx The direction field satisfies dy dx  0 along y  0 and y  4. Matches (c). dw  k1200  w dt

101.

dw  1200  w

k dt



dv  Wv

k dt

lnW  v  k t  C1

ln1200  w  kt  C1 1200  w 

dv  kW  v dt

103. (a)

ektC1

v  W  Cekt

Cekt

w  1200  Cekt

Initial conditions:

w0  60  1200  C ⇒ C  1200  60  1140

W  20, v  0 when t  0, and

w  1200  1140e

v  5 when t  1.

kt

(a)

1400

C  20, k  ln3 4

1400

Particular solution: v  201  eln3 4t   201  e0.2877t  0

10 0

0

10 0

(b) s  1400

201  e0.2877t  dt

 20t  3.4761e0.2877t   C Since S0  0, C  69.5 and we have s  20t  69.5e0.2877t  1. 0

10 0

(b) k  0.8: t  1.31 years k  0.9: t  1.16 years k  1.0: t  1.05 years (c) Maximum weight: 1200 pounds lim w  1200 t→0

257

258

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

105. Given family (circles): x 2  y 2  C

107. Given family (parabolas): x2  Cy 2x  Cy

2x  2yy  0 y   Orthogonal trajectory (lines):

y 

x y

y 

y x

y  

Orthogonal trajectory (ellipses):

dy  y

2x 2x 2y  2  C x y x

dx x

x 2y

2 y dy   x dx

ln y  ln x  ln K

y2  

y  Kx

x2  K1 2

x 2  2y 2  K

4 4 −6

6 −6

6

−4 −4

109. Given family: y 2  Cx3

111. A general solution of order n has n arbitrary constants while in a particular solution initial conditions are given in order to solve for all these constants.

2yy  3Cx2 y 



3Cx2 3x2 y2 3y   2y 2y x3 2x y  

Orthogonal trajectory (ellipses):

2x 3y

3 y dy  2 x dx 3y 2  x 2  K1 2 3y 2  2x 2  K 4

−6

6

−4

113. Mx, ydx  Nx, ydy  0, where M and N are homogeneous functions of the same degree. 117. False f t x, t y  t 2x 2  t 2 xy  2  t 2 f x, y

115. False. Consider Example 2. y  x3 is a solution to xy  3y  0, but y  x3  1 is not a solution.

Section 5.8

Section 5.8

Inverse Trigonometric Functions: Differentiation

Inverse Trigonometric Functions: Differentiation

1. y  arcsin x (a)

x

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

y

1.571

0.927

0.644

0.412

0.201

0

0.201

0.412

0.644

0.927

1.571

(b)

y

(c)

π 2

(d) Symmetric about origin: arcsinx  arcsin x

2

−1

Intercept: 0, 0

1

x

−1

1 −2 −π 2

3. False.

5. arcsin

arccos

1   2 6

1   2 3

since the range is 0, .

7. arccos

1   2 3

11. arccsc  2   

9. arctan

 4

3

3



 6

13. arccos0.8  2.50

15. arcsec1.269  arccos

1 1.269

 0.66



3 3 17. (a) sin arctan 4   5

 21  cot 6   3

19. (a) cot arcsin  5 3

3

θ

θ 4

1

2

4 5 (b) sec arcsin 5   3





(b) csc arctan 

5

4

5 12

  135

12

θ

θ

3

5 13

23. y  sinarcsec x

21. y  cosarcsin 2x 1

  arcsin 2x

2x

y  cos   1  4x

2

θ

  arcsec x, 0 ≤  ≤ ,  

1− 4 x 2

y  sin  

x2  1

x

 2

x x2 − 1

θ 1

The absolute value bars on x are necessary because of the restriction 0 ≤  ≤ ,    2, and sin  for this domain must always be nonnegative.

259

260

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions



x 3

25. y  tan arcsec



x

θ

x   arcsec 3 y  tan  



27. y  csc arctan

x2 − 9

  arctan

3

x2  9

2x

29. sinarctan 2x 

x2 + 2 x

θ 2

2 x2  2

x

31. arcsin3x    12

1  4x2

3x    sin 12 

2

x  13 sin 12     1.207

f=g

−2



x

y  csc  

3

x 2

2

−2

Asymptotes: y  ± 1 arctan 2x  

1 + 4 x2

tan   2x sin  

2x

θ

2x 1  4x2

1

33. arcsin2x  arccos x



2x  sin arccos x



2x  1  x, 0 ≤ x ≤ 1

2x  1  x 1

3x  1

1−x

θ

1 x 3

x

1 35. (a) arccsc x  arcsin , x ≥ 1 x



(b) arctan x  arctan

Let y  arccsc x. Then for 

1   ,x > 0 x 2

Let y  arctan x  arctan1 x. Then,

  ≤ y < 0 and 0 < y ≤ , 2 2

tan y 

csc y  x ⇒ sin y  1 x. Thus, y  arcsin1 x. Therefore, arccsc x  arcsin1 x.

tanarctan x  tanarctan1 x 1  tanarctan x tanarctan1 x



x  1 x 1  x1 x



x  1 x (which is undefined). 0

Thus, y   2. Therefore, arctan x  arctan1 x   2. 37.

f x  arcsinx  1

y

π

x  1  sin y Domain: 0, 2 Range:





f x is the graph of arcsin x shifted 1 unit to the right.

( ) x

−1

1 −π 2 −π

(0, − π2 )

2

f x  arcsec 2x 2x  sec y

2, π 2

π 2

x  1  sin y

   , 2 2

39.

x

3

Domain: Range:

y

(− 12 , π (

1 sec y 2

 ,  21 , 12, 

0, 2 , 2 , 

π 2

( 12 , 0 ( −2

−1

x

1

2

Section 5.8

41. f x  2 arcsinx  1 2 2  f x  1  x  12 2x  x2

45. f x  arctan f x 

Inverse Trigonometric Functions: Differentiation

43. gx  3 arccos g x 

x a

47. gx 

1 a a  1  x2 a2 a2  x2

g x  

49. ht  sinarccos t  1  t 2

x 2

31 2 3  2 1  x 4 4  x2 arcsin 3x x x 3 1  9x2   arcsin 3x x2 3x  1  9x2 arcsin 3x x21  9x2

51. y  x arccos x  1  x2

1 t h t  1  t 21 22t  2 1  t2

y  arccos x 

x 1  x2

1  1  x21 22x 2

 arccos x

53.

y

1 1 x1 ln  arctan x 2 2 x1





55.





x 1 dy x  arcsin x   arcsin x 2 dx 1  x 1  x2

1 1  lnx  1  lnx  1  arctan x 4 2



y  x arcsin x  1  x2



dy 1 1 1 2 1 1     dx 4 x  1 x  1 1  x2 1  x4

57. y  8 arcsin y  2

x x16  x2  4 2

59. y  arctan x 

16  x2 1 x   16  x21 22x 2 1  x 4 2 4

y 

x 1  x2

1 1  x2  x2x  2 1x 1  x22



16  x2 8 x2   2 16  x 2 216  x2



1  x2  1  x2 1  x22



16  16  x2  x2 x2  2 16  x2 216  x



2 1  x22

61. f x  arcsin x, a 

1 2

y 1.5 1.0

1 f x  1  x2

0.5 x

 

1 1 P1x  f  f 2 2 P2x  f

0.5 1.0 1.5

P2

x f x  1  x23 2



P1

− 1.0

f

1  23 1 x   x 2 6 3 2





12  f 12 x  21  21 f 12 x  21

2

− 1.5



 23 1 23 1  x  x 6 3 2 9 2









2

261

262

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

f x  arcsec x  x 1 f x  1 x x2  1

63.

65.



f x 



1 1  0 1  x2 1  x  42

1  x2  1  x  42

 0 when x x2  1  1. x2x2  1  1

0  8x  16

x4  x2  1  0 when x2  x±

f x  arctan x  arctanx  4



x2

1  5 or 2

By the First Derivative Test, 2, 2.214 is a relative maximum.

1  5  ± 1.272 2

Relative maximum: 1.272, 0.606 Relative minimum: 1.272, 3.747 69. y  arccot x, 0 < y < 

67. The trigonometric functions are not one-to-one on  , , sot their domains must be restricted to intervals on which they are one-to-one.

x  cot y tan y 

1 x

So, graph the function y  arctan

d  (b) dt

x 71. (a) cot   5

  arccot

 x 5

ht  16t 2  256

73. (a)

16t 2  256  0 when t  4 sec. (b) tan  

h 16t2  256  500 500

500t

  arctan

16

2

h

θ 500



 16

d 8t 125 1000t   dt 1  4 125t 2  162 15,625  1616  t 22 When t  1, d dt  0.0520 rad sec. When t  2, d dt  0.1116 rad sec.

1x for x > 0 and y  arctan1x   for x < 0.

1 5 x 1 5 



2

dx 5 dx  2 dt x  25 dt

If

d dx  400 and x  10,  16 rad hr. dt dt

If

dx d  400 and x  3,  58.824 rad hr. dt dt

Section 5.9

75. tanarctan x  arctan y 

Inverse Trigonometric Functions: Integration

263

tanarctan x  tanarctan y xy  , xy  1 1  tanarctan x tanarctan y 1  xy

Therefore, arctan x  arctan y  arctan

1x  xyy , xy  1.

Let x  12 and y  13 . arctan

  13 56 56   arctan  arctan  arctan 1  12  arctan13  arctan 1 12 12  13 1  16 56 4

77. f x  kx  sin x f x  k  cos x ≥ 0 for k ≥ 1 fx  k  cos x ≤ 0 for k ≤ 1 Therefore, f x  kx  sin x is strictly monotonic and has an inverse for k ≤ 1 or k ≥ 1. 81. True

79. True

d sec2 x sec2 x arctantan x   1 dx 1  tan2 x sec2 x

1 d arctan x  > 0 for all x. dx 1  x2

Section 5.9 1.



5

9 

x2

Inverse Trigonometric Functions: Integration

dx  5 arcsin

3  C x

3. Let u  3x, du  3 dx.



16

0

5.



1 1 dx  3

1  9x2



16

0



16



1 1 3 dx  arcsin3x 3

1  3x2



0

 18



7 7 x dx  arctan C 16  x2 4 4

7. Let u  2x, du  2 dx.



32

0

1 1 dx  1  4x2 2

9.



1 dx  x 4x2  1

11.



x2

13.



1  x  12

x3 dx  1



1





32

0

32

2 1  2x

2

dx 

12 arctan2x

0



 6

2 dx  arcsec 2x  C 2x 2x2  1

x





x dx  x2  1



x dx 

dx  arcsinx  1  C



1 2x 1 1 dx  x2  lnx2  1  C (Use long division.) 2 x2  1 2 2

15. Let u  t 2, du  2t dt.



t

1  t 4

dt 



1 1 1 2t dt  arcsint 2  C 2 1  t 22 2

264

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions 1

17. Let u  arcsin x, du 



1 2

0



19. Let u  1  x2, du  2x dx.

dx.

1  x2



0

1 2



arcsin 1 dx  arcsin2 x 2

1  x2

0

x 1 dx   2 2

1x 12

2   0.308 32



0

12

1  x2122x dx





  1  x2

0



12

3  2

2

 0.134 21. Let u  e2x, du  2e2x dx.



23. Let u  cos x, du  sin x dx.







1 1 e2x 2e2x e2x arctan C 4x dx  2x 2 dx  4e 2 4  e  4 2

sin x dx   2 2 1  cos x





2 1

sin x dx  cos2 x



25.



1

x 1  x

dx. u  x, x  u2, dx  2u du



27.







 arctancos x



2





x3 1 2x 1 dx  dx  3 2 dx x2  1 2 x2  1 x 1

1 du 2u du  2  2 arcsin u  C

1  u2 u 1  u2



1 lnx2  1  3 arctan x  C 2

 2 arcsin x  C

29.



x5

9  x  32



dx 

x  3

9  x  32

dx 



8

9  x  32

  9  x  32  8 arcsin   6x  x2  8 arcsin

3x  1  C



1 dx  arctanx  1 1  x  12



2x dx  x2  6x  13



2x  6 1 dx  6 2 dx  x2  6x  13 x  6x  13

2

0







1

x2  4x

dx 



2 0





x 2 3  C

dx  arcsin

x 2 2  C

 ln x2  6x  13  3 arctan

35.

x 3 3  C

1 dx  x2  2x  2

0

33.

dx



2

31.

1

4  x  22

 2





2x  6 1 dx  6 dx x2  6x  13 4  x  32

37. Let u  x2  4x, du  2x  4 dx.



x2

x2  4x



3

39.

2

dx  

2x  3 dx 

4x  x2



3

2





1 x2  4x122x  4 dx  x2  4x  C 2

2x  4 dx 

4x  x2



3

2

1 dx  

4x  x2

 2 4x  x2  arcsin

x 2 2

3 2



3

4x  x2124  2x dx 

2

 4  2 3 

 4



3

2

  1.059 6

1

4  x  22

dx

Section 5.9

Inverse Trigonometric Functions: Integration

265

41. Let u  x2  1, du  2x dx.





1 x 2x dx  dx  1 arctanx2  1  C x4  2x2  2 2 x2  12  1 2

43. Let u  et  3. Then u2  3  et, 2u du  et dt, and



et  3 dt 



2u2 du  u2  3



 2u  2 3 arctan

2 du 



6

2u du  dt. u2  3

1 du u2  3

u  C  2 et  3  2 3 arctan

3

e 3 3  C t

45. A perfect square trinomial is an expression in x with three terms that factor as a perfect square. Example: x2  6x  9  x  32

47. (a) (c)

49. (a)



1

1  x2

dx  arcsin x  C, u  x

(b)



x

1  x2

dx   1  x2  C, u  1  x2

1 dx cannot be evaluated using the basic integration rules. x 1  x2



x  1 dx 

2 x  132  C, u  x  1 3

(b) Let u  x  1. Then x  u2  1 and dx  2u du.



x x  1 dx 







u2  1u2u du  2 u4  u2 du  2

u5  u3   C 5

3

2 2 2 3 2 u 3u  5  C  x  1323x  1  5  C  x  1323x  2  C 15 15 15

(c) Let u  x  1. Then x  u2  1 and dx  2u du.



x dx 

x  1





u2  1 u3 2 2 2u du  2 u2  1 du  2  u  C  uu2  3  C  x  1x  2  C u 3 3 3





Note: In (b) and (c), substitution was necessary before the basic integration rules could be used. 51. (a)

y

(b)

5

dy 3  , 0, 0 dx 1  x2



y3 x

−5

5

3 2

dx  3 arctan x  C 1  x2

−8

8

0, 0: 0  3 arctan0  C ⇒ C  0 −5

53.

y  3 arctan x

(0, 0)

dy 10  , y 3  0 dx x x2  1 4

−6

55. A 



3

1

 12

−8

− 3 2

x2

1 dx   2x  1  4

2 arctan 1

x1 2



3 1





3

1

1 dx x  12  22

1  arctan1   0.3927 2 8

266

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

57. Area  11  1

y 2

Matches (c)

3 2

−1

x −1

1 2

2



1

59. (a)

0





4 dx  4 arctan x 1  x2

1 0

1

 4 arctan 1  4 arctan 0  4

4   40  

(b) Let n  6.



1

4

0

4 1   3.1415918   1  1  4136  1  219  1  414  1  249  1  2536  2

4 1 dx  4 1  x2 36

(c) 3.1415927

61. (a)

1 u u u d arcsin C   2 2 2 dx a a

1  u a 

a  u2



Thus, (b)





 



du

a2  u2

 arcsin

ua  C.

1 1 u u ua u d 1 arctan  C   2 2  2 dx a a a 1  ua2 a a  u2a2 a  u2



Thus,







du  a2  u2









1 u u dx  arctan  C. a2  u2 a a

(c) Assume u > 0. 1 1 u u ua u d 1 arcsec  C    . The case u < 0 is handled in a simidx a a a ua ua2  1 a u u2  a2a2

u u2  a2 lar manner.



Thus,





du u u2  a2

63. (a) vt  32t  500









u u u2  a2

dx 





1 u arsec  C. a a

(b) st 

550



vt dt 



32t  500 dt

 16t 2  500t  C s0  160  5000  C  0 ⇒ C  0 0

20 0

st  16t 2  500t When the object reaches its maximum height, vt  0. vt  32t  500  0 32t  500 t  15.625 s15.625  1615.6252  50015.625  3906.25 ft Maximum height

—CONTINUED—

Section 5.10

Hyperbolic Functions

63. —CONTINUED—



(c)

1 dv   32  kv2



dt

32k v  t  C k arctan  v   32k t  C 32

1

arctan

32k

1



32k v  tanC  32k t 32 v tan C  k 



32k t

When t  0, v  500, C  arctan 500k 32 , and we have vt 

32k tan arctan 50032k 



32k t .

(d) When k  0.001, v(t  32,000 tanarctan 5000.00003125   0.032 t. 500

0

7 0

vt  0 when t0  6.86 sec.



6.86

(e) h 









32,000 tan arctan 5000.00003125  0.032 t dt

0

Simpson’s Rule: n  10; h  1088 feet (f) Air resistance lowers the maximum height.

Section 5.10 1. (a) sinh 3 

Hyperbolic Functions

e3  e3  10.018 2

(b) tanh2 

3. (a) cschln 2 

sinh2 e2  e2  2  0.964 cosh2 e  e2

(b) cothln 5 

2 2 4   eln 2  eln 2 2  1 2 3 coshln 5 eln 5  eln 5  ln 5 sinhln 5 e  eln 5 

5. (a) cosh12  ln 2  3   1.317 (b) sech1

23  ln 1 

7. tanh2 x  sech2 x 

ee

x x

1  4 9

2 3

 ex  ex

 0.962

 e 2

x

2  ex



2



e2x  2  e2x  4 e2x  2  e2x  2x 1 ex  ex2 e  2  e2x

5  1 5 13  5  1 5 12

267

268

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

9. sinh x cosh y  cosh x sinh y 

e

x

 ex 2

e

y

 ey ex  ex  2 2



e

y

 ey 2



1  exy  exy  exy  exy  exy  exy  exy  exy 4 exy  exy 1  sinhx  y  2exy  exy  4 2

11. 3 sinh x  4 sinh3 x  sinh x3  4 sinh2 x 

e

x

 ex 2



e

x

 ex 1 3  e2x  2  e2x  ex  exe2x  e2x  1 2 2

3  4 e

x

 ex 2

2



e3x  e3x 1  sinh3x  e3x  ex  ex  ex  e3x  ex  2 2

sinh x 

13.

cosh2 x 

32

2

3 2

 1 ⇒ cosh2 x 

tanh x 

3 2 13 2



13 13 ⇒ cosh x  4 2

313 13

csch x 

2 1  3 2 3

sech x 

213 1  13 13 2

coth x 

13 1  3 3 13

15. y  sinh1  x2

17. f x  lnsinh x

y  2x cosh1  x2



19. y  ln tanh y 

x 2

fx 



21. hx 



x 1 2 1 sech2  tanhx 2 2 2 sinhx 2 coshx 2 

23. f t  arctansinh t ft 

1 cosh t 1  sinh2 t

cosh t  sech t  cosh2 t

hx 

1 cosh x  coth x sinh

1 x sinh2x  4 2 1 1 cosh2x  1 cosh2x    sinh2 x 2 2 2

1  csch x sinh x 25. Let y  gx. y  xcosh x ln y  cosh x ln x



1 dy cosh x  sinh x ln x  y dx x dy y  cosh x  xsinh x ln x dx x 

xcosh x cosh x  xsinh x ln x x

Section 5.10

Hyperbolic Functions

27. y  cosh x  sinh x2 y  2cosh x  sinh xsinh x  cosh x  2cosh x  sinh x2  2e2x 29. f x  sin x sinh x  cos x cosh x, 4 ≤ x ≤ 4

(−π , cosh π )

12

(π , cosh π )

fx  sin x cosh x  cos x sinh x  cos x sinh x  sin x cosh x  2 sin x cosh x  0 when x  0, ± . − 2

Relative maxima: ± , cosh  Relative minimum: 0, 1

31. gx  x sech x 

x cosh x

33.

y  a sinh x y  a cosh x

1

y  a sinh x

(1.20, 0.66) −

2

(0, − 1) −2

y  a cosh x



Therefore, y  y  0. (−1.20, − 0.66) −1

Relative maximum: 1.20, 0.66 Relative minimum: 1.20, 0.66 35. f x  tanh x

f 1  tanh1  0.7616

2

P1

1  0.4200 cosh21

fx  sech2 x

f1 

fx  2 sech2 x  tanh x

f 1  0.6397

f −3

4

P2 −2

P1x  f 1  f1x  1  0.7616  0.42x  1 P2x  0.7616  0.42x  1 

37. (a) y  10  15 cosh

0.6397 x  12 2

x , 15 ≤ x ≤ 15 15

(b) At x  ± 15, y  10  15 cosh1  33.146. At x  0, y  10  15 cosh1  25.

y

(c) y  sinh

30

x . At x  15, y  sinh1  1.175 15

20 10

− 10

x 10

20

39. Let u  1  2x, du  2 dx.



sinh1  2x dx  



1 sinh1  2x2 dx 2

1   cosh1  2x  C 2

41. Let u  coshx  1, du  sinhx  1 dx.



cosh2x  1 sinhx  1 dx 

1 cosh3x  1  C 3

269

270

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

45. Let u 

43. Let u  sinh x, du  cosh x dx.





cosh x dx  ln sinh x  C sinh x





x csch2

1 1 47. Let u  , du   2 dx. x x







0



csch2



x2 x2 x dx  coth  C 2 2



 

1 5x 1 ln dx  25  x2 10 5  x





4 0



51. Let u  2x, du  2 dx.

1 1 ln 9  ln 3 10 5



2 4

0





x 2x 1 1 dx  dx  arctanx2  C x4  1 2 x22  1 2

y 

57. y  sinh1tan x 1 sec2 x  sec x y  tan2 x  1



3 9x2  1

59. y  coth1sin 2x



y 

1 2 cos 2x  2 sec 2x 1  sin2 2x

61. y  2x sinh12x  1  4x2 y  2x

1 2 4x  2 sinh

1

2

2x 

4x 1  4x2

 2 sinh12x

63. See page 395.

65. y  a sech1

ax  a

2

 x2

x a2 x x2  a2  a2  x2 1 dy       2 2 2 2 2 2 2 2 2 2 dx x a  x x a1  x a  a  x xa  x xa  x

67.



1 dx  1  e2x



69. Let u  x, du 

 71.

1 x1  x











1 dx. 2x

dx  2

1 dx  4x  x2

ex 1  1  e2x dx  csch1ex  C  ln C x 2 ex  e 

ex1

1

dx  2 sinh  2 x 1   x 1

1

2







x  C  2 ln x  1  x  C

  

1 1 x4 1 x  2  2  ln C dx  ln x  22  4 4 x  2  2 4 x

2 4



1 2 dx  arcsin2x 1  2x2

55. y  cosh13x

53. Let u  x2, du  2x dx.



x2 dx  2

csch1 x coth1 x 1 1 1 1 dx   csch coth  2 dx  csch  C x2 x x x x 4

49.

x2 , du  x dx. 2

0



 4

Section 5.10

73.



1 dx  1  4x  2x2 



1 1 dx  3  2x  12 2





77. y 



1 80  8x  16x2

x3  21x dx  5  4x  x2





2

2 

2

2x  1  3



dx



2x  1  3 2x  1  3 1 1 ln C ln C 26 2x  1  3 26 2x  1  3

75. Let u  4x  1, du  4 dx. y







4 4x  1 1 1 dx  arcsin C 4 81  4x  12 4 9

dx 





x  4 





20 dx  5  4x  x2







x  4 dx  20

 

  

4

sech

0 4

2

0

 

0

  2

x dx 2

81. A 

0

2

dx

2 dx  ex 2





ex 2 dx  1



52 ln x



5 ln 4  17   5.237 2

ex 2 2





 8 arctanex 2

4 0

5 2

5x

x4  1

ex 2

4

4

0

2x x22  1 2

 8 arctane   2  5.207 2



1 dx 32  x  22

x2 x2 x2 20 x  2  3 10 x  1 10 x  5  C    4x  C C  4x  ln ln  4x  ln 2 6 x  2  3 2 3 x5 2 3 x1

79. A  2

83.

Hyperbolic Functions

3k dt  16 3kt  16

 

1 dx x2  12x  32





 

1 x  6  2 1 x8 1 dx  ln  C  ln C x  62  4 22 x  6  2 4 x4

When x  0:

t0 1 C   ln2 4

When x  1:

t  10

 

30k 1 7 7 1 1  ln  ln2  ln 16 4 3 4 4 6 k When t  20:





7 2 ln 15 6

163 152 ln 76 20  41 ln 2xx 88 ln

76

2

 ln

x8 2x  8

x8 49  36 2x  8 62x  104 x

104 52   1.677 kg 62 31

dx



 x4  1 

2 0

271

272

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

85. As k increases, the time required for the object to reach the ground increases. ex  ex 2

87. y  cosh x  y 

y  cosh1 x

89.

cosh y  x

ex  ex  sinh x 2

sinh y y  1 y 

91. y  sech x 

1 1 1   sinh y cosh2 y  1 x2  1

2 ex  ex

y  2ex  ex2ex  ex 

e

x

2  ex

ee

x x

 ex  sech x tanh x  ex



Review Exercises for Chapter 5 1. f x  ln x  3

y

Vertical shift 3 units upward Vertical asymptote: x  0

5 4

x=0

3 2 1 x 1

4x4x

2

3. ln

5

2

5. ln 3 

2

3

4

5

 1 1 2x  12x  1 1  ln  ln2x  1  ln2x  1  ln4x2  1 1 5 4x2  1 5

3 4  x2 3 1 3 4  x2  ln x  ln ln4  x2  ln x  ln 3  ln  3 x





9. gx  lnx 

7. lnx  1  2 x  1  e2

gx 

x  1  e4

1 ln x 2

1 2x

x  e4  1 53.598 11. f x  xln x



13.



x 1 fx  ln x1 2  ln x 2 x 1  2 ln x 1  ln x    2 ln x 2ln x

15.

1 a  bx 1 y   ln   lna  bx  ln x a x a









dy 1 b 1 1    dx a a  bx x xa  bx

y









1 a lna  bx  b2 a  bx

b x dy 1 ab    dx b2 a  bx a  bx2 a  bx2

17. u  7x  2, du  7dx



1 1 1 1 dx  7 dx  ln 7x  2  C 7x  2 7 7x  2 7





Review Exercises for Chapter 5

19.





4

sin x sin x dx   dx 1  cos x 1  cos x

21.

1

x1 dx  x

 4

1

1





4

  1  3  ln 4

1 dx  x  ln x x



 ln 1  cos x  C

 3

23.



sec  d  ln sec   tan 

0

 3

 0

 ln 2  3 

f x  12 x  3

25. (a)

y

1 2x

(b)

7

3

f

−1

− 11

2 y  3  x

10

f

2x  3  y f 1x  2x  6

−7

1 1 (c) f 1 f x  f 1 2 x  3  2 2 x  3  6  x 1 f  f 1x  f 2x  6  2 2x  6  3  x

f x  x  1

27. (a)

(b)

4

f −1

y  x  1

f

y2  1  x

−3

x2  1  y f 1

x 

x2

6

−2

 1, x ≥ 0

(c) f 1 f x  f 1 x  1   x2  12  1  x f  f 1x  f x2  1  x2  1  1  x2  x for x ≥ 0.

3 x  1 f x  

29. (a)

(b)

4

f −1

3 x  1 y 

f

y3  1  x x3

−4

5

1y

f 1x  x3  1

−2

3 x  1   (c) f 1 f x  f 1  3 x  1  1  x 3

3 x3  1  1  x f  f 1x  f x3  1  

31.

f x  x3  2

f x  tan x

33.

f 1x  x  21 3

f

1  f 1x  x  22 3 3

1 0.160 35 3

3

3

fx  sec2 x

1 1  f 11  1  22 3  3 332 3 

6  

f

 f 1

6   34

 33  f1 6  43 

273

274

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

f x  ln x

35. (a)

(b)

2

f −1

y  lnx

f −3

ey  x e2y  x

3

−2

e2x  y

(c) f 1 f x  f 1 ln x   e2 ln x  e ln x  x

f 1x  e2x

f  f 1x  f e2x   ln e2x  ln ex  x

37. y  ex 2

39. f x  lnex   x2 2

fx  2x

y 6 4 2 x

−2

2

4

−2

41. gt  t2et

43. y  e2x  e2x

gx  t2et  2tet  tett  2

45. gx 

x2 ex

e2x  e2x 1 y  e2x  e2x1 22e2x  2e2x  2 e2x  e2x yln x  y2  0

47.

ex 2x  x2ex x2  x gx   e2x ex

y

1x   ln xdydx  2ydydx  0 2y  ln x

dy y  dx x y dy  dx x2y  ln x

49. Let u  3x2, du  6x dx.

xe3x dx   2

51.

e4x  e2x  1 dx  ex

1 3x2 1 2 e 6x dx   e3x  C 6 6

xe1x dx   2

1 1x2 e 2x dx 2

1 2   e1x  C 2 57.

e3x  ex  ex dx

1  e3x  ex  ex  C 3 

53.

e4x  3e2x  3 C 3ex

55. Let u  ex  1, du  ex dx.

ex dx  ln ex  1  C ex  1





y  exa cos 3x  b sin 3x y  ex3a sin 3x  3b cos 3x  exa cos 3x  b sin 3x  ex3a  b sin 3x  a  3b cos 3x y  ex33a  b cos 3x  3a  3b sin 3x  ex3a  b sin 3x  a  3b cos 3x  ex6a  8b sin 3x  8a  6b cos 3x y  2y  10y  ex6a  8b  23a  b  10b sin 3x  8a  6b  2a  3b  10a cos 3x  0

Review Exercises for Chapter 5

4

59. Area 

0





1 2 2 xex dx   ex 2

4 0

1   e16  1 0.500 2 63. y  log2x  1

61. y  33 2

y

y

6 5

4 3

4 3

2 1

2

x

−1 1

2

2

3 4

5

6 7

−2 −3

x

−4 −3 −2 −1

1

3 4

−4

−2

65. f x  3x1

y  x2x1

67.

fx  3x1 ln 3

ln y  2x  1 ln x y 2x  1   2 ln x y x y  y

69. gx  log31  x  gx 

1 log31  x 2

71.

2x x 1  2 ln x  x 2x x 1  2 ln x 2x1

x  15x1 dx  2

1 1 x12 5 C 2 ln 5

1 1 1  2 1  xln 3 2x  1ln 3

73. (a) y  x a y  ax a1

(b) y  ax

(c)

y  xx

(d) y  aa

ln y  x ln x

y  ln aax

y  0

1 1 y  x  1 ln x y x y  y1  ln x y  xx1  ln x 75. 10,000  Pe0.0715 P

77.

Ph  30ekh P18,000  30e18,000k  15

10,000 $3499.38 e1.05

k

ln 2 ln1 2  18,000 18,000

Ph  30eh ln 2 18,000 P35,000  30e35,000 ln 2 18,000 7.79 inches

79.

P  Ce0.015t 2C  Ce0.015t 2  e0.015t ln 2  0.015t t

ln 2 46.21 years 0.015

81.

dy x2  3  dx x

 dy  y

x



3 dx x

x2  3 ln x  C 2



275

276

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

83. y  2xy  0

dy  2xy dx 1 dy  y

2x dx



ln y  x2  C1 2 C 1

ex

y

y  Cex

2

85.

dy x2  y2  (homogeneous differential equation) dx 2xy

x2  y2 dx  2xy dy  0 Let y  vx, dy  x dv  v dx.

x2  v2x2 dx  2xvxx dv  v dx  0 x2  v2x2  2x2v2 dx  2x3v dv  0 x2  x2v2 dx  2x3v dv 1  v2 dx  2x dv

dx  x

2v dv 1  v2











ln x  ln 1  v 2  C1  ln 1  v 2  ln C Cx2

x

C C   1  v 2 1   y x2 x2  y2

1

Cx x2  y2

or C1 

x x2  y2

87. y  C1x  C2 x3 y  C1  3C2 x2 y  6C2 x x2 y  3xy  3y  x26C2 x  3xC1  3C2 x2  C1x  C2 x3  6C2 x3  3C1x  9C2 x3  3C1x  3C2 x3  0 x  2, y  0: 0  2C1  8C2 ⇒ C1  4C2 x  2, y  4: 4  C1  12C2 1 4  4C2  12C2  8C2 ⇒ C2  , C1  2 2 1 y  2x  x3 2 89. f x  2 arctanx  3

y

4

−6

−4

x

−2

2 −2 −4

Review Exercises for Chapter 5

Let   arcsin

91. (a)

277

1 2 2

1 2

sin  



1

θ



1 1 sin arcsin  sin   . 2 2 Let   arcsin

(b)



3 1  cos   . 2 2

cos arcsin

x

93. y  tanarcsin x  y 

1 2

1 2

sin  



3

95. y  x arcsec x

1  x2

y 

1  x21 2  x21  x21 2  1  x23 2 1  x2

x  arcsec x x x2  1



97. y  xarcsin x2  2x  21  x2 arcsin x y 

1  x2 2x arcsin x 2x 2  2  2   arcsin x   arcsin x  arcsin x2 1  x2 1  x2 1  x2

99. Let u  e2x, du  2e2x dx.

1 dx  e2x  e2x



1 1 e2x 1 dx  2e2x dx  arctane2x  C 1  e4x 2 1  e2x2 2

101. Let u  x2, du  2x dx.

x 1  x4



2x , du  4 2 x

2

arctanx 2 1 dx  4  x2 2

107.

dy A2  y2



1 1 1 2x dx  arcsin x2  C 2 1  x22 2

dx 

105. Let u  arctan

103. Let u  16  x2, du  2x dx.





 

y arcsin  A

arctan

x 2

dx.

4 2 x  dx  41arctan 2x  2

k dt m

k tC m

2

C

109. y  2x  coshx y  2 

Since y  0 when t  0, you have C  0. Thus,

mk t  Ay

sin

mk t

y  A sin 111. Let u  x2, du  2x dx.

x x4  1

dx 



1 1 x 1 dx  2x dx  ln16  x2  C 16  x2 2 16  x2 2

1 1 1 2x dx  ln x2  x4  1   C 2 x22  1 2

 1  sinh x  2  sinh x 2x 2x

272

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

85. As k increases, the time required for the object to reach the ground increases. ex  ex 2

87. y  cosh x  y 

y  cosh1 x

89.

cosh y  x

ex  ex  sinh x 2

sinh y y  1 y 

91. y  sech x 

1 1 1   sinh y cosh2 y  1 x2  1

2 ex  ex

y  2ex  ex2ex  ex 

e

x

2  ex

ee

x x

 ex  sech x tanh x  ex



Review Exercises for Chapter 5 1. f x  ln x  3

y

Vertical shift 3 units upward Vertical asymptote: x  0

5 4

x=0

3 2 1 x 1

4x4x

2

3. ln

5

2

5. ln 3 

2

3

4

5

 1 1 2x  12x  1 1  ln  ln2x  1  ln2x  1  ln4x2  1 1 5 4x2  1 5

3 4  x2 3 1 3 4  x2  ln x  ln ln4  x2  ln x  ln 3  ln  3 x





9. gx  lnx 

7. lnx  1  2 x  1  e2

gx 

x  1  e4

1 ln x 2

1 2x

x  e4  1 53.598 11. f x  xln x



13.



x 1 fx  ln x1 2  ln x 2 x 1  2 ln x 1  ln x    2 ln x 2ln x

15.

1 a  bx 1 y   ln   lna  bx  ln x a x a









dy 1 b 1 1    dx a a  bx x xa  bx

y









1 a lna  bx  b2 a  bx

b x dy 1 ab    dx b2 a  bx a  bx2 a  bx2

17. u  7x  2, du  7dx



1 1 1 1 dx  7 dx  ln 7x  2  C 7x  2 7 7x  2 7





Review Exercises for Chapter 5

19.





4

sin x sin x dx   dx 1  cos x 1  cos x

21.

1

x1 dx  x

 4

1

1





4

  1  3  ln 4

1 dx  x  ln x x



 ln 1  cos x  C

 3

23.



sec  d  ln sec   tan 

0

 3

 0

 ln 2  3 

f x  12 x  3

25. (a)

y

1 2x

(b)

7

3

f

−1

− 11

2 y  3  x

10

f

2x  3  y f 1x  2x  6

−7

1 1 (c) f 1 f x  f 1 2 x  3  2 2 x  3  6  x 1 f  f 1x  f 2x  6  2 2x  6  3  x

f x  x  1

27. (a)

(b)

4

f −1

y  x  1

f

y2  1  x

−3

x2  1  y f 1

x 

x2

6

−2

 1, x ≥ 0

(c) f 1 f x  f 1 x  1   x2  12  1  x f  f 1x  f x2  1  x2  1  1  x2  x for x ≥ 0.

3 x  1 f x  

29. (a)

(b)

4

f −1

3 x  1 y 

f

y3  1  x x3

−4

5

1y

f 1x  x3  1

−2

3 x  1   (c) f 1 f x  f 1  3 x  1  1  x 3

3 x3  1  1  x f  f 1x  f x3  1  

31.

f x  x3  2

f x  tan x

33.

f 1x  x  21 3

f

1  f 1x  x  22 3 3

1 0.160 35 3

3

3

fx  sec2 x

1 1  f 11  1  22 3  3 332 3 

6  

f

 f 1

6   34

 33  f1 6  43 

273

274

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

f x  ln x

35. (a)

(b)

2

f −1

y  lnx

f −3

ey  x e2y  x

3

−2

e2x  y

(c) f 1 f x  f 1 ln x   e2 ln x  e ln x  x

f 1x  e2x

f  f 1x  f e2x   ln e2x  ln ex  x

37. y  ex 2

39. f x  lnex   x2 2

fx  2x

y 6 4 2 x

−2

2

4

−2

41. gt  t2et

43. y  e2x  e2x

gx  t2et  2tet  tett  2

45. gx 

x2 ex

e2x  e2x 1 y  e2x  e2x1 22e2x  2e2x  2 e2x  e2x yln x  y2  0

47.

ex 2x  x2ex x2  x gx   e2x ex

y

1x   ln xdydx  2ydydx  0 2y  ln x

dy y  dx x y dy  dx x2y  ln x

49. Let u  3x2, du  6x dx.

xe3x dx   2

51.

e4x  e2x  1 dx  ex

1 3x2 1 2 e 6x dx   e3x  C 6 6

xe1x dx   2

1 1x2 e 2x dx 2

1 2   e1x  C 2 57.

e3x  ex  ex dx

1  e3x  ex  ex  C 3 

53.

e4x  3e2x  3 C 3ex

55. Let u  ex  1, du  ex dx.

ex dx  ln ex  1  C ex  1





y  exa cos 3x  b sin 3x y  ex3a sin 3x  3b cos 3x  exa cos 3x  b sin 3x  ex3a  b sin 3x  a  3b cos 3x y  ex33a  b cos 3x  3a  3b sin 3x  ex3a  b sin 3x  a  3b cos 3x  ex6a  8b sin 3x  8a  6b cos 3x y  2y  10y  ex6a  8b  23a  b  10b sin 3x  8a  6b  2a  3b  10a cos 3x  0

Review Exercises for Chapter 5

4

59. Area 

0





1 2 2 xex dx   ex 2

4 0

1   e16  1 0.500 2 63. y  log2x  1

61. y  33 2

y

y

6 5

4 3

4 3

2 1

2

x

−1 1

2

2

3 4

5

6 7

−2 −3

x

−4 −3 −2 −1

1

3 4

−4

−2

65. f x  3x1

y  x2x1

67.

fx  3x1 ln 3

ln y  2x  1 ln x y 2x  1   2 ln x y x y  y

69. gx  log31  x  gx 

1 log31  x 2

71.

2x x 1  2 ln x  x 2x x 1  2 ln x 2x1

x  15x1 dx  2

1 1 x12 5 C 2 ln 5

1 1 1  2 1  xln 3 2x  1ln 3

73. (a) y  x a y  ax a1

(b) y  ax

(c)

y  xx

(d) y  aa

ln y  x ln x

y  ln aax

y  0

1 1 y  x  1 ln x y x y  y1  ln x y  xx1  ln x 75. 10,000  Pe0.0715 P

77.

Ph  30ekh P18,000  30e18,000k  15

10,000 $3499.38 e1.05

k

ln 2 ln1 2  18,000 18,000

Ph  30eh ln 2 18,000 P35,000  30e35,000 ln 2 18,000 7.79 inches

79.

P  Ce0.015t 2C  Ce0.015t 2  e0.015t ln 2  0.015t t

ln 2 46.21 years 0.015

81.

dy x2  3  dx x

 dy  y

x



3 dx x

x2  3 ln x  C 2



275

276

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

83. y  2xy  0

dy  2xy dx 1 dy  y

2x dx



ln y  x2  C1 2 C 1

ex

y

y  Cex

2

85.

dy x2  y2  (homogeneous differential equation) dx 2xy

x2  y2 dx  2xy dy  0 Let y  vx, dy  x dv  v dx.

x2  v2x2 dx  2xvxx dv  v dx  0 x2  v2x2  2x2v2 dx  2x3v dv  0 x2  x2v2 dx  2x3v dv 1  v2 dx  2x dv

dx  x

2v dv 1  v2











ln x  ln 1  v 2  C1  ln 1  v 2  ln C Cx2

x

C C   1  v 2 1   y x2 x2  y2

1

Cx x2  y2

or C1 

x x2  y2

87. y  C1x  C2 x3 y  C1  3C2 x2 y  6C2 x x2 y  3xy  3y  x26C2 x  3xC1  3C2 x2  C1x  C2 x3  6C2 x3  3C1x  9C2 x3  3C1x  3C2 x3  0 x  2, y  0: 0  2C1  8C2 ⇒ C1  4C2 x  2, y  4: 4  C1  12C2 1 4  4C2  12C2  8C2 ⇒ C2  , C1  2 2 1 y  2x  x3 2 89. f x  2 arctanx  3

y

4

−6

−4

x

−2

2 −2 −4

Review Exercises for Chapter 5

Let   arcsin

91. (a)

277

1 2 2

1 2

sin  



1

θ



1 1 sin arcsin  sin   . 2 2 Let   arcsin

(b)



3 1  cos   . 2 2

cos arcsin

x

93. y  tanarcsin x  y 

1 2

1 2

sin  



3

95. y  x arcsec x

1  x2

y 

1  x21 2  x21  x21 2  1  x23 2 1  x2

x  arcsec x x x2  1



97. y  xarcsin x2  2x  21  x2 arcsin x y 

1  x2 2x arcsin x 2x 2  2  2   arcsin x   arcsin x  arcsin x2 1  x2 1  x2 1  x2

99. Let u  e2x, du  2e2x dx.

1 dx  e2x  e2x



1 1 e2x 1 dx  2e2x dx  arctane2x  C 1  e4x 2 1  e2x2 2

101. Let u  x2, du  2x dx.

x 1  x4



2x , du  4 2 x

2

arctanx 2 1 dx  4  x2 2

107.

dy A2  y2



1 1 1 2x dx  arcsin x2  C 2 1  x22 2

dx 

105. Let u  arctan

103. Let u  16  x2, du  2x dx.





 

y arcsin  A

arctan

x 2

dx.

4 2 x  dx  41arctan 2x  2

k dt m

k tC m

2

C

109. y  2x  coshx y  2 

Since y  0 when t  0, you have C  0. Thus,

mk t  Ay

sin

mk t

y  A sin 111. Let u  x2, du  2x dx.

x x4  1

dx 



1 1 x 1 dx  2x dx  ln16  x2  C 16  x2 2 16  x2 2

1 1 1 2x dx  ln x2  x4  1   C 2 x22  1 2

 1  sinh x  2  sinh x 2x 2x

278

Chapter 5

Logarithmic, Exponential, and Other Transcendental Functions

Problem Solving for Chapter 5 1. tan 1  3 x tan 2 

6 10  x

6

Minimize 1  2:

3

f x  1  2  arctan fx 

1 9 1 2 x

 3 x  2





3 6  arctan x 10  x





1

θ1 0

θ

x

θ2 a

10



6 0 36 10  x2 1 10  x2 3 6  x2  9 10  x2  36

10  x2  36  2x2  9 100  20x  x2  36  2x2  18 x2  20x  118  0 x a  10  218  4.7648

20 ± 202  4118  10 ± 218 2

f a  1.4153

    1  2  1.7263 or 98.9 Endpoints: a  0:   1.0304 a  10:   1.2793 Maximum is 1.7263 at a  10  218  4.7648. 3. f x  sinln x or 0, 

(a) Domain: x > 0

(f)

  2k. 2  2   2  2  . Two values are x  e , e

(b) f x  1  sinln x ⇒ ln x 

(c) f x  1  sinln x ⇒ ln x 

3  2k. 2

1 (e) fx  cosln x x

  k ⇒ 2

x  e2 on 1, 10

f 10  0.7440

1 lim f x seems to be  . (This in incorrect.) 2

(g) For the points x  e2, e32, e72, . . . we have f x  1. For the points x  e2, e52, e92, . . .

fx  0 ⇒ cosln x  0 ⇒ ln x 



−2

x→0

(d) Since the range of the sine function is 1, 1 , parts (b) and (c) show that the range of f is 1, 1 .

f 1  0

5

0

Two values are x  e2, e32.

f e2  1

2

we have f x  1. That is, as x → 0, there is an infinite number of points where f x  1, and an infinite number where f x  1. Thus lim sinln x does not exist. x→0

Maximum is 1 at x 

e2

 4.8105

You can verifiy this by graphing f x on small intervals close to the origin.

Problem Solving for Chapter 5 5. (a)

279

Area sector t t t  ⇒ Area sector    Area circle 2 2 2

1 (b) Area AOP  baseheight  2 At 

1 cosh t sinh t  2



cosh t

x2  1 dx

1 cosh t

x2  1 dx

1

1 At  cosh2 t  sinh2 t  cosh2 t  1 sinh t 2 1  cosh2 t  sinh2 t  sinh2 t 2 1 1  cosh2 t  sinh2 t  2 2 1 At  t  C. But, A0  C  0 ⇒ C  0 2 1 Thus, At  t or t  2 At. 2 9. Let u  1  x, x  u  1, x  u2  2u  1,

y  ln x

7.

y 

dx  2u  2du.

1 x

Area 

1 y  b  x  a a



4

1

1 dx  x  x 

1 y  x  b  1 Tangent line a



3

2

If x  0, c  b  1. Thus, b  c  b  b  1  1.

u  1 du u2  u

32

2



2u  2 du u  1  u2  2u  1

32

2

u

du



 2 ln u

3 2

 2 ln 3  2 ln 2  2 ln

32

 0.8109

11. (a)



dy  y1.01 dt

y1.01 dy 



(b)



y1  dy 

y0.01 y0.01

y   kt  C y

 0.01t  C 1  C  0.01t

1 y C  0.01t100 y0  1: 1  Hence, y 

1 ⇒ C1 C100

1 . 1  0.01t100

For T  100, lim y  . t→T

k dt

y  kt  C1 

dt

y0.01  t  C1 0.01 1



1 C  kt1

 

y0  y0 

1 1 1 ⇒ C1  ⇒ C C1 y0 y0

Hence, y 

1 1  kt y0

For t →



1 , y → . y0 k



1

.



280

Chapter 5

13. Since



Logarithmic, Exponential, and Other Transcendental Functions

dy  k y  20, dt 1 dy  y  20



k dt

ln y  20  k t  C y  Cekt  20. When t  0, y  72. Therefore, C  52. When t  1, y  48. Therefore, 48  52ek  20, ek  2852  713, and k  ln713. Thus, y  52e ln713 t  20. When t  5, y  52e5 ln713  20  22.35.

15. (a)

dS  k1SL  S dt S

(b)



dS 4  ln S100  S dt 9

  S dSdt  100  S dSdt

4 d 2S  ln dt2 9

L is a solution because 1  Cekt

dS  L1  Cekt 2C kekt  dt 

LC kekt 1  Cekt 2



Lk 1  LCe

1  Cekt





kt

k L  L 1  Cekt

 ln

49100  2S dSdt

 0 when S  50 or

Choosing S  50, we have:

C Lekt

L L 1  Cekt

50 



L  100. Also, S  10 when t  0 ⇒ C  9. And, S  20 when t  1 ⇒ k  ln49.

100 1  9eln49t

2  1  9eln49t ln19 t ln49

k  k1SL  S, where k1  . L

100 Particular Solution. S  1  9eln49t

dS  0. dt

t  2.7 months (d)

S 140 120 100

100  1  9e0.8109t (c)

80 60 40 20

125

t 1

2

3

4

(e) Sales will decrease toward the line S  L. 0

10 0

PA R T

I I C H A P T E R 6 Applications of Integration Section 6.1

Area of a Region Between Two Curves . . . . . . . . . . 264

Section 6.2

Volume: The Disk Method . . . . . . . . . . . . . . . . . 271

Section 6.3

Volume: The Shell Method

Section 6.4

Arc Length and Surfaces of Revolution . . . . . . . . . . 282

Section 6.5

Work

Section 6.6

Moments, Centers of Mass, and Centroids . . . . . . . . . 290

Section 6.7

Fluid Pressure and Fluid Force . . . . . . . . . . . . . . . 297

Review Exercises

. . . . . . . . . . . . . . . . 278

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

C H A P T E R 6 Applications of Integration Section 6.1

Area of a Region Between Two Curves

Solutions to Even-Numbered Exercises

2. A 



2x  5  x 2  2x  1 dx 

4. A 



x 2  x 3 dx

2



2

2

2

x 2  4 dx



1

1

0



0

1

  3

1

8.

x  1 3  x  1 dx

6. A  2

1  x 2  x 2  1 dx

10.

2





 4



x3 x x  dx 3 3

12.

sec2 x  cos x dx

 4

y

y

y

7 2

3

(3, 6)

6

−π,2 4 2

(

5 4

)

( 4π , 2)

3 x

−2

2

2 1

(2, 23 )

(− 4π , 22 ) (π4 , 22 )

(3, 1) x

−1

−2

2

4

5

6

−π 4

7

   8

1 14. f x  2  2 x

16. A 

2

gx  2  x

8



A 1

2

Matches (a)



y



1 3 10  x   xx  8 2 8

dx



3 2 7 x  x  10 dx 8 2

 x8  7x4 3

2



8

 10x

2

 64  112  80  1  7  20  18

4

y 3

(2, 9) (0, 2)

8

(8, 6)

6 1

(4, 0)

4 x

1

2

3

(2, 92 )

2

(8, 0) x 2

264

π 4

4

6

10

x

Section 6.1 18. The points of intersection are given by x2

Area of a Region Between Two Curves

20. The points of intersection are given by:

 4x  1  x  1

x 2  4x  2  x  2

x2  3x  0

x3  x  0 when x  0, 3

x2  3x when x  0, 3

 

3

A

x2  4x  1  x  1 dx

A

3



3

x2  3x dx

3







2 3

x 3x    3 2

x 2  4x  2  x  2 dx

0

0 3

 f x  gx dx

0

0



  

3

x 2  3x dx 

0

0

y

27 9  9   2 2

6

(3, 5)

5

y

4

6

3

5

(0, 2)

(3, 4)

4 3 2

x

−1

(0, 1)

1

2

3

5

4

x 1

 5

22. A 

3

2

4

5

6





1 1  0 dx   x2 x

1

5 1



4 5

y

(1, 1)

1.0 0.8 0.6 0.4 0.2

(5, 0.04) x 1

2

3

4

5

24. The points of intersection are given by 3 x  1  x  1

y

x  1  x  13  x3  3x2  3x  1  3x  2x  0

x3

1

(2, 1)

2

(1, 0)

xx2  3x  2  0 xx  2x  1  0 ⇒ x  0, 1, 2

 1

A2

0

3 x  1  dx x  1 

 2  x  4x  1

2

x2

3

1

4 3

0

 12  1  0   43  21

2

x 2

(0, −1)

 x3

3





3 2 x 2

3 0



9 2

265

266

Chapter 6

Applications of Integration

26. The points of intersection are given by: 2y  y 2  y

y

(−3, 3)

y  y  3  0 when y  0, 3

  

3

3

A

 f  y  g y dy

1

0

(0, 0)

3



−3

2y  y 2  y dy

x

−2

1 −1

0 3



3y  y 2 dy 

0

  

 32 y

2



1 3 y 3



3 0



9 2

3

28. A 

y

 f  y  g y dy 4

0

3



0



y

16  y 2

(

3

3 ,3 7

)

2

3

1 2

16  y 21 22y dy

1

0





  16  y 2

 1

30. A 



 0 dy

4

0

3 0

 4  7 1.354

x

−1

1



4 dx 2x



y

(1, 4)

 0



1

 4x  4 ln 2  x

3

2

3

(0, 2)

 4  4 ln 2

1

1.227

x

−1

34. The points of intersection are given by:

32. The point of intersection is given by:

x 4  2x 2  2x 2

x 3  2x  1  2x

  

1

x 2x 2  4  0 when x  0, ± 2

x 3  1  0 when x  1

A2

 f x  gx dx

1

2x 2  x 4  2x 2 dx

0 2

1



 

2

1

A

3

1

2

x 3  2x  1  2x dx

1





x4 x  x  1 dx  4 1 3

Numerical Approximation: 2.0

1 1

4x 2  x 4 dx

0

2

2

 4x3

3



x5 5



2 0



128 15

Numerical Approximation: 8.533 10

y

(−2, 8)

(2, 8)

(−1, 2) −4

(1, 0) −2

x

−1

2 −1 −2

(1, −2)

4 −2

(0, 0)

Section 6.1

Area of a Region Between Two Curves

36. f x  x 4  4x 2, gx  x 3  4x

y

g 4

The points of intersection are given by:

3

x 4  4x 2  x 3  4x −4 −3

x 4  x 3  4x 2  4x  0 xx  1x  2x  2  0 when x  2, 0, 1, 2





0

A 

2

1

3

4

−3 −4



1

x 3  4x  x 4  4x 2 dx 

x

−1

f

2

x 4  4x 2  x 3  4x dx 

0

x3  4x  x4  4x2 dx

1

248 37 53 293    30 60 60 30

Numerical Approximation: 8.267  0.617  0.883 9.767

 3

38. A 

0

x2





 3 ln x 2  1

40. A 

3

( 3, )

3

2

0

−1

5

(0, 0) −1

−1

6.908

5

−1

Numerical Approximation: 6.908



 6

44  xx dx 3.434

x

0

9 5

 3 ln 10

42. A 



4



6x  0 dx 1

  1

44. A 

cos 2x  sin x dx

 2

0

 6









 43  23  0  3 4 3 1.299

1 sin 2x  cos x 2

 2



y

(

π, 1 6 2



2  4 x  4  sec











)

2  4

2

x2  4x 

2  4

2

2

2

x x tan dx 4 4

4 x sec  4





1

0



4 4  4  2    

2

4 1  2  2.1797 

y

−π 2

π 6

(− π2 , −1)

4

x

3

−1

2

(1,

2)

1 x 1

46. From the graph we see that f and g intersect twice at x  0 and x  1.

 

1

A

48. A 



2

(0, 1)

2x  1  3 x dx

2

0





1 x 3   x2  x  ln 3



1 sin 2x 2

(1, 3)

1





 2 cos x 

3

0

2 sin x  cos 2x  0 dx



0

y

gx  f x dx





0

1 2 1 0.180 ln 3

−1

5 4

− 4

(0, 1)

1

x 1

2

(π, 1)

−2

 0

4

267

268

Chapter 6

 5

50. A 

Applications of Integration



4 ln x  0 dx x

1





 2ln x 2

52. (a) y  x e x, y  0, x  0, x  1



1

5

(b) A 

 2ln 5 2 5.181

1

x e x dx.

0

No, it cannot be evaluated by hand.

2

(5, 1.29) 0

(c) 1.2556

y = xe x

4

6

(1, 0)

−2

−1

2 −1

 x

54. Fx 

0







12 1 t  2 dt  t3  2t 2 6

x

x3  2x 6



0

(b) F4 

(a) F0  0

43 56  24  6 3

(c) F6  36  12  48 y

y y 20

20 20

16

16 16

12

12 12

8

8 8

4

4 4

x

x 1

2

3

4

5

x

6 1



y

56. F y 

1



4ex 2 dx  8ex 2



1

(b) F0  8  8e1 2 3.1478

30

25

25

20

20

20

15

15

15

10

10

10

5

5

   2

4

2

3

2

 74 x

2



 6

4

7

2

y = 29 x − 12 (4, 6) y = − 25 x + 16

2

(6, 1) x 6

2

8

−2

(2, −3)

y=x−5

10

  6

4

2





 21x

6 4

1



2

3

4



5  x  16  x  5 dx 2

7  x  21 dx 2

4

  4 x

 7x

4

−4



9 x  12  x  5 dx  2

7 x  7 dx  2

4

5

6

5 x

−1

4



3

y

30

1

2

(c) F4  8e2  8e1 2 54.2602

25

x

6

1

6

30

4

y

5

y

−1



4

 8e y 2  8e1 2

y



3

y

(a) F1  0

58. A 

2

 7  7  14

−1

x 1

2

3

4

Section 6.1

Area of a Region Between Two Curves

1 x2  1

60. f x 

f x  

y

(0, 1)

2x x 2  1 2

(1, 21 )

1 2



1 1 At 1, , f 1   . 2 2 Tangent line:

1 4

y=− 1x+1 2

x 1 2

1 1 1   x  1 or y   x  1 2 2 2

y

 1

0



1 1   x1 1 2

x2

3 2

1

1 at x  0. x2  1

The tangent line intersects f x  A

1 f ( x) = 2 x +1

3 4

dx  arctan x  x4  x

2

1 0



3 0.0354 4

62. Answers will vary. See page 417. 64. x 3 ≥ x on 1, 0

y

x 3 ≤ x on 0, 1

(1, 1)

1

Both functions symmetric to origin



0



(0, 0)

1

1

x 3  x dx  

x 3  x dx.

1

0



1

Thus,

x

−1

1

−1

x 3  x dx  0.



1

A2

x  x 3 dx  2

0

(− 1, − 1)

 x2  x4

4 1

2

0



1 2

66. Proposal 2 is better, since the cummulative deficit (the area under the curve) is less.



9

68. A  2



9  x dx  2 9x 

0

 

9b

2

0

x2 2



9 0

9  b  x dx 

0



12 9

81 9  x  b dx  2

9b

2

y

 81

x2 2



9b

81 2



81 2

9  b9  b 

81 2

2 9  bx 

0

9b b9

9

2

9

2

2.636

6

(− (9 −b), b)

−6

(9 −b, b) x

−3

3 −3 −6

6

2

269

270

Chapter 6 n



70. lim

 →0 i1

5

4i 4 and x  is the same as n n

2

2

y

4  x i2 x

where xi  2 



Applications of Integration



4  x 2 dx  4x 

x3 3



2 2



f ( x) = 4 − x 2

3 2

32 . 3

1

(− 2, 0) −3

(2, 0) x

−1

1

3

−1



5

72.



5

7.21  0.26t  0.02t 2  7.21  0.1t  0.01t 2 dt 

0

0.01t 2  0.16t dt

0



 0.01t 3



29 billion $ 2.417 billion 12

3



0.16t 2 2



5 0

74. 5% : P1  893,000 e 0.05t 312 %: P2  893,000 e 0.035t Difference in profits over 5 years:



5

893,000e 0.05t  893,000e 0.035t dt  893,000

0

 e0.05  e0.035

0.05t

0.035t 5 0

893,00025.6805  34.0356  20  28.5714 893,0000.2163 $ 193,156 Note: Using a graphing utility you obtain $193,183. 76. The curves intersect at the point where the slope of y2 equals that of y1, 1. y2  0.08x2  k ⇒ y2  0.16x  1 ⇒ x 

1  6.25 .16

 

6.25

(b) Area  2

(a) The value of k is given by

 y2  y1 dx

0

y1  y 2

6.25

2

6.25  0.086.25 2  k

0.08x 2  3.125  x dx

0

k  3.125.

2

 0.08x 3

3

 3.125x 

x2 2



6.25 0

 26.510417 13.02083

 16  2  8 5.908

78. (a) A 6.031  2 

1

2

(b) V  2A 25.908 11.816 m 3 80. True

1

2

(c) 5000V 500011.816  59,082 pounds

Section 6.2

Section 6.2

  3

 

2

4  x 2 2 dx  

0

4. V  

x 4  8x 2  16 dx  

0

9  x2

0

3

2 dx  

9  x2 dx

5  x5



8x 3  16x 3

2



x3 3



3 0

256 15



0

V

x2

8

 4

16  y 2

0



y3   16y  3



4 0

 2 dy  





16  y 2 dy



128  3



x4

 80 

 2



x5

 8

V

4

0







8 0



 y 4  8y 3  16y 2 dy

1

 y5  2y 5

4



16y 3 3

2

4x 4 dx  

0

y



4 1

−4

8

8

6

6

4

4

2

−4

4

(c) Rx  8, rx  8  2x 2

 

2



32x 2



 dx  4

4x 4



8



8x 2



x4

 dx



0

0



8 3 1 5 x  x 3 5

2 0



896 15

2y dy y y 4  4  dy 2 2 2

2

0

2

0



  4y 

y

42 3 2 y 2 y  3 4

y 8

−4

−2

128 5

4

  8

2





x

−2

V

64  64  32x 2  4 x 4 dx

0

 4

0

(d) R y  2  y 2, r y  0

2



5 2

2 x

−2

V

 4x5 

y

2

6

6

4

4

2

2 x 2

4

−4

−2

0

4

y 2  4y 2 dy  



22



4482   132.69 15

459 153  15 5

V

 16



 12 dx



(b) Rx  2x 2, rx  0

y y2 dy   4y  2 4

2

2x3  12x 3

12. y  2x 2, y  0, x  2 (a) R y  2, r y  y 2

 22 dx

1282 322   242 80 3

1

0

 16  2x

 2

4

4



2

22

0



10. V  

x2

 2

x  ± 22

8. y  16  x 2 ⇒ x  16  y 2

 4  4

22

8  16  x2

 18 

 

22

x2 4

6. 2  4 

0

  9x 

V

271

Volume: The Disk Method

2

2. V  

Volume: The Disk Method

x 4



8

 0

16 3

272

Chapter 6

Applications of Integration

14. y  6  2x  x 2, y  x  6 intersect at 3, 3 and 0, 6. (a) Rx  6  2x  x 2, rx  x  6

 

(b) Rx  6  2x  x2  3, rx  x  6  3

0

V

3

V

0

 

 

0

6  2x  x 2 2  x  6 2 dx

3  2x  x 2 2  x  3 2 dx

3 0

x 4  4x 3  9x 2  36x dx



3

5 x 1

5



 x 4  3x 3  18x 2

0 3



243 5



x 4  4x 3  3x 2  18x dx

3

 5x 1



 x 4  x 3  9x 2

5

y

−6

−4

  2

V

0

8

8

4

4

2

2 x

x3 , rx  0 2



dx



x6 4

x7  28



  32  16 

x

−2

2

 

 3

4 2  4  sec x 2 dx





dx

 3

8 sec x  sec 2 x dx

0

 









128 144   28 7



5

3 3 2

1 x 1

2

3

1

4

−1

π 9

20. R y  6, r y  6  6  y  y



4

V

x

π 3

2π 9

4π 9

5π 9

y 5

6 2   y 2 dy

4

0



  36y 

y3 3



4 0



368 3

0

  8 ln 2  3   3  27.66 y

2

 3

   8 ln 2  3  3    8 ln 1  0  0

0

(2, 4)



  8 ln sec x  tan x  tan x

2

y

−1

108 5

0

0

  16x 

−4

V

16  4x3  x4



18. Rx  4, rx  4  sec x

2

2



−6

2

x3 4 2

3

y

−2

16. Rx  4 

0

3 2 1 x 1 −1

2

3

4

5





Section 6.2 6 22. R y  6  , r y  0 y

  6

V

6

2

6



V  2

2

dy

2

 2





1 y



35

rx  0

x4  x 2 dx 2

2

 36 y  2 ln y 

 6

  0

2 1 1   2 dy y y

 36

 36

24. Rx  x4  x 2, 2

6 y

Volume: The Disk Method



 2

6 2



32  2 ln 2 

 2 ln 6 



4x 2  x 4 dx

0

 4x3

3



x5 5



2 0

128 15 y



13 1  36  2 ln  1213  6 ln 3  241.59 3 3

3 2

y

1 6 −3

5

x

−1

1

2

3

4 −2 3 −3 2 1 x 1

2

3

5

3 , rx  0 x1

26. Rx 

  8

V

4

0

3 x1

28. Rx  e x 2, rx  0

dx

4

x  1

2



dx





8 0

e x dx

0

0

1  9  x1

e x 2 2 dx

0

8

 9

 

4

V

2

 

 e x

 8

4 0

  e 4  1  168.38

y

y

4 8 3 6 2 4 1 2 x 2

4

6

8 −2

   4

30. V  

0

4



0



1 4 x 2



2

 x 





56 88     48 3 3

4 0

  8

dx  

x2  5x  16 dx   4

x3 5x2    16x 12 2 



2





4

8

4



x

x 2

4

2  4  21 x  dx

6

2

y 4



x2  5x  16 dx 4



x3 5x2     16x 12 2

2

8 4

(4, 2)

3

1 x −2

2 −1

4

6

8

10

273

274

Chapter 6

Applications of Integration

32. y  9  x 2, y  0, x  2, x  3

y 9 8 7 6 5 4 3 2 1

x  9  y

   5

V

9  y

0

2  22 dy

5



5  y dy

(2, 5)

x

0

1 2 3 4 5 6 7 8 9



y2 2



25 25  2 2

  5y    25 

34. V  



 2



5 0





3

cos x 2 dx  2.4674

36. V  

0

ln x 2 dx  3.2332

1

y

2

1

x 2

1



5

38. V  

2 arctan 0.2x 2 dx  15.4115

0



b

3 40. A  4

42. V 

y



d

or

V

a

1

Matches (b)

Ax dx

Ay dy

c

3 4 1 2 1 4

x 1 4

44. (a)

1 2

3 4

z

1

(b) 2

4

2 4 x

8

y

x

8

8

−4

h

0



r2 2 x dx h2

 r3h x  2

y

r

y= r x h

(h, r)

h

3

2

2

y

8 x

a < c < b.

r 46. Rx  x, rx  0 h



z 4

4

2

V

(c)

z

4

0

1 r  2 h 3   r 2h 3h 3

x h

16

y

Section 6.2

Volume: The Disk Method

 4

50. (a) V  

48. x  r 2  y 2 , R y  r 2  y 2 , r y  0

 

0

r

V

r 2  y 2

h

 2 dy



c



r  y  dy 2

2



  r3 



r3 h3  r 2h  3 3

2r3

h3 3

3



c2

y3 3

  r2y 

x dx 

0

h



2 d x  



4

x dx 

0

 2x 

2 4 0

 8

Let 0 < c < 4 and set

r



x

275

r

 x2

2

c 0



c 2  4. 2

8

c  8  22

h



 r 2h 



Thus, when x  22, the solid is divided into two parts of equal volume.





c

(b) Set 

x dx 

0

  2r 3  3r 2h  h 3 3

8 (one third of the volume). Then 3

43  c 2 8 2 16 4  , c  , c  . 2 3 3 3 3



d

y

To find the other value, set  of the volume). Then

r

h

x dx 

0

16 (two thirds 3

32 46  d 2 16 2 32  , d  , d  . 2 3 3 3 3

x

The x-values that divide the solid into three parts of equal volume are x   43  3 and x   46  3.

52. y 

2.95,0.1x 



11.5

V

0

3

 2.2x 2  10.9x  22.2, 0 ≤ x ≤ 11.5 11.5 < x ≤ 15

0.1x 3  2.2x 2  10.9x  22.2  2 dx  





0.1x 4 2.2x 3 10.9x 2     22.2x 4 3 2

11.5 0

y 8



15

6

2.95 2 dx

11.5





  2.95 2x

4

15 2

11.5 x

 1031.9016 cubic centimeters

4

8

12

54. (a) First find where y  b intersects the parabola: b4

x2 4 z

x 2  16  4b  44  b 5

x  24  b

   

24b

V

0



 4

4



 4

0

4



0



x2 b 4



x2 b 4

2



4

dx 

24b



 b4

x2 4



2

dx

2

2

dx

x



x4 bx 2  2x 2   b 2  8b  16 dx 16 2



 80 

2x 3 bx 3   b 2x  8bx  16x 3 6



5

128 32 64 512  b  4b 2  32b  64   4b 2  b  3 3 3 15

x5

64





—CONTINUED—

4 0







2

4

y

16

276

Chapter 6

Applications of Integration

54. —CONTINUED—



(b) graph of Vb   4b 2 

64 512 b 3 15





(c) Vb   8b 

120



64 64 3 8   223 0 ⇒ b 3 8 3

V b  8 > 0 ⇒ b 

0

8 is a relative minimum. 3

4 0

Minimum Volume is 17.87 for b  2.67



10

56. (a) V 

 f x 2 dx

0

Simpson’s Rule: b  a  10  0  10, V 

n  10

 2.1 2  41.9 2  22.1 2  42.35 2  22.6 2  42.85 2  22.9 2  42.7 2  22.45 2  4 2.2 2  2.3 2 3  178.405  186.83 cm 3 3

(b) f x  0.00249x 4  0.0529x 3  0.3314x 2  0.4999x  2.112 6

0

10 0



10

(c) V 

 f x 2 dx  186.35 cm 3

0

1 58. V  1023  30 m3 2

60.

1 1 (b) Ax  bh   24  x 2 34  x 2  2 2

y 3

 3 4  x 2



1

2

V  3

x

−3

3

1 −1

2

4  x 2 dx



 3 4x 

−3

x3 3



2 2

Base of Cross Section  24  x 2 (a) Ax  b 2   24  x 2 



2 4 − x2

2

2 4 − x2

2

V

2

44  x 2 dx



 4 4x 



3 2

x 3

2



2 4 − x2

128 3 2 4 − x2

—CONTINUED—

2 4 − x2



323 3

Section 6.2

Volume: The Disk Method

60. —CONTINUED— 1 (d) Ax  bh 2

1 (c) Ax   r 2 2 

 2

V

 4  x 2  2  2 4  x 2 2



2

2

4  x 2 dx 



 x3 4x  2 3





2 2



1  24  x 2 4  x 2   4  x 2 2



2

16 3

V

2



4  x 2 dx  4x 

x3 3



2 2



32 3

4 − x2 2 4 − x2 2 4 − x2

62. The cross sections are squares. By symmetry, we can set up an integral for an eighth of the volume and multiply by 8. A y  b 2  r 2  y 2 



2 y

r

V8

x

r 2  y 2 dy

0





1 3 y 3

 8 r2y  

r 0

16 3 r 3

64. V  

 

R 2 r 2

R 2 r 2 R 2 r 2

 2

R 2  x 2  2  r 2 dx R

R 2  r 2  x 2 dx

0



 2 R 2  r 2 x 



 2  

R2





r 2 3 2

x3 3



r

R 2 r 2

0

R 2  r 23 2  3

R2 − r 2



R

4  R 2  r 2 3 2 3

  When a  2: x2   y2  1 represents a circle. (b) y  1  xa1 a

66. (a) When a  1: x  y  1 represents a square.



1

A2

1

1  xa1 a dx  4



1

1  x a1 a dx

y

1

a=1

−1

1

0

To approximate the volume of the solid, form n slices, each of whose area is approximated by the integral above. Then sum the volumes of these n slices.

a=2

−1

x

277

278

Chapter 6

Applications of Integration

Section 6.3

Volume: The Shell Method

2. px  x

4. px  x

hx  1  x

 

hx  8  x 2  4  4  x 2

1

V  2

 

2

x1  x dx

V  2

0

x4  x 2 dx

0

1

x  x2 dx  2

 2

0

 x2  3  2

x3

1 0



 3

2

 2

4x  x 3 dx

0



 2 2x 2 

6. px  x



8. px  x



6

0

0

 8



hx  4  2x

2

2

V  2

1 3 x dx 2

 

4 6

x   4

2

10. px  x

hx  4  x

1 hx  x2 2 V  2

x4 4

0

V  2

0





2 0

2

 8

 2

4x  2x 2 dx

0



y



2  2 2x 2  x 3 3

y 18

x4  2x dx

0

1  2 2x 2  x 4 4

 324

 

2

4x  x 3 dx

2 0



16 3

y

3

15 4

2

12 9

3

1

6 3 −1 −3

−2

x 1

2

3

4

5

6

2

x

−1

1

2 1 x

−1

12. px  x hx 

 



0

 2



x

2

 sinx x dx 

1





sin x dx  2 cos x

0

14. p y  y  p y ≥ 0 on 2, 0 h y  4  2  y  2  y

 

2

y2  y dy

 2



π 2

x

π

3π 4

−1

16. p y  y h y  16  y2

 

y 4

V  2

y16  y2 dy

0

3 2 1

4

0

2

 4

π 4

4

0

 2

3

3

0

V  2

2

y

sin x x

V  2

1

2y  y 2 dy

y 2

y3  3



0 2

8  3

 2

16y  y3 dy

0



y4  2 8y2  4



4 0

 2 128  64  128

x −1 −2 −3 −4

4

8

12

Section 6.3 20. px  6  x

18. px  2  x hx  4x  x  x  4x  2x 2

 

2

hx  x

2

2  x4x  2x 2 dx

V  2

6  x x dx

0

0

4

2

 2

 

4

2

V  2

Volume: The Shell Method

8x  8x 2  2x 3 dx

 2

6x 1 2  x 3 2 dx

0

0



8 1  2 4x 2  x 3  x 4 3 2



2 0



16 3





2  2 4x3 2  x5 2 5

y

4 0



192 5

y 4

4

3 3 2 2

1 x

1

1

2

3

4

5

−1 x

−1

1

−2

3

22. (a) Disk

(b) Shell

  5

V

y

10 , rx  0 x2

Rx 

10 x2

1

8

2

dx

5

2 −1

1

x3  100 3

 20 

x 1

−2

2

3

4

5

1

 



x

1

4

x4 dx

  5

V  2

6

5

 100

Rx  x, rx  0

10



10 dx x2

1 dx x

 

5

 20 ln x

1

5 1

 20 ln 5

100 1 496 1   3 125 15





(c) Disk 10 x2

Rx  10, rx  10 

 5

V



102  10 

1



200   100 3x x 

5

3

1



10 x2

 dx 2

1904  15 y

24. (a) Disk

(b) Same as part a by symmetry

Rx  a 2 3  x 2 3 3 2

y

(0, a)

rx  0

 

(0, a)

a

V

a

(a, 0)

a 2 3  x 2 3 3 dx

(−a, 0)

(a, 0)

x x

a

 2

a 2  3a 4 3x 2 3  3a 2 3x 4 3  x 2 dx

0



9 4 3 5 3 9 2 3 7 3 1 3 a x  a x  x 5 7 3



9 3 9 3 1 3 32 a 3 a  a  a  5 7 3 105

 2 a 2x   2 a 3 





a 0

(0, −a)

279

280

Chapter 6

Applications of Integration

z

26. (a)

(b)

z

(c)

z

2

2

2

5

x

x

x

5

5

a < c < b

−2



4

28. 2

y

5

2

x

0

2x dx

y

30. (a) 1

represents the volume of the solid generated by revolving the region bounded by y  x 2, y  0, and x  4 about the y-axis by using the Shell Method.



2



10

y



3 4 1 2 1 4

2

16  2y  dy   2

0

4  2y  dy 2

2

x 1 4

0

1 2

represents this same volume by using the Disk Method.

3 4



1

1

y

(b) V  2

4

x 1  x 3 dx  2.3222

0

3 2 1 x 1

2

3

4

5

−1

Disk Method

32. (a)

34. y  tan x, y  0, x  0, x 

y 4

 4

Volume  1

3

Matches (e)

2

y

1 x 1

2

3



3

(b) V  2

1

2

4

2x dx  19.0162 1  e 1 x

1

π 4

x

π 2

36. Total volume of the hemisphere is 12 43  r 3  23 3 3  18. By the Shell Method, px  x, hx  9  x 2. Find x0 such that

 

x0

6  2

x 9  x 2 dx

y

0

6

x0

9  x21 2 2x dx

0



2   9  x 2 3 2 3

1 x



x0 0

2  18  9  x 02 3 2 3

9  x 02 3 2  18 x0  9  18 2 3  1.460. Diameter: 2 9  18 2 3  2.920

2

−3 −2 −1 −1 −2 −3

1

2

3

y

Section 6.3



Volume: The Shell Method

r

38. V  4

r

R  x r 2  x 2 dx

 4 R



 4 R

2r  2 23 r

r



r

r2  x2 dx  4

r

2

2

x r 2  x 2 dx

r

 x 2 3 2



r r

 2 2 r 2R



abn  axn dx



xn1 xa n1

b

40. (a) Area region 

(c) Disk Method:

0

 

abn1

a



abn1





V  2



b

R1n 

0

b

 2a

bn1 n1

xbn  xn1 dx

0





1 n 1  abn1 n1 n1

 b2 x



b 2



n

 2a



2

 2a



R2n 

n 1 n→  n  1

(b) lim R1n  lim n→ 

xabn  axn dx

0

n n1 n  abnb n1

abn1

  b

abn

n2

abn2

n→ 



b 0

b2abn n→ 





n bn2  abn2 n2 n2

n n 2

(d) lim R2n  lim

lim abnb  

n→ 

xn2 n2





n n 2

n n 2  1

lim b2abn  

n→ 

(e) As n → , the graph approaches the line x  1.



4

42. (a) V  2

x f x dx

0



2 40 0  41045  22040  43020  0 34



20 5800  121,475 cubic feet 3

(b) Top line: y  50 

1 1 40  50 x  0   x ⇒ y   x  50 20  0 2 2

Bottom line: y  40 

 

20

V  2

0 20

 2

0



 2   2

0  40 x  20  2x  20 ⇒ y  2x  80 40  20





1 x  x  50 dx  2 2

 21 x

2

 

40

40



 50x dx  2



x3  25x 2 6

20 0

x 2x  80 dx

20

2x 2  80x dx

20



 2 



2x 3  40x 2 3

40 20

32,000  2   26,000 3  3 

 121,475 cubic feet (Note that Simpson’s Rule is exact for this problem.)

281

282

Chapter 6

Applications of Integration

Section 6.4

Arc Length and Surfaces of Revolution

2. 1, 2 , 7, 10

4. y  2x3 2  3

(a) d  7  1 2  10  2 2  10

y 



9

2 4 x 3 3

(b) y 

s

4 3



 272 1  9x 

9

3 2

0



1

1

 43

2

dx 

 53 x

7 1



 10

3 6. y  x2 3  4 2

2 823 2  1 54.929 27

8.

y  x1 3, 1, 27

   27

s

1

1

27



1



x1 

 32  23 x

1 4 1 x  4 2 2x

s





27

    2

1





0



14. (a) y 



1 x e  ex 2

 101 x



2 1



779 3.246 240

−5

dx

(b)

y  2x  1 1   y 2  1  4x 2  4x  1



1



2 0



L



1 1  e 2  2 3.627 2 e

(b)

y  

1 1  x 2

1   y 2  1 

y= 1 x+1

2  4x  4x 2 dx

L



1

0

(c) L 1.132

1 1  x 4

1

2

2

(c) L 5.653

5

−2

1 6x 3

2

0

1 ,0 ≤ x ≤ 1 1x

−1



5

2

e x  ex dx





−3



1 x  e  ex 2

2

5

2

1 2

 dx

12. (a) y  x 2  x  2, 2 ≤ x ≤ 1

2 1 x e  ex , 0, 2 1   y  2

  

1 4 1 x  4 2 2x

1 4 1 x  4 dx 2 2x

1

1 y  e x  ex , 0, 2 2

2



1 2 , 1, 2 2x 4

1   y 2 dx

1

1 y  e x  ex 2

s



2





2

4

a

 103 2  23 2 28.794

10.

12 x b

 1 3 2

2 3

y  1   y 2 



x2 3

x5 1  10 6x 3

dx

1 3

2  1 1 3 dx 3x

1

y

2

x2 3  1 dx x2 3

27

3  2

1  9x dx

0

7

s

y  3x1 2, 0, 9

1 dx 1  x 4

Section 6.4

16. (a) y  cos x, 

  ≤ x ≤ 2 2

Arc Length and Surfaces of Revolution

y  sin x

(b)

(c) 3.820

1   y 2  1  sin 2 x

2

L



y 

1 x

y = cos x −2

2

 2

 2

1  sin 2 x dx

−2

18. (a) y  ln x, 1 ≤ x ≤ 5

(b)

(c) L 4.367

2 −1

1   y 2  1 

6

1 x2

 5

L

1

1

−6

20. (a) x  36  y 2 , 0 ≤ y ≤ 3

(b)

dx 1  36  y 2 1 2 2y dy 2

y   36  x 2, 33 ≤ x ≤ 6



10

y

 

1

0

10

3



−5

(c) L 3.142  !

36  y 2 3

L −10

1 dx x2

0

y2 dy 36  y 2

6

36  y 2

dy

Alternatively, you can convert to a function of x. y  36  x 2 y 

dy x  dx 36  x 2



6

L

33

1  36 x x dx  

6

2

2

33

6 36  x 2

dx

Although this integral is undefined at x  0, a graphing utility still gives L 3.142.



 4

22.

0

1   dxd tan x 

y

2

dx 2

s 1

( π4 , 1(

y = tan x 1

Matches (e)

(0, 0)

π 4

x 3π 8

24. f x  x 2  4 2, 0, 4 (a) d  4  0 2  144  16 2 128.062 (b) d  1  0 2  9  16 2  2  1 2  0  9 2  3  2 2  25  0 2  4  3 2  144  25 2 160.151



4

(c) s 

1  4x x 2  4 2 dx 159.087

0

(d) 160.287

283

284

Chapter 6

Applications of Integration

26. Let y  ln x, 1 ≤ x ≤ e, y 

1 and L1  x

Equivalently, x  e y, 0 ≤ y ≤ 1,

 e

1

1

dx  e y, and L 2  dy

1 dx. x2



1



1

1  e 2y dy 

0

1  e 2x dx.

0

Numerically, both integrals yield L  2.0035 y  31  10e x 20  ex 20

28.

1 y   e x 20  ex 20 2



s





1 2

20

20





1 x 10 1 x 20 e  2  ex 10  e  ex 20 4 2

1   y 2  1 

 12 e

x 20



 ex 20

20

20

2

2

dx





e x 20  ex 20 dx  10e x 20  ex 20

20 20



 20 e 



1 47 ft e

Thus, there are 10047  4700 square feet of roofing on the barn. 30. y  693.8597  68.7672 cosh 0.0100333x y  0.6899619478 sinh 0.0100333x



299.2239

s

1  0.6899619478 sinh 0.0100333x 2 dx 1480

299.2239

(Use Simpson’s Rule with n  100 or a graphing utility.) 32.

34. y  2x

y  25  x 2 y  1   y 2 

x

 

3 4



3



S  2



 

1  1x dx

2x

9

25 dx 25  x 2

 5 arcsin  5 arcsin

, 4, 9

4

 4

x 5



8   x  1 3 2 3

4



3

  7.8540

4 3  arcsin  5 5

1 2 5 7.8540  s 4

x  1 dx

4

5 dx 25  x 2



1 x

9

25 25  x 2 4

s

y 

25  x 2



9 4

8 3 2 10  53 2 171.258 3

Section 6.4

36.

y

x 2

y 

1 2

y  2x

3

S  2



x 2

0

40.

1   y 2 

x1  4x2 dx

0



54 dx

25 2 x 8



6 0



 4

3

1  4x2 1 2 8x dx

0

 6 1  4x 

3

2 3 2

0

 95 



y  ln x y 

 

S  2

6



 3 2 37  1 117.319 6

42. The precalculus formula is the distance formula between two points. The representative element is

1 x

xi 2  yi 2 

 

y 1  x   xi. i

2

i

x2  1 , 1, e x2

x x 1 dx

e

S  2

2

x

1

2

e

 2

x 2  1 dx 22.943

1

44. The surface of revolution given by f1 will be larger. rx is larger for f1. 46. y  r 2  x 2 y  1   y 2 

285

38. y  9  x2, 0, 3

5 1   y 2  , 0, 6 4



Arc Length and Surfaces of Revolution

48. From Exercise 47 we have: S  2

 

r

 2

r



a

 r

0

r

r

r

rx

r 2  x 2



r2 2



r dx  2 rx



r r

x2

dx

 4 r2

dx

r 2  x 2

0

r2 r2  x2

S  2



a

x r 2  x 2

2x dx r 2  x 2





 2rr 2  x 2 

2r 2



2rr 2

a 0

 a2

 2r  r  r 2  a 2  2 rh where h is the height of the zone y

r

h r−h

x

x2 + y2= r2

286

Chapter 6

Applications of Integration

50. (a) We approximate the volume by summing 6 disks of thickness 3 and circumference Ci equal to the average of the given circumferences: 6

 r

V

i

   2 3  4  C 6

3 

2

i1

Ci

2

6

3

i

i1

2

i1

 50 2 65.5  65.5 2 70  70 2 66  66 2 58  58 2 51  51 2 48  2

2

2

2



3 4



3 57.75 2  67.75 2  68 2  62 2  54.5 2  49.5 2 4

2

2

3 21813.625  5207.62 cubic inches 4 (b) The lateral surface area of a frustum of a right circular cone is sR  r . For the first frustum, 



S1  32  

65.52 50   250  65.5 2  2 1 2

50 2 65.59  65.52 50 

r s

2 1 2

h

.

Adding the six frustums together, S

R

50 2 65.59  15.5 2  

2 1 2



65.5 2 709  4.5 2  

2 1 2

70 2 669  24 



66 2 589  28 

58 2 519  27 



51 2 489  23 

2 1 2

2 1 2

2 1 2





2 1 2

224.30  208.96  208.54  202.06  174.41  150.37  1168.64

 

18

(c) r  0.00401 y 3  0.1416 y 2  1.232 y  7.943

(d) V 

 r 2 dy 5275.9 cubic inches

0

20

18

S

2 r  y 1  r y 2 dy

0

1179.5 square inches −1

19 −1

52. Individual project, see Exercise 50, 51.

54. (a)

1  x9 , 0 ≤ x ≤ 3

x2 y2  1 9 4

1  x9

2

Ellipse: y1  2 y2  2

2

(b) y  2

1  x9

2

y  2

2x



1  9

x2

9

4

−5

2 1 2

121  x9  2x 9 

5

L

 3

0

1



2x 39  x2

4x2 dx 81  9x2

2

x2 + y = 1 9 4 −4

(c) You cannot evaluate this definite integral, since the integrand is not defined at x  3. Simpson’s Rule will not work for the same reason. Also, the integrand does not have an elementary antiderivative. 56. Essay

Section 6.5

Section 6.5

Work 4. W  Fd  92000  2 5280  47,520,000 ft  lb

2. W  Fd  28004  11,200 ft  lb



Work

1

b

6. W 

Fx dx is the work done by a force F moving an object along a straight line from x  a to x  b.

a

 

9

8. (a) W 

0

7

(b) W 



10. W 

0

9

20 dx 

0



10

6 dx  54 ft  lbs



5 5 2 x dx  x 4 8

6

 lb 3.33 ft  lb

 40 in

10x  90 dx  140  20

10

7

 160 ft  lbs

 

9

(c) W 

0

1 2 x3 x dx  27 81

9

(d) W 



9

2 32 x 3

x dx 

0

 9 ft  lbs

0



9



0

2 27  18 ft  lbs 3

12. Fx  kx

14. Fx  kx

800  k70 ⇒ k 



70

W



80 7

70

Fx dx 

0

0



16



kx dx 

0

kx 2 2

524

W





540x dx  270x 2

16



4

80 40x 2 x dx  7 7



W2

70

16 0

524 16





15x dx  15x 2

0

0

4 0

 240 ft  lb

 cm  280 Nm

 28000 n

16. W  7.5 

15  k1  k

k ⇒ k  540 72



h

18. W 



80,000,000 80,000,000 dx   2 x x 4000

 4.21875 ft  lbs





h 4000

80,000,000  20,000 h

lim W  20,000 miton 2.1  1011 ft  lb

h→ 

20. Weight on surface of moon: 16 12  2 tons Weight varies inversely as the square of distance from the center of the moon. Therefore, Fx  2

k x2 k 1100 2

k  2.42  10 6



1150

W

1100

2.42  10 6 2.42  10 6 dx  x2 x





1150 1100

 2.42  10 6

1 1  1100 1150

95.652 mi  ton 1.01  10 9 ft  lb

287

288

Chapter 6

Applications of Integration

22. The bottom half had to be pumped a greater distance then the top half. 24. Volume of disk: 4 y Weight of disk: 98004 y Distance the disk of water is moved: y W



12

y98004 dy  39,200

10

2

12

y2

10

 39,200 22  862,400 newton–meters

26. Volume of disk: 

23 y y 2

Weight of disk: 62.4

y 7

23 y y 2

5 4 3 2

Distance: y 4 (a) W  62.4 9 (b) W 

4 62.4 9

 

x

2

y3

0

28. Volume of each layer:





4 1 dy  62.4 y 4 9 4

6

4

y 3 dy 

2 0

49 62.4 14 y

6

4

4

110.9 ft  lb

y3 3 y  y  3 y 3

Distance: 6  y



−4 −3 −2 −1

2

4

3

y 4

(2, 3) 3



3

1

7210.7 ft  lb

Weight of each layer: 55.6y  3 y

W

y

2

3

55.66  yy  3 dy  55.6

0

18  3y  y2 dy

1

y = 3x − 3

0

x



 55.6 18y 

3y2 2



1



2

3

4

y3 3 3

0

 3252.6 ft  lb 30. Volume of layer: V  122254  y 2 y

y

Weight of layer: W  4224254  y 2 y

Ground

12

level

Distance:



6

19 y 2

 19 25  1008    y 2 4 2.5

−y x

2.5

W

19 2

3 −9 −6 −3 −3

25 19  y2  y dy 4 2

4224

2.5

2.5



2.5

2

dy 

2.5

3

6

9

−6

254  y y dy 2

The second integral is zero since the integrand is odd and the limits of integration are symmetric to the origin. The first integral represents the area of a semicircle of radius 52 . Thus, the work is W  1008

192  52 12  29,925 ft  lb 94,012.16 ft  lb. 2

Section 6.5

Work

32. The lower 10 feet of chain are raised 5 feet with a constant force. W1  3105  150 ft  lb The top 5 feet will be raised with variable force. Weight of section: 3 y Distance: 5  y



5

W2  3

0





3 5  y dy   5  y 2 2

W  W1  W2  150 

5 0



75 ft  lb 2

75 375  ft  lb 2 2

34. The work required to lift the chain is 337.5 ft  lb (from Exercise 31). The work required to lift the 500-pound load is W  50015  7500. The work required to lift the chain with a 100-pound load attached is W  337.5  7500  7837.5 ft  lbs



6

36. W  3

0





3 12  2y dy   12  2y 2 4

6 0



3 12 2  108 ft  lb 4

38. Work to pull up the ball: W1  50040  20,000 ft  lb

40.

p

Work to pull up the cable: force is variable 2500 

Weight per section: 1 y



40

0

k ⇒ k  2500 1



3

Distance: 40  x W2 

k V

W





1 40  x dx   40  x 2 2

1

40





2500 dV  2500 ln V V

3 1

 2500 ln 3 2746.53 ft  lb

0

 800 ft  lb W  W1  W2  20,000  800  20,800 ft  lb 42. (a) W  FD  80002  16,000 ft  lbs (b) W

20 0  420,000  222,000  415,000  210,000  45000  0 36

24,88.889 ft  lb (c) Fx  16,261.36x 4  85,295.45x 3  157,738.64x 2  104,386.36x  32.4675 25,000

0

2 0

(d) Fx  0 when x 0.524 feet. F x is a maximum when x 0.524 feet.



2

(e) W 

0

 4

44. W 

0

Fx dx 25,180.5 ft  lbs

ex  1 dx 11,494 ft  lb 100 2



2

46. W 

0

1000 sinh x dx 2762.2 ft  lb

289

290

Chapter 6

Section 6.6 2. x 

Applications of Integration

Moments, Centers of Mass, and Centroids

73  42  35  86 17  7438 11

4. x 

126  14  62  30  118 0 12  1  6  3  11

8. 200x  5505  x (Person on left)

6. The center of mass is translated k units as well.

200x  2750  550x 750x  2750 x  323 feet

10.

101  25  54 0 x 10  2  5 y

12.

x

101  25  50 0 10  2  5

 x, y   0, 0

y

y

15 6  152 2 93 62   15 40.5 27  15 12  6  2

122  61 

15 8  152 2 96 64   15 40.5 27  15 12  6  2

123  65 

8 6

m2 (5, 5)

4

m3 (− 4, 0)

x, y 

2

64 , 62 27 27 

y

−4

m3 (6, 8)

8 x

−2

m1 4 (1, −1)

−2

6

6

m2 (− 1, 5)

m1 (2, 3)

2

x −2

2 −2

 

2

14.

m

0

1 1 2 x 2 2

0

 2

x

0

x

x, y 

0

4   3

y

2

2

4  5 Mx 3 y   m 4 5  3 My  

2

 12x  dx  8  x

2

Mx  

 

1 2 x3 x dx   2 6



1 1 2 x dx   2 2

2 My 3   m 4 2  3

32, 35

4

dx 

 40 x 

2

5

0

0



32 4   40 5

2

1

( 32 , 35 ) x 1



2

0

x3 dx 



 8x 

2

4

0

 2

2

m4 (2, − 2)

6

8

Section 6.6

  1

m

16.



x  x dx  

0

1

Mx  

 23 x

  x  x dx  

2

2





1

0



1 0



 6

y 1

 x2 x3  dx   2 2 3

1

x 



x2

0



  12 0 1

3 4 1 2

Mx 1  6   m 12  2

My  



x2 2



x  x

0

y

3 2

Moments, Centers of Mass, and Centroids

( x, y )



1 4

1

x  x  x dx  

x 3 2  x 2 dx  

0

 25 x

5 2



x3 3



1 0



 15

x 1 4

My 2  6 x   m 15  5



25 , 12

 x, y  

  9

18. m  

0

 23x



3 2

 

9 x

Mx  

0

  2 

9

0





x2 9 6

13x  1 dx    x  31x dx 9



x  1 

0



  18 

0

1 1 x1 1 3  x  1  x  1 dx  2 3 2











9 0

9

0











1 x x  1  x  1 dx   3

 9

0

81  81    486 5 5

185, 25

y 5

(9, 4)

4 3

(185, 52 )

2 1 −2

(0, 1) x

−1

2

4

6

8

10

9

1 3

x  x  2

0

9

0

 x  31x dx 

1 1 x  x2  2 x dx 3 9

45  27  27  36   2 2 3

81 45   5 4 My 18 Mx 5 x   ;y   m 9 5 m 9 2   2 2

x, y 

 

1 1 1 2  x  x3 2  x3 2  x2  2 x  x dx  3 3 9 3 2

 x2 x3 4   x3 2 2 6 27 3

My  



27 9   2 2







1 2 1 x3 2  x2 dx   x5 2  x3 3 5 9



9 0

1 2

3 4

1

291

292

Chapter 6

20.

m  2

Applications of Integration



8





3 4  x 2 3 dx  2 4x  x 5 3 5

0

8



0

128 5

y 12

By symmetry, My and x  0.

 8

Mx  2

0

8

4  x 2 3 3 4  x 2 3 dx   16x  x 7 3 2 7







8 0

512 5 20 y  7 128 7





20 7

 x, y   0 ,

 

−8



m



2y  y 2 dy   y 2 

2

0



y3 3

2



0

4 3

2y  y 2  4y 3 y5 2y  y 2 dy   y4  2 2 3 5







2 0



8 15

2

( x, y ) 1

 



2

y 2y  y 2 dy  

0



2y 3 y 4  3 4

0



x

4 3

1

25 , 1

m

  

1

 y  2  y 2 dy  

 y2  2y  y3 

3 2

2

1



9 2

 2



 y  2  y 2  y  2  y 2 dy 2 1 2

1

 y  2 2  y 4 dy 

2

  y  2 3 y 5  2 3 5





2 1



36 5

My 36 2 8   m 5 9 5

x

 

 

1

y  y  2  y 2 dy

2



 

 85 , 12

    4

A

1

Mx 

1

4

My 

x

1

 

1 dx  ln x x 4

1 2

y3 y4  3 4

Mx 9 2 1   m 4 9 2

y

26.

1



2y  y 2  y 3 dy   y 2 

4 1

 ln 4

     8  2  8

1 1 1 dx   x2 2 x



1 dx  x x

4 1

4 1

3

1

1

3



2 1



9 4

( x, y )

1

x 1 −1

2

Mx  

y 3

2

My  

 x, y  

2

 

2

24.



2

Mx 4 3  1 m 3 4

y

 x, y  

8

y

My 8 3 2   x m 15 4 5 Mx  

4



0

My  

x

−4 −4

2

22.

( x, y )

512  7

2

3

4

Section 6.6

  2

28.

A Mx 

2



2

 x 2  4 dx  2

0

2

1 2

2



x 2  44  x 2 dx  





2

1 x 5 8x 3   16x 2 5 3



4  x 2 dx  8x 



2

1 2



2x 3 3



2 0

Moments, Centers of Mass, and Centroids

 16 

16 32  3 3

2

x 4  8x 2  16 dx

2

5

32





64 256  32   3 15

My  0 by symmetry.

   4

30. m  

3

xex 2 dx  2.3760

0

4

Mx  

0

xex 2  xex 2 dx  2 2





( x, y )

4

dx  0.7619

x 2ex

−1 −1

4

My  

5

0

x 2ex 2 dx  5.1732

0

x

My  2.2 m

y

Mx  0.3 m

Therefore, the centroid is 2.2, 0.3.

 

2

32. m  

2

8 dx  6.2832 x2  4

2

Mx  



1 8 2 2 2 x  4

x

3



8 dx  32 4

2



2

2

1 dx  5.14149 x 2  4 2

−3

3

Mx y  0.8 m

−1

x  0 by symmetry. Therefore, the centroid is 0, 0.8. 34.

A  bh  ac 1 1  A ac x

 y

 x, y  

   c

1 1 ac 2

1  2ac

y

0 c

0

y= c x b

b ya c





0

y



c 0



dy

( x, y ) y = c (x − a ) b x

(0, 0)

1 1 abc  a 2c  b  a 2ac 2

  

b b ya  y c c

(a + b, c)

(b, c)

2





c

b y c



2ab y  a 2 dy c

1 ab 2 y  a 2y 2ac c 1 ac

   2

dy 

  1 y2 c 2

b 2 a , 2c 

This is the point of intersection of the diagonals.

c 0



c 2

(a, 0)

293

294

Chapter 6

Applications of Integration

36. x  0 by symmetry

y

1 A   r2 2

r

2 1  A  r2 y 



r

2 1  r2 2

r





1 x3 2 2 r x  r 3



4r 3

 x, y   0,



r r



 

1 4r 3 4r   r2 3 3



1

38.

A

1 3

1  2x  x 2 dx 

0

1 3 A

  

1

x3

1  2x  x 2 3 1  2x  x 2 dx  2 2

0

 x, y  

3 2

x  2x 2  x 3 dx  3

0

1





1

x 1  2x  x 2 dx  3

0

y3

x

r

 r 2  x 2  2 dx

1

1  4x 2  4x 3  x 4 dx 

0



 x2  32 x 2

3



x4 4



1 0



1 4

1

1  2x  x 2 2 dx

0



3 4 x5 x  x3  x4  2 3 5



1 0



7 10

14, 107 

40. (a) M y  0 by symmetry My 



b b because there is more area above y  2 2 than below.

(b) y >

2n

b

 2n b

x b  x 2n dx  0

because bx  x 2n1 is an odd function.



b  x2nb  x2n dx  (c) M x  2  2n b 

2n

b



1 2 x 4n1 b x 2 4n  1

 b 2 b 1 2n 







(d)

b

1 2 b  x 4n dx 2  2n b



y

 b 1 2n 

2

3

4

y

5 9b

7 13 b

9 17 b

2n

b

(e) lim y  lim

2n b

n→ 



x 2n1 A b  x 2n dx  2 bx  2n 1  2n b 2 b

1 3 5b

b

b 4n1 2n 4n  b 4n1 2n 4n  1 4n  1

2n

n

2n



n→ 

2n  1 1 b b 4n  1 2

(f) As n → , the figure gets narrower. y

2n

y = x 2n

b

0

b 2n1 2n 4n  b 2n1 2n 2n  1 2n  1



Mx 4n b 4n1 2n 4n  1 2n  1   b A 4n b 24n1 2n 2n  1 4n  1

y=b x



2n

b

2n

b

Section 6.6

Moments, Centers of Mass, and Centroids

295

42. Let f x be the top curve, given by l  d. The bottom curve is dx. x

0

0.5

1.0

1.5

2.0

f

2.0

1.93

1.73

1.32

0

d

0.50

0.48

0.43

0.33

0



2

(a) Area  2

(b) f x  0.1061x 4  0.06126x 2  1.9527

f x  dx dx

0

2 

dx  0.02648x 4  0.01497x 2  .4862

2 1.50  4 1.45  21.30  4 .99  0 34

1 13.86  4.62 3

 

y

(c)

Mx 4.9133   1.068 A 4.59998

 x, y   0, 1.068

f x  dx  f x  dx dx 2 2 2

Mx 

2



f x 2  dx 2 dx

0



2 3.75  4 3.4945  22.808  4 1.6335  0 34

3

f

1  29.878  4.9797 6 y

d −2

Mx 4.9797   1.078 A 4.62

2 0

 x, y   0, 1.078 44. Centroids of the given regions:

12, 32, 2, 12, and 72, 1

Area: A  3  2  2  7

 x, y  

33 2  21 2  21 15 2 15   7 7 14

2

m1 m3

m2 1

x 1

2

3









y



7 7 287 55 6  , P  0, 8 8 64 2 16



5 4 3

By symmetry, x  0. y

4

15 , 25 14 14 

7 7 7 46. m1  2  , P1  0, 8 4 16 m2 

4 3

31 2  22  27 2 25 2 25   x 7 7 14 y

y

2

7 47 16  287 6455 16 16,569 5523   7 4  287 64 6384 2128



 x, y   0,

m2



5523  0, 2.595 2128

m1 − 23

−1

− 21

x 1 2

1

3 2

296

Chapter 6

Applications of Integration

48. Centroids of the given regions: 3, 0 and 1, 0

50. V  2 rA  2 34  24 2

Mass: 8   y0 x

 x, y  

 

81  3 8  3  8 8

883 , 0  1.56, 0

6

52.

A

2



6

My 



4 2 x  2 dx  x  23 2 3

6



2

32 3

y

6

6

x2 x  2 dx  2

2

x x  2 dx

Let u  x  2, x  u  2, du  dx:





4

My  2

4

u  2 u du  2

0

 645  323 

2 x

2

 5u

u3 2  2u1 2 du  2

0

(6, 4)

4

2

2

5 2



4  u3 2 3

( x, y )

4 0

x 2

4

6

704 15

My 704 15 22   A 32 3 5

rx

22 5

V  2rA  2

  294.89 225323  1408 15

54. A planar lamina is a thin flat plate of constant density. The center of mass x, y is the balancing point on the lamina.

56. Let R be a region in a plane and let L be a line such that L does not intersect the interior of R. If r is the distance between the centroid of R and L, then the volume V of the solid of revolution formed by revolving R about L is V  2rA where A is the area of R. 58. The centroid of the circle is 1, 0. The distance traveled by the centroid is 2. The arc length of the circle is also 2. Therefore, S  22  4 2. y 2

C

1

d x

−1

1 −1 −2

3

Section 6.7

Section 6.7

Fluid Pressure and Fluid Force

Fluid Pressure and Fluid Force

2. F  PA  62.4516  4992 lb

4. F  62.4h  448  62.4h48  62.4448  11,980.8 lb

6. h y  3  y

8. h y  y L y  2 4  y 2

4 L  y  y 3 F  62.4



0



3

0

4  62.4 3

F  62.4



4 3  y y dy 3





 62.4

3

3y  y 2 dy

0



y2 4  y 2 dy

2

23 4  y  

0

2 3 2

2

 332.8 lb

y



y3 3

3y 2

4  62.4  3 2 3

 374.4 lb

0

1 x −1

Force is one-third that of Exercise 5.

1

y −3

4

2 1 x −2

−1

1

2

10. h y  y

y x

4 L y  9  y 2 3

−1

1 −1



0

F  62.4

−2

4 y 9  y 2 dy 3 3

 62.4







0

2 3

3

−4

9  y 2 1 22y dy



4  62.4 9  y 2 3 2 9

0 3

 748.8 lb

12. hy  1  3 2   y

y

1+ 3 2

L1y  2y lower part L2y  23 2  y upper part

  

3 2 2

F  29800

0

 19,600

 19,600

y2 2

1  3 2  yy dy 

 3 2y 

y3 3 2 2 3



3 2 2

  

3

1  3 2  y3 2  y dy

 3 2y  18y 

0

9 2 2  1 9 2  1  4 4

 44,1003 2  2 Newtons

  



3 2

3 2 3 2 2

y3 3



6 2  1 y 2

3 2

3 2 2

3 −3

−2

−1

x 1

2

3

297

298

Chapter 6

Applications of Integration 16. h y  y

14. h y  6  y L y  1



L y  2

5

F  9800

16  y dy



y  9800 6y  2



0

2



0

0 2 5

43 9  y

F  140.7  171,500 Newtons

y

3

y2



43 9  y dy 2



140.74 3



 140.73 4 23 9  y  

6

0

3

9  y 2 2y dy 0

2 3 2

3

 3376.8 lb

y 2 x −3 −2 −1

1

2

x

3

−2

2

−4 −6

18. h y  y

y 1

5 L  y  5  y 3

  0

F  140.7

 140.7

x −1

5 y 5  y dy 3 3

−2

0

−5

3









20. h y 

4

6

(5, −3)



0 3

 452  15  1055.25 lb

3 y 2

L  y  2

12 9  4y



3 2

F  42

3

−4

5 5y  y2 dy 3

5 5  140.7  y2  y3 2 9  140.7

−3

2

3 2

2

32  y 9  4y



3 2

2

dy  63

3 2

9  4y 2 dy 

21 4



3 2

3 2

9  4y 2 8y dy

The second integral is zero since it is an odd function and the limits of integration are symmetric to the origin. 3 The first integral is twice the area of a semicircle of radius 2 .

 9  4y 2  2 9 4  y 2  9 Thus, the force is 63 4   141.75 445.32 lb. 22. (a) F  wk r2  62.47 22  1747.2 lbs (b) F  wk r2  62.4532  2808 lbs

24. (a) F  wkhb  62.4

112 35  5148 lbs

(b) F  wkhb  62.4

175 510  10,608 lbs

Review Exercises for Chapter 6 26. From Exercise 21: F  64 15 

12  753.98 lb 2

28. h y  3  y

30. h y  12  y

Solving y  5x 2 x 2  4 for x, you obtain x  4y 5  y.



L y  2

L y  2

716  y 2

2



 716  y 2

4

F  62.4

4y 5y

  3

F  62.4 2

 y 3  y dy  546.265 lb 5y

3  y

0

3

 2124.8

0

12  y716  y 2 dy

0

4y dy 5y



4

 62.47

12  y16  y 2 dy  21373.7 lb

0

y

10 8

y

6 5 4 x −6 −4 −2

2

2

4

6

1 x −3 −2 −1 −1

1

2

3

32. Fluid pressure is the force per unit of area exerted by a fluid over the surface of a body.

34. The left window experiences the greater fluid force because its centroid is lower.

Review Exercises for Chapter 6



5

2. A 

1 2





 4x 

1 x





5 1 2



  

1

1 dx x2

4

4. A 

 y 2  2y  1 dy

0 1

81 5



 y 2  2y  1 dy

0

y

1



6

 y  1 2 dy

0

5

( 21 , 4 )

(5, 4)



3



 y  13 3



1 0



1 3

2

y

1

( 5, 251 ) 1

2

3

4

x

6 3 2

(−1, 1)

1 1 2

−2

− 23

− 21

x

299

300

Chapter 6

 

Applications of Integration

2

6. A 

 y  3   y 2  1 dy

1

8. A  2

2







1 1  2y  y 2  y 3 2 3

2 1

2

 6

2  csc x dx



2  y  y 2 dy

1



 2

  6



 2 2x  ln csc x  cot x 



9 2

 2   0 

y

2

3

3  ln 2  3  

23  ln 2  3   1.555

(5, 2) 2

y 3

1

( π6 , 2 )

x 2

3

4

5

( 5π6 , 2)

−1

(2, −1)

−2

1

10. A 



5 3

 3

12  cos y dy   cos y  21 dy

x 2π 3

5π 6

7 3

5 3





y  sin y  2

5 3

 3



y  sin y  2



7 3 5 3

   23 3

12. Point of intersection is given by: x3  x2  4x  3  0 ⇒ x  0.783.

3  4x  x 2  x 3 dx

0





1 1  3x  2x 2  x 3  x 4 3 4

3

0.783 0

 1.189

( 21 , 7π3 ) ( 21 , 5π3 )

2



0.783

A

y

4

( 21 , π3 ) −2

π 2

π 3

π 6

−1

3

x

−1

−2 (.7832, .4804)

2

 

2

14. A  2

2x 2  x 4  2x 2 dx

16. y  x  1 ⇒ x  y 2  1

0 2

2

4x 2  x 4 dx

y

0

x1 ⇒ x  2y  1 2

 

2



4 1  2 x3  x5 3 5



2 0

128   8.5333 15

A

5



10

(−2, 8)

x  1 

1

(2, 8)

 −4

2y  1   y 2  1 dy

0

23 x  1

x1 dx 2





1  x  1 2 4

3 2

4 y −2

(0, 0) 3

(5, 2) 2 1 x

(1, 0) 2 −1 −2

3

4

5

5 1



4 3

Review Exercises for Chapter 6





1

18. A 

5

2 dx 

0

1

2  x  1 dx

301

y 5

x  y2  1



4

2

A

3

 y 2  1 dy

(5, 2)

0



3 y 1

3



y

2 0



14 3

1

(1, 0) x 2

20. (a) R1t  5.28341.2701t  5.2834 e0.2391t

3

4

5

(b) R2t  10  5.28 e0.2t



15

40

Difference 

R1t  R2t dt  171.25 billion dollars

10

0

10 0

22. (a) Shell



(b) Shell

2

V  2

y 3 dy 

0

 4 y 2



2 0

 

2

 8

V  2

2  yy 2 dy

0 2

 2

y

2y 2  y 3 dy

0

4

 2

3

23 y

3



1  y4 4

2 0



8 3

2 y 1 4 x 1

2

3

4

3

1 x 1

(c) Disk



(d) Disk

2

V

y 4 dy 

0

 5 y 5



2 0



32 5

 

3

4

2

V

 y 2  1 2  12 dy

0 2



y

2

 y 4  2y 2 dy

0

4



3

15 y

5



2  y3 3

2 0



176 15

2 y 1

5 x 1

2

3

4

4 3 2 1 x 1

2

3

4

302

Chapter 6

24. (a) Shell

Applications of Integration (b) Disk



a

V  4

b x a 2  x 2 dx a

0



2 b a



a 2  x 2 1 22x dx

2 b 2 2 1 a x  x3 a2 3





0

43ab a



2



 x 2 3 2

0

b2 2 a  x 2 dx a2

0

a

a



a

V  2

4   a 2b 3

V  2

1 1  x 2

0





 2 arctan x  2 



2 x2 + y =1 a2 b2

(0, b)

x

x

(a, 0)

(a, 0)

28. Disk



0

y 2 x2 + y =1 a2 b2

(0, b)

1

a

4   ab 2 3

y

26. Disk



 

1

2

dx

V

ex 2 dx

0 1

1



0

0

4  0



 e2x dx   e 2x 2





1 0

2e  2   2 1  e1  2

2 2

2

y

1

y 3 2

x 1

−2

x

−1

1

2

−1

30. (a) Disk

 

(b) Shell

0

V 

1 0 1

x 2x  1 dx

u  x  1

y

x  u2  1



x3





x4 x3   4 3



 dx

x2

  12 1 0

  

x

−1

dx  2u du 0

V  2

1

x 2x  1 dx

−1

1

y

 4

u 2  1 2 u 2du

0

x

−1

1

 4

u 6  2u 4  u 2 du

0

−1

 4

17 u

7



2 1  u5  u3 5 3

1 0



32 105

Review Exercises for Chapter 6 1 1 32. Ax  bh   2a 2  x 2 3a 2  x 2  2 2

34.

 3 a 2  x 2



 3

a

1 x3  6 2x

1 1 y  x 2  2 2 2x

a

V  3

y

303



a 2  x 2 dx  3 a 2x 

x3 3



a a

4a3 

1   y  2 

3

12 x

 3

s

1



2

1 2x 2



2





1 1 1 2 1 x  2 dx  x 3  2 2x 6 2x



3 1



14 3

Since 43 a 3 3  10, we have a 3   53  2. Thus, a

5 2 3  1.630 meters. 3

2 a 2− x 2



2 a 2− x 2

2 a 2− x 2

36. Since f x  tan x has f x  sec 2 x, this integral represents the length of the graph of tan x from x  0 to x   4. This length is a little over 1 unit. Answers (b).

38. y  2x y 

1 x

1   y  2  1 

1 x1  x x



x x 1 d x  4 

3

S  2

3

2x

0

 4

40. F  kx



0

3

3 2

0



56 3

8 dV 4 gal min  12 gal min  ft3 min  dt 7.481 gal ft3 7.481

50 9

50 x 9 9

W

 23x  1

42. We know that

50  k9 ⇒ k  F

x  1 dx

0

V   r 2h  





50 25 2 x dx  x 9 9

 225 in

9 0

 lb  18.75 ft  lb

19 h

dV  dh  dt 9 dt

   





dh 9 dV 9 8     3.064 ft min. dt  dt  7.481 Depth of water: 3.064t  150 150  49 minutes 3.064 4912  588 gallons pumped

Time to drain well: t 

Volume of water pumped in Exercise 41: 391.7 gallons 391.7 588  52 x x

58852  78 391.7

Work  78 ft  ton

304

Chapter 6

Applications of Integration

44. (a) Weight of section of cable: 4 x Distance: 200  x



200

W4





200  x dx  2200  x 2

0

200 0

 80,000 ft  lb  40 ft  ton

(b) Work to move 300 pounds 200 feet vertically: 200300  60,000 ft  lb  30 ft  ton Total work  work for drawing up the cable  work of lifting the load  40 ft  ton  30 ft  ton  70 ft  ton



b

46.

W

Fx dx

a

Fx 

x  6, 2 9 4 3x  16,

 9

W

0 ≤ x ≤ 9 9 ≤ x ≤ 12



12



2  x  6 dx  9

0



9

  32 x

1   x 2  6x 9

9

2

0

 34 x  16 dx

 16x

12 9

 9  54  96  192  54  144  51 ft  lbs



3

48.

A

3 1  A 32 x





1 2x  3  x 2 dx  x 2  3x  x 3 3 1

3 32



3

1

x2x  3  x 2 dx 

323  12 

3 32



1







17  x, y   1, 5

3 1



32 3

3x  2x 2  x 3 dx 

1

2x  3 2  x 4 dx 

3 4 1  9x  6x 2  x 3  x 5 64 3 5

1

3

3

y

3

3 64







3 3 2 2 3 1 4 x  x  x 32 2 3 4

3

1

1

3

1

y

9  12x  4x 2  x 4 dx 9

17  5

6

( x, y )



3

x

−3

 8

50.

A

0

5 1  A 16 x

5 16







8

16 5

y 6

0

( x, y )





1 x x 2 3  x dx 2



165  12  x 8

4 3

0

 x, y  

0



2





8

6

4

5 3 8 3 1 3 x  x   16 8 6 y



3 1 1 x 2 3  x dx  x 5 3  x 2 2 5 4

3

  37 x

1 5 2 16

40 103 , 21 

7 3



8

x 2 −2

10  3

0



1  x 2 dx 4



1 3 x 12

8 0



40 21

4

6

8

Review Exercises for Chapter 6 26. From Exercise 21: F  64 15 

12  753.98 lb 2

28. h y  3  y

30. h y  12  y

Solving y  5x 2 x 2  4 for x, you obtain x  4y 5  y.



L y  2

L y  2

716  y 2

2



 716  y 2

4

F  62.4

4y 5y

  3

F  62.4 2

 y 3  y dy  546.265 lb 5y

3  y

0

3

 2124.8

0

12  y716  y 2 dy

0

4y dy 5y



4

 62.47

12  y16  y 2 dy  21373.7 lb

0

y

10 8

y

6 5 4 x −6 −4 −2

2

2

4

6

1 x −3 −2 −1 −1

1

2

3

32. Fluid pressure is the force per unit of area exerted by a fluid over the surface of a body.

34. The left window experiences the greater fluid force because its centroid is lower.

Review Exercises for Chapter 6



5

2. A 

1 2





 4x 

1 x





5 1 2



  

1

1 dx x2

4

4. A 

 y 2  2y  1 dy

0 1

81 5



 y 2  2y  1 dy

0

y

1



6

 y  1 2 dy

0

5

( 21 , 4 )

(5, 4)



3



 y  13 3



1 0



1 3

2

y

1

( 5, 251 ) 1

2

3

4

x

6 3 2

(−1, 1)

1 1 2

−2

− 23

− 21

x

299

300

Chapter 6

 

Applications of Integration

2

6. A 

 y  3   y 2  1 dy

1

8. A  2

2







1 1  2y  y 2  y 3 2 3

2 1

2

 6

2  csc x dx



2  y  y 2 dy

1



 2

  6



 2 2x  ln csc x  cot x 



9 2

 2   0 

y

2

3

3  ln 2  3  

23  ln 2  3   1.555

(5, 2) 2

y 3

1

( π6 , 2 )

x 2

3

4

5

( 5π6 , 2)

−1

(2, −1)

−2

1

10. A 



5 3

 3

12  cos y dy   cos y  21 dy

x 2π 3

5π 6

7 3

5 3





y  sin y  2

5 3

 3



y  sin y  2



7 3 5 3

   23 3

12. Point of intersection is given by: x3  x2  4x  3  0 ⇒ x  0.783.

3  4x  x 2  x 3 dx

0





1 1  3x  2x 2  x 3  x 4 3 4

3

0.783 0

 1.189

( 21 , 7π3 ) ( 21 , 5π3 )

2



0.783

A

y

4

( 21 , π3 ) −2

π 2

π 3

π 6

−1

3

x

−1

−2 (.7832, .4804)

2

 

2

14. A  2

2x 2  x 4  2x 2 dx

16. y  x  1 ⇒ x  y 2  1

0 2

2

4x 2  x 4 dx

y

0

x1 ⇒ x  2y  1 2

 

2



4 1  2 x3  x5 3 5



2 0

128   8.5333 15

A

5



10

(−2, 8)

x  1 

1

(2, 8)

 −4

2y  1   y 2  1 dy

0

23 x  1

x1 dx 2





1  x  1 2 4

3 2

4 y −2

(0, 0) 3

(5, 2) 2 1 x

(1, 0) 2 −1 −2

3

4

5

5 1



4 3

Review Exercises for Chapter 6





1

18. A 

5

2 dx 

0

1

2  x  1 dx

301

y 5

x  y2  1



4

2

A

3

 y 2  1 dy

(5, 2)

0



3 y 1

3



y

2 0



14 3

1

(1, 0) x 2

20. (a) R1t  5.28341.2701t  5.2834 e0.2391t

3

4

5

(b) R2t  10  5.28 e0.2t



15

40

Difference 

R1t  R2t dt  171.25 billion dollars

10

0

10 0

22. (a) Shell



(b) Shell

2

V  2

y 3 dy 

0

 4 y 2



2 0

 

2

 8

V  2

2  yy 2 dy

0 2

 2

y

2y 2  y 3 dy

0

4

 2

3

23 y

3



1  y4 4

2 0



8 3

2 y 1 4 x 1

2

3

4

3

1 x 1

(c) Disk



(d) Disk

2

V

y 4 dy 

0

 5 y 5



2 0



32 5

 

3

4

2

V

 y 2  1 2  12 dy

0 2



y

2

 y 4  2y 2 dy

0

4



3

15 y

5



2  y3 3

2 0



176 15

2 y 1

5 x 1

2

3

4

4 3 2 1 x 1

2

3

4

302

Chapter 6

24. (a) Shell

Applications of Integration (b) Disk



a

V  4

b x a 2  x 2 dx a

0



2 b a



a 2  x 2 1 22x dx

2 b 2 2 1 a x  x3 a2 3





0

43ab a



2



 x 2 3 2

0

b2 2 a  x 2 dx a2

0

a

a



a

V  2

4   a 2b 3

V  2

1 1  x 2

0





 2 arctan x  2 



2 x2 + y =1 a2 b2

(0, b)

x

x

(a, 0)

(a, 0)

28. Disk



0

y 2 x2 + y =1 a2 b2

(0, b)

1

a

4   ab 2 3

y

26. Disk



 

1

2

dx

V

ex 2 dx

0 1

1



0

0

4  0



 e2x dx   e 2x 2





1 0

2e  2   2 1  e1  2

2 2

2

y

1

y 3 2

x 1

−2

x

−1

1

2

−1

30. (a) Disk

 

(b) Shell

0

V 

1 0 1

x 2x  1 dx

u  x  1

y

x  u2  1



x3





x4 x3   4 3



 dx

x2

  12 1 0

  

x

−1

dx  2u du 0

V  2

1

x 2x  1 dx

−1

1

y

 4

u 2  1 2 u 2du

0

x

−1

1

 4

u 6  2u 4  u 2 du

0

−1

 4

17 u

7



2 1  u5  u3 5 3

1 0



32 105

Review Exercises for Chapter 6 1 1 32. Ax  bh   2a 2  x 2 3a 2  x 2  2 2

34.

 3 a 2  x 2



 3

a

1 x3  6 2x

1 1 y  x 2  2 2 2x

a

V  3

y

303



a 2  x 2 dx  3 a 2x 

x3 3



a a

4a3 

1   y  2 

3

12 x

 3

s

1



2

1 2x 2



2





1 1 1 2 1 x  2 dx  x 3  2 2x 6 2x



3 1



14 3

Since 43 a 3 3  10, we have a 3   53  2. Thus, a

5 2 3  1.630 meters. 3

2 a 2− x 2



2 a 2− x 2

2 a 2− x 2

36. Since f x  tan x has f x  sec 2 x, this integral represents the length of the graph of tan x from x  0 to x   4. This length is a little over 1 unit. Answers (b).

38. y  2x y 

1 x

1   y  2  1 

1 x1  x x



x x 1 d x  4 

3

S  2

3

2x

0

 4

40. F  kx



0

3

3 2

0



56 3

8 dV 4 gal min  12 gal min  ft3 min  dt 7.481 gal ft3 7.481

50 9

50 x 9 9

W

 23x  1

42. We know that

50  k9 ⇒ k  F

x  1 dx

0

V   r 2h  





50 25 2 x dx  x 9 9

 225 in

9 0

 lb  18.75 ft  lb

19 h

dV  dh  dt 9 dt

   





dh 9 dV 9 8     3.064 ft min. dt  dt  7.481 Depth of water: 3.064t  150 150  49 minutes 3.064 4912  588 gallons pumped

Time to drain well: t 

Volume of water pumped in Exercise 41: 391.7 gallons 391.7 588  52 x x

58852  78 391.7

Work  78 ft  ton

304

Chapter 6

Applications of Integration

44. (a) Weight of section of cable: 4 x Distance: 200  x



200

W4





200  x dx  2200  x 2

0

200 0

 80,000 ft  lb  40 ft  ton

(b) Work to move 300 pounds 200 feet vertically: 200300  60,000 ft  lb  30 ft  ton Total work  work for drawing up the cable  work of lifting the load  40 ft  ton  30 ft  ton  70 ft  ton



b

46.

W

Fx dx

a

Fx 

x  6, 2 9 4 3x  16,

 9

W

0 ≤ x ≤ 9 9 ≤ x ≤ 12



12



2  x  6 dx  9

0



9

  32 x

1   x 2  6x 9

9

2

0

 34 x  16 dx

 16x

12 9

 9  54  96  192  54  144  51 ft  lbs



3

48.

A

3 1  A 32 x





1 2x  3  x 2 dx  x 2  3x  x 3 3 1

3 32



3

1

x2x  3  x 2 dx 

323  12 

3 32



1







17  x, y   1, 5

3 1



32 3

3x  2x 2  x 3 dx 

1

2x  3 2  x 4 dx 

3 4 1  9x  6x 2  x 3  x 5 64 3 5

1

3

3

y

3

3 64







3 3 2 2 3 1 4 x  x  x 32 2 3 4

3

1

1

3

1

y

9  12x  4x 2  x 4 dx 9

17  5

6

( x, y )



3

x

−3

 8

50.

A

0

5 1  A 16 x

5 16







8

16 5

y 6

0

( x, y )





1 x x 2 3  x dx 2



165  12  x 8

4 3

0

 x, y  

0



2





8

6

4

5 3 8 3 1 3 x  x   16 8 6 y



3 1 1 x 2 3  x dx  x 5 3  x 2 2 5 4

3

  37 x

1 5 2 16

40 103 , 21 

7 3



8

x 2 −2

10  3

0



1  x 2 dx 4



1 3 x 12

8 0



40 21

4

6

8

Problem Solving for Chapter 6 54. F  62.4165  4992 lb

52. Wall at shallow end:



5

F  62.4



y20 dy  1248

0

y2 2



5

 15,600 lb

0

Wall at deep end:



10

F  62.4





y20 dy  624 y 2

0

10

 62,400 lb

0

Side wall:



5

F1  62.4





y 40 dy  1248 y 2

0 5

F2  62.4

5

 31,200 lb

0



5

10  y 8y dy  62.4

0

80y  8y 2 dy

0

F  F1  F2  72,800 lb y 20 15 10 5 x

−5

5 10 15 20 25 30 35 40 45

Problem Solving for Chapter 6



1

2. R 

x1  x dx 

0

 x2  x3 2

3 1



0

1 1 1   2 3 6

Let c, mc be the intersection of the line and the parabola.

4. 8y2  x21  x2 y±

x 1  x2 2 2

Then, mc  c1  c ⇒ m  1  c or c  1  m.



1 1  2 6



y

1m

x  x2  mx dx

0.5

0

0.25



1 x2 x3 x2   m 12 2 3 2



1m 0

−1.5

x

− 0.5

0.5

1.5

− 0.25

1  m2 1  m3 1  m2   m 2 3 2

− 0.5

1  61  m2  41  m3  6m1  m2  1  m26  41  m  6m  1  m22  2m

13

12



S  22 

13

x

0

1m

m1

1  2x2 2 2 1  x2

1

1  1  m3 2

12

For x > 0, y 

 0.2063

5 2 3

1

1  2x2 2 2 1  x2

 dx 2

305

306

Chapter 6

Applications of Integration 8. fx2  ex

6. By the Theorem of Pappus,

fx  e x2

V  2 r A



f x  2e x2  C



1  2 d  w2  l2 lw 2

f 0  0 ⇒ C  2 f x  2e x2  2

10. Let f be the density of the fluid and 0 the density of the iceberg. The buoyant force is



0

F  f g

h

Ay dy

where Ay is a typical cross section and g is the acceleration due to gravity. The weight of the object is



Lh

W  0 g

h

Ay dy.

FW





0

f g

h

Lh

Ay dy  0 g

h

Ay dy

0 submerged volume 0.92  103    0.893 or 89.3% f total volume 1.03  103 12. (a) y  0 by symmetry



6

My  2

x

1 6

m2

1

y



6

1 dx  2 x4

1



b

1 b

m2

1

2

−1

lim x 

x −1 −2



63 x, y  ,0 43



−3

2

3

4

5

y = − 14 x

b2  1 1 dx  3 x b2 1 2b3  1 dx  4 x 3b3

b2  1b2 3bb  1 x  2b3  13b3 2b2  b  1 b→

y = 14 x

1

215 1 dx  x4 324

3536 63 x  215324 43 (b) My  2

3

1 35 dx  x3 36

3 2

x, y 

14. (a) Trapezoidal: Area  (b) Simpson’s: Area 

x, y 

2b3bb b 11, 0 2

32, 0

160

0  250  254  282  282  273  275  280  0  9920 sq ft 28

160

0  450  254  482  282  473  275  480  0  10,41313 sq ft 38

16. Point of equilibrium: 1000  0.4x2  42x x  20, p  840

P0, x0  840, 20



20

1000  0.4x2  840 dx  2133.33

Consumer surplus 

0

20

Producer surplus 

0

840  42x dx  8400

PA R T

I C H A P T E R 6 Applications of Integration Section 6.1

Area of a Region Between Two Curves

. . . . . . . . . . .2

Section 6.2

Volume: The Disk Method . . . . . . . . . . . . . . . . . . 9

Section 6.3

Volume: The Shell Method . . . . . . . . . . . . . . . . . 17

Section 6.4

Arc Length and Surfaces of Revolution . . . . . . . . . . . 22

Section 6.5

Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Section 6.6

Moments, Centers of Mass, and Centroids . . . . . . . . . 30

Section 6.7

Fluid Pressure and Fluid Force

. . . . . . . . . . . . . . . 37

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C H A P T E R 6 Applications of Integration Section 6.1

Area of a Region Between Two Curves

Solutions to Odd-Numbered Exercises



0  x 2  6x dx  



x 2  2x  3  x 2  4x  3 dx 

6

1. A 



6

0

x 2  6x dx

0

3

3. A 

3

0

0



1



0

3x 3  x dx  6

4

7.

2x 2  6x dx

0



5. A  2





0

6

or

x 3  x dx

0

 6

x dx 2

x  1 

1



1

x 3  x dx

9.

4 2x 3 

0

y



 3



x dx 6

11.

 3

2  sec x dx y

y 6

5

3

5

4 3

3 2

2

1

2π 3

1

x 1

2

3

4

x

5

1

2

3

4

5

6

   2

13. f x  x  1 gx  x  1

15. A 

0

2

2



A 4

0

Matches (d)







1 3 x  2  x  1 dx 2



1 3 x  x  1 dx 2

 x8  x2  x 4

2

2

0

y



(3, 4)

3

168  24  2  0  2

2

y

(2, 6)

6 5

(0, 1) 4 3

x 1

2

1 −2

2

(2, 3)

(0, 2)

3

(0, 1) x 1

3

4

π

π

3

3

−1

2π 3

x

Section 6.1 17. The points of intersection are given by:

Area of a Region Between Two Curves

19. The points of intersection are given by:

x 2  4x  0

x 2  2x  1  3x  3

xx  4  0 when x  0, 4



x  2x  1  0 when x  1, 2

  

4

A

0

2

 gx  f x dx



A

1

4



2

x 2  4x dx



1

0

 

 gx  f x dx

 x3  2x  3

3x  3  x 2  2x  1 dx

2

4



2

0

1

2  x  x 2 dx



32 3

x2 x3  2 3

 2x 



2 1



9 2

y

(0, 0)

y

(4, 0)

1

2

3

x

5

10

−1

(2, 9)

8

−2

6

−3

4

( 1, 0)

−4

x

−5

4

21. The points of intersection are given by:

3



x0

1

A



2  y   y dy  2y  y 2

0

2

3x  1  x  1

x2



1

23. The points of intersection are given by:

x  2  x and x  0 and 2  x  0 x1

2

1 0

3x  x when x  0, 3

    3

1

A

 f x  gx dx

0

3

Note that if we integrate with respect to x, we need two integrals. Also, note that the region is a triangle.







3x  1  x  1 dx

0

3

y



3x1 2  x dx

0

3



2

 29 3x

(1, 1)

1

3 2



x2 2



3 0

y

(2, 0) x

(0, 0)

2

5

3

4

(3, 4)

3 2

(0, 1) x

−2

25. The points of intersection are given by: y2  y  2

1

 

1

(4, 2)

1

x 1

 g y  f  y dy

1

(1,



 y  2  y 2 dy

 2y 

y2 y3  2 3



2 1



2

1

2



4

3

2

A

3

y

2

 y  2 y  1  0 when y  1, 2

2

3

9 2

1)

3

4

5



3 2

3

4

Chapter 6

 

Applications of Integration

2

27. A 

 f  y  g y dy

1

29. y 

10 10 ⇒ x x y



10 dy y





10

2



A

 y 2  1  0 dy

1

2





y3 y  3

2 1

6

2

 10ln 10  ln 2

y

 10 ln 5 16.0944

3

(0, 2)

10

 10 ln y

(5, 2)

y 1 12

x

2

3

4

5

(0, −1)

(0, 10)

6

(2, −1)

(1, 10)

8

2

6 4

(0, 2) −4

(5, 2) x

−2

2

4

6

8

31. The points of intersection are given by: x 3  3x 2  3x  x 2

11

xx  1x  3  0 when x  0, 1, 3

  

1

A



3

 f x  gx dx 

0

 gx  f x dx

1

1



1

(0, 0)

(1, 1) −1

x 2  x 3  3x 2  3x dx

1



3

x 3  4x 2  3x dx 

0





−6

3

x 3  3x 2  3x  x 2 dx 

0



(3, 9)

x 3  4x 2  3x dx

1

 x4  34 x 4

3

   x4

3 2 x 2



1

4

0



3 4  x3  x2 3 2

3 1



37 12

Numerical Approximation: 0.417  2.667 3.083 33. The points of intersection are given by: x  4x  3  3  4x  x 2

2xx  4  0 when x  0, 4

 

4

A

3  4x  x 2  x 2  4x  3 dx

0 4



2x 2  8x dx

0



 



2x 3  4x 2 3

4 0



9

2

64 3

Numerical Approximation: 21.333

(0, 3) −6

(4, 3) 12

−3

12

Section 6.1

Area of a Region Between Two Curves

35. f x  x 4  4x 2, gx  x 2  4

2

The points of intersection are given by:

−4

x 4  4x 2  x 2  4

(− 2, 0)

x 4  5x 2  4  0

4

(2, 0)

(−1, − 3)

(1, − 3) −5

x 2  4x 2  1  0 when x  ± 2, ± 1 By symmetry,

 

1

A2

0 1

2



2

x 4  4x 2  x 2  4 dx  2



x 2  4  x 4  4x 2 dx

1

2

x 4  5x 2  4 dx  2

0

x 4  5x 2  4 dx

1

2

5 

2

 5  3  4  2  5

x5 1



1

5x 3  4x 3

0



2 

5

32



x 5 5x 3   4x 5 3



2 1



40 1 5 8    4 3 5 3

  8.

Numerical Approximation: 5.067  2.933  8.0

39. 1  x 3 ≤

37. The points of intersection are given by: 1 x2  1  x2 2



x2

 2

x2

 

Numerical approximation: 1.759

3

 1  0

A

0

−3

5

x  ±1

−1

0

−1



1 x2  dx 1  x2 2



 2 arctan x  2

(0, 1)

−4

0

2

x3 6



1 0

4  16  2  13 1.237

Numerical Approximation: 1.237

41. A  2

 

 3

 f x  gx dx

y

0

2

 3

g 4

2 sin x  tan x dx

π , 3

3

0



(2, 3)

(0, 2)

 f x  gx dx

1



1 x  2  1  x 3 dx 1.759 2

3

1

A2

 2

(−1, ( ( 1, 12 ( 1 2

x4  x2  2  0

1 x  2 on 0, 2 2

2



 3

0

 2 2 cos x  ln cos x

3 f

1

π

(0, 0)

2

x

π 2

 21  ln 2 0.614 3 4

π , 3

3

5

5

6

Chapter 6

43. A 

 

2

Applications of Integration

45. A 

xex  0 dx 2

0

0

2

2



1

2  cos x  cos x dx



0



2



 2 x  sin x



1 2   ex 2

1  cos x dx  4 12.566

1 0







1 1 1

0.316 2 e

y

0

y

1

3

(1, e1 )

(0, 1) 2

g

(2π, 1)

(0, 0)

x 1

f π 2

−1

47. A 

π

x





2 sin x  sin 2x  0 dx



1 cos 2x 2



1

0

 2 cos x 



 0





1 1 x e  0 dx x2



 e 1 x

 4.0

3 1

 e  e 1 3 1.323

4

3

( π, 0)

(0, 0)

0

 3

49. A 



0

4 x x , y  0, x (b) A   dx, 4x 3

51. (a) y 

3

6 0

0

x3

3

0

No, it cannot be evaluated by hand. (c) 4.7721

6

−1

4 −1

 x

53. Fx 

0







1 t2 t  1 dt  t 2 4

(a) F0  0

x 0



x2 x 4 (b) F2 

22 23 4

(c) F6 

62  6  15 4

y y

y 6 5 4 3 2

−1 −1

6

6

5

5

4

4

3

3

2

2

t 1

2

3

4

5

6

−1 −1

t 1

2

3

4

5

6

−1 −1

t 1

2

3

4

5

6

Section 6.1

55. F 





cos

1

 2  d  sin 2  2







1



Area of a Region Between Two Curves

2 2   sin  2  (b) F0 

(a) F1  0

2

0.6366 

(c) F

12  2 

2

1.0868

y y 3 2

1 2

− 21

   c

57. A 

0

c





1 2

1 2

− 21

− 21

1 2

1

θ − 21

ba b y  a  y dy c c









a 2 y  ay 2c

(b, c)

y= cx b

y=

c b − a (x − a )

c 0

ac ac    ac  2 2

x



1  baseheight 2

(0, 0)



(a, 0)

59. f x  x 3

y 8

f x  3x 2

6

2

Tangent line:

2

x 3  3x  2 dx 

1

2

4

3

f (x) = x3 −6

(− 2, − 8)

The tangent line intersects f x  x 3 at x  2. 1

(1, 1) x

−4 −3 −2

y  1  3x  1 or y  3x  2



y = 3x − 2

4

At 1, 1, f 1  3.

A

− 21

y

a  y  a dy c

0

 

3 2

θ

1

1 2

− 21

y

3 2

 x4  3x2 4

2



 2x

1 2



−8

27 4

61. The variable is y. 63. x 4  2x 2  1 ≤ 1  x 2 on 1, 1

 

y

1

A

1

1  x 2  x 4  2x 2  1 dx

2

(0, 1)

1



1



x2  x 4 dx

x3 x5   3 5

x



1 1

4  15

You can use a single integral because x 4  2x 2  1 ≤ 1  x 2 on 1, 1. 65. Offer 2 is better because the accumulated salary (area under the curve) is larger.

( 1, 0)

(1, 0)

1 2

1

θ

7

8

Chapter 6

Applications of Integration



3

A

67.

 

3

9  x 2 dx  36

y 10

9b

 9b

9b

 9  x 2  b dx  18

6 4

9  b  x 2 dx  9

2

x

0

6

9  bx  3  x3

9b

0

(

9

2

9

2

b, b)

(

x

x2

6

b, b)

9

2 9  b 3 2  9 3

9  b 3 2  9b b9

n

 x

69. lim

  →0 i1

i

9 3

4

27 2 9 3

4

3.330

 x i2 x

y

0.6

i 1 where xi  and x  is the same as n n



1

x 

0





x2 x3  dx   2 3

x2



(1, 0) x

1  . 6 0

0.2 0.4



0.13t dt 

0

73. (a) y1  275.06751.0537t  275.0675e0.0523t] 460

10

15

10

 0.13t 2 

2 5 0

 $1.625 billion

(b) y2  239.94071.0417t  239.9407e0.0408t 460

0 240



0.6 0.8 1.0

(0, 0)

5

7.21  0.58t  7.21  0.45t dt 

0

(c)

f (x)

0.2

1

5

71.

0.4

y1  y2 dt 649.5 billion dollars

0 240

10

(d) No, model y1 > y2 forever because 1.0537 > 1.0417. No, these models are not accurate. According to news reports, E > R eventually.

Section 6.2

Volume: The Disk Method

75. The total area is 8 times the area of the shaded region to the right. A point x, y is on the upper boundary of the region if

9

y

2

y=x

x 2  y 2  2  y

x 2  y 2  4  4y  y 2

1

( x, y )

x 2  4  4y

x 1

4y  4  x 2 y1

2

x2 . 4

We now determine where this curve intersects the line y  x. x1

x2 4

x 2  4x  4  0 x Total area  8



4 ± 16  16  2 ± 22 ⇒ x  2  22 2

222

1  x4  x dx 2

0



8 x

x3 x2  12 2



222 0

16 42  5  80.4379  3.503 3



 1  31 5  x dx   5

77. (a) A  2

5.5

0



1  0 dx

5

x  92 5  x   x  2 5  109 5  5.5  5  6.031 m

2

5

5.5

0

5



3 2

(b) V  2A  26.031  12.062 m 3

2

(c) 5000 V  500012.062  60,310 pounds

79. True 81. False. Let f x  x and gx  2x  x2. f and g intersect at 1, 1, the midpoint of 0, 2 . But



b



2

f x  gx dx 

a

x  2x  x2 dx 

0

Section 6.2



Volume: The Disk Method

1

1. V  



1

x  1 2 dx  

0

 

x

1

 2 dx  



4

x dx  

1

1

5. V  

0

7. y  x 2 ⇒ x  y

 4

y

0



2 y2



2 x2

4 1



4 0

 2 dy  

 8

 x3  x



3

x

2

1 0



 3

15 2

1

x 2 2  x 3 2 dx  

0

V

x 2  2x  1 dx  

0

4

3. V  

2  0. 3

x 4  x 6 dx  

 x5  x7  5

7 1 0



2 35

9. y  x 2 3 ⇒ x  y 3 2



4

0



1

y dy

V

0



1

 y 3 2 2 dy  

0

y 3 dy  

4 y4

1 0



 4

10

Chapter 6

Applications of Integration

11. y  x, y  0, x  4 (b) R y  4, r y  y 2

(a) Rx  x, rx  0

  4

V

x

0

4



x dx 

0



2

 2 dx

V

16  y 4 dy

0

 2 x 

4



0



1   16y  y 5 5

 8

2

y

2 0



128 5

y

3

3

2

2

1

1 x 1

2

3

x

4

1

−1

2

3

4

−1

(c) R y  4  y 2, r y  0

 

(d) R y  6  y 2, r y  2

2

V

4  y 2 2 dy

6  y 2 2  4 dy

0

2



 

2

V

0

16  8y 2  y 4 dy

2



0





8 1   16y  y 3  y 5 3 5

2 0



32  12y 2  y 4 dy

0

256 15





1   32y  4y 3  y 5 5

2 0



192 5

y y 3 4 3

2

2 1 1 x 1

2

x

3

1

2

3

4

5

−1

−1

−2

13. y  x2, y  4x  x 2 intersect at 0, 0 and 2, 4. (a) Rx  4x  x 2 rx  x 2

 

(b) Rx  6  x2, rx  6  4x  x 2

2

V

V

0

2

16x 2  8x 3 dx

 8

0



6  x 2 2  6  4x  x 2 2 dx

0

2



  2

4x  x 2 2  x 4 dx

 163 x

x 3  5x 2  6x dx

0

3



 2x 4

2 0



32 3

 8

 x4  3 x

y

4

5

3

 3x 2



y

4 5 3 4 3

2

2 1 1 −1

x 1

2

3

−2

−1

x 1

2

3

4

2 0



64 3

Section 6.2

17. Rx  4, rx  4 

15. Rx  4  x, rx  1

 

3

V

4  x 2  1 2 dx

0

3



42  4 

0

x 2  8x  15 dx

3



0



 

V

3



 3  4x x3

2

Volume: The Disk Method



3

 15x

0

0

 18

1 1x 1 1x

 dx 2



8 1  dx 1  x 1  x2



  8 ln1  x 

1 1x



y



5

  8 ln 4 

3

 8 ln 4 



2



1 1 4



3   32.485 4

y 1 x

−1

1

2

3

4

3 2 1 x

−1

1

2

3

4

2

3

4

5

−1

19. R y  6  y, r y  0

 

y 5

4

V

6  y 2 dy

4 3

0 4



 y 2  12y  36 dy

2 1

0

 



x



y3  6y 2  36y 3

1

4

−1

0

208 3

21. R y  6  y 2, r y  2



23. Rx 

2

V

6  y 2 2  2 2 dy

2



3

 y4  12y 2  32 dy



0

0





y5  4y 3  32y  2 5 

  3

V

0

2

 2

1 x  1

384 5

2

, rx  0

1 x  1

2

1 dx x1

 

 0   ln 4

  ln x  1

0

dx 3

y

2

1

x 1 −1

2

3

3 0

11

12

Chapter 6

Applications of Integration

1 25. Rx  , rx  0 x



4

V

1 x

1

 

1  x 

27. Rx  ex, rx  0

 

1

V

2

dx

ex  2 dx

0 1



4

e2x dx

0

1

   e2x 2



3 4

y



2



1 0

 1  e2  1.358 2

y 1

2 x 1

2

3 1

−1

x 1

 

2

0 2







  6

0

 

 9



1 6  y 3

1 6  y 3

2



3 2

2

−1

33. V  





sin x 2 dx  4.9348

0

y

dy 3

6

36  12y  y 2 dy

2

0





6



 8 y 6 5 4 3 2 1 x 3

4

5

6

1

0

 216 216  216  9 3



(2, 5)

6



8   x3  x3  10x2  24x 3 0

2

 y3 36y  6y 2  9 3

1

8

4x3  8x2  20x  24 dx

152 125 277   3 3 3

31. y  6  3x ⇒ x 



y 10

2

8   x4  x3  10x2  24x 3

V



x2  12  5  2x  x22 dx

2

3

4x3  8x2  20x  24 dx  

0





3

5  2x  x22  x2  12 dx  

29. V  

2

x 1

2

3

x −2

1

2

3

4

Section 6.2



2

35. V  



Volume: The Disk Method

2

ex 2 dx  1.9686 2

37. V  

0

39. A  3

1

e x 2  ex 2 2 dx  49.0218

41. Disk Method:

Matches (a)



b

V

y



d

Rx 2 dx or V  

a

Ry 2 dy

c

Washer Method:

2

 

b

V

1

 Rx 2  rx 2 dx or

a

d

V

x 1

2

 Ry 2  ry 2 dy

c

43.

y

y 4

−2

3

3

2

2

1

1 x

−1

x

2

1

1

2

3

4

The volumes are the same because the solid has been translated horizontally. 1 45. Rx  x, rx  0 2



  r

6

V

47. Rx  r 2  x 2, rx  0

0

V

1 2 x dx 4

r

r 2  x 2 dx

r

 3 x  12





6 0

 2

 18

r 2  x 2 dx

0



1  2 r 2x  x 3 3

1 Note: V   r 2h 3





r 0



1 4  2 r 3  r 3   r 3 3 3

1  326 3

y

 18

y = r2 − x2

y 4 3 2

(−r, 0)

1 x 1 −1 −2

2

3

4

5

6

x

(r, 0)

13

14

Chapter 6

Applications of Integration



 h

V







r y y yr 1 , R y  r 1  , r y  0 H H H

49. x  r 

r 1

0

y H



2

 h

dy   r 2

1

0



h2 h3  H 3H 2



  r 2h 1 

 2

51. V  

0

1 2 x 2  x 8

53. (a) Rx  V  



2

dx 



1 2 1 3 y  y H 3H 2

  r2 h 



 64

H

2 1 y  2 y 2 dy H H



  r2 y 

y



h

h 0

−r



h h2  H 3H 2



2

x 4 2  x dx 

0

 2x 5 x 6  64 5 6



3 25  x 2 , rx  0 5

 

9 25



2 0



18 25

25  x 2 dx

V

5

25  x 2 dx



0

18 x3 25x  25 3





5 0

 30

(b) R y 

5

5

x

r

5 9  y 2, r y  0, x ≥ 0 3

25 9



3

9  y 2 dy

0

25 y3 9y  9 3





3 0

 50

y

 60 6

y 4 8 6

2

4 x 2 −6

−4

2

6

4

x

−2

2

4

6

−2 −4

55. Total volume: V 

4 503 500,000 3  ft 3 3

y 60 40

Volume of water in the tank:





y0

2500  

2 y2

50

dy  



2500  y 2 dy



y3 3

20

y0

−60

50

  2500y 



  2500y0 



y03 3

−40

y0

−60

50



250,000 3



When the tank is one-fourth of its capacity: y 3 250,00 1 500,000   2500y0  0  4 3 3 3 125,000  7500y0  y03  250,000





−20





y03  7500y0  125,000  0 y0  17.36 Depth: 17.36  50  32.64 feet When the tank is three-fourths of its capacity the depth is 100  32.64  67.36 feet.

x 20

40

60

Section 6.2



  b

h

57. (a) 

(b) 

r 2 dx (ii)

0

a

b

1

x2 b2



Volume: The Disk Method

2

is the volume of an ellipsoid with axes 2a and 2b.

is the volume of a right circular cylinder with radius r and height h.

 r

(c) 

dx (iv)

r

r 2  x 2

y=r

(0, a)

 2 dx (iii)

is the volume of a sphere with radius r.

y

y

15

y 2 y=a 1− x b2

y=

r 2 − x2

(h, r)

x

(−r, 0)

x

(−b, 0)

(r, 0)

(b, 0)

x

 h

(d) 

0

rx h



  r

2

(e) 

dx (i)

is the volume of a right circular cone with the radius of the base as r and height h. y

R  r 2  x 2    R  r 2  x 2  dx (v) 2

r

2

is the volume of a torus with the radius of its circular cross section as r and the distance from the axis of the torus to the center of its cross section as R. y

(h, r) r 2 − x2

R+

y= r x h

R x

R−

r2− x2 −r

59.

x

r

y 4 3 2

x 2

3

4

Base of Cross Section  x  1  x 2  1  2  x  x 2 (b) Ax  bh  2  x  x 21

(a) Ax  b 2  2  x  x 2 2



V

2

V

1

4  4x  3x 2  2x 3  x 4 dx





1 1  4x  2x 3  x 3  x 4  x 5 2 5

2 + x − x2

2 + x − x2



2

 4  4x  3x 2  2x 3  x 4

2 1



81 10

1



2  x  x 2 dx  2x 

1 2 + x − x2

x2 x3  2 3



2 1



9 2

16

Chapter 6

61.

y

Applications of Integration 3 y (a) A y  b 2   1   

1

  1

V

3 4

0

1 2

2

3 y 1   dy 2

1−

1



1 4

1  2y 1 3  y 2 3 dy

1−

0



3 3  y  y 4 3  y 5 3 2 5

x 1 4

1 2

3 4

1



1 0



1 10

3 Base of Cross Section  1   y



3 y 1 1 1 (b) A y   r 2   2 2 2

V

1  8

 1

0

3 y 1   dy  2

 81  1  2



1 



4

1 

 1

3

V

4

0

2

 1   8 10 80

 1 1 3 y (c) A y  bh  1    23 2 2 3

3 y 

3 y 

1−

3

y

 1−

3

1−

y

3

y



3 y 2 

3 y 1   dy  2

3

4

101  403 

1−

3

y

3  1  3 y 1  (d) A y  ab  2 1    2 y 2 2

 3 y 2 1    2



 2

V

 1

0

a

3 y 1  dy  2

 1   2 10 20



b 1−

63. Let A1x and A 2x equal the areas of the cross sections of the two solids for a ≤ x ≤ b. Since A1x  A 2x, we have



b

V1 



65.

A1 x dx 

y



1 4 4  25  r 2 3 2   125 3 2 3

25  r 2 3 2 

b

a

3

A2 x dx  V2

a

25  r 2 

Thus, the volumes are the same.

25 

125 2

125 2

2 3

25  r2 2 2 3

251  22 3  r 2 r  51  22 3  3.0415 67. (a) Since the cross sections are isosceles right triangles: 1 1 1 Ax  bh   r 2  y 2 r 2  y 2   r 2  y 2 2 2 2 V (b) Ax  V

1 2



r

r



r

r 2  y 2 dy 



r 2  y 2 dy  r 2y 

0

y3 3



r 0

2  r3 3

x

y

1 1 tan  2 bh  r 2  y 2r 2  y 2 tan   r  y 2 2 2 2

tan  2



r

r



r

r 2  y 2 dy  tan 

As  → 90 , V → .

0



r 2  y 2 dy  tan  r 2 y 

y3 3



r 0



2 3 r tan  3

3

y

3

y

Section 6.3

Section 6.3

3. px  x

hx  x

hx  x



2

xx dx 

0



 23x 

3 2 0





2 x 3 3



2



0

16 3

 

4

V  2

16  3

4

 2

 45 x 

4

52

0



128 5

7. px  x

hx  x

hx  4x  x 2  x 2  4x  2x 2

2



2

 

2

x 3 dx

V  2

y

0

x4x  2x 2 dx

4

 

2 0

4

2

 8

 4

3



2x 2



 dx

x3

 4

1

 23 x

3



2

1  x4 4

0



16 3

2 1

x

−1

1

9. px  x

2

x

−1

3

1

2

11. px  x

hx  4  4x  x 2  x 2  4x  4



hx 

1

ex 2 2

2

2



 1

x 3  4x 2  4x dx

V  2

0

x

0

 x4  34 x 4

3

 2x 2



2 0



8 3

1 2

ex

dx

22

1

 2

ex 2 x dx 2

0

y



  2 ex 2

4

2



1 0



 2 1 

y

3 1

2

3 4

1 x

−1

1

2

1 2

3 1 4

x 1 4

13. p y  y h y  2  y

 

2

y 2  y dy

0

2

 2

3

0

2

V  2

y

0

 4 x  2

 2

x 32 dx

0

5. px  x

V  2

xx dx

0



V  2

17

Volume: The Shell Method

1. px  x

V  2

Volume: The Shell Method

2y  y 2 dy

0



 2 y 2 

y3 3



2 0



8 3

1 2

3 4

1

1 e

0.986

3

18

Chapter 6

Applications of Integration

15. p y  y and h y  1 if 0 ≤ y <

1 . 2

y 1

1 1 p y  y and h y   1 if ≤ y ≤ 1. y 2





12

V  2

1 2

1

y dy  2

0

1  y dy

1 4

12

2 y2

 2

3 4



12

y2 2

 2 y 

0



1 12



     4 4 2

x 1 2

17. px  4  x

hx  4x  x 2

2

V  2

V  2



4

 2

x 3  6x 2  8x dx

 x4  2x 4

3



 4x 2

2

 2

 16

0

x 3  9x 2  20x dx

0

0

 4

5  x4x  x 2 dx

0

2

 2 2

 

4

4  x4x  2x 2 dx

0

2

19. px  5  x

hx  4x  x 2  x 2  4x  2x 2



3 2

1

y

 x4  3x 4

3



 10x 2

4 0

 64

y

4

4 3

3

2

2

1 1 x 1

x 1

2

2

3

4

−1

3

21. (a) Disk

(b) Shell

Rx 

px  x

x3

rx  0



h x  x 3

2

V

x 6 dx  

0

 x7 

7 2 0



128 7

y

 x5 

5 2

y 8

6

6

4

4

2

2 x

−1

1

2

−1

3

(c) Shell px  4  x

y

h x  x 3

 

8

2

4  xx 3 dx

6

0 4

2

 2

x 4 dx  2

0

8

V  2



2

V  2



4x 3

 dx



x4

0





1  2 x 4  x 5 5

2 0



96 5

2 x 1

2

3

4

x 1

2

3

0



64 5

Section 6.3 23. (a) Shell

Volume: The Shell Method

(c) Shell

p y  y

px  a  x

h y  a 12  y 12 2

hx  a 12  x 12 2

 

a

V  2

V  2

a  xa 12  x 12 2 dx

0

a

 2

 

a

y a  2a 12 y 12  y dy

0

a

ay  2a 12 y32  y 2 dy

 2

0

a2  2a 32 x 12  2a 12 x 32  x 2 dx

0

 2

 a2 y

 2

 a2  4a5

2



4a 12 52 y 3 y  5 3

3

3

3

a 3







a

 2 a 2x 

0

  15a

3

4 32 32 4 12 52 1 3 a x  a x  x 3 5 3



a 0



4 a 3 15

y

(0, a)

y

(0, a)

(a, 0) x

(a, 0) x

(b) Same as part (a) by symmetry



d

25. V  2





b

p yh y dy

or V  2

pxhx dx

a

x

5

27. 

 5

x  1 dx  

1

x  1

1

 2 dx

This integral represents the volume of the solid generated by revolving the region bounded by y  x  1, y  0, and x  5 about the x-axis by using the Disk Method.



29. (a)

1.5

y = (1 − x 4/3) 3/4

−0.25

1.5 −0.25

2

2

y 5   y 2  1 dy

0

represents this same volume by using the Shell Method.

(b) x 43  y 43  1, x  0, y  0 y  1  x 43 34

y



1

V  2

4

0

3 2 1 x 1

2

19

3

−1

Disk Method

4

5

x1  x 43 34 dx 1.5056

20

Chapter 6

31. (a)

Applications of Integration 33. y  2ex, y  0, x  0, x  2

7

y=

(x −

3



2) 2 (x

6) 2

Volume 7.5 Matches (d)

−1

7 y

−1



6

(b) V  2

3 x  22x  62 dx 187.249 x

2

2 1

x 1

2

35. px  x 1 2 x 2

hx  2 



2

V  2



x 2

0



2



1 2 x dx  2 2

Now find x0 such that

  2



x0

0

2x 

0

12



x2







1 3 x dx 2

2 0

 4 total volume

y

2



1  x4 8

1  2x 02 



1 3 1 x dx  2 x 2  x 4 2 8

2x 

x0 0

1

1 4 x 4 0

x 2

1

x 04  8x 02  4  0 x 02  4 ± 23

(Quadratic Formula)

Take x0  4  23 since the other root is too large. Diameter: 24  23 1.464

 

1

37. V  4

1

2  x1  x 2 dx

1

 8

1

39. Disk Method



R y  r 2  y 2

1

1 

x2

2  2 

dx  4

1

x1 

x2

dx

r y  0

1

 8

1

x 1  x 2 122 dx

2

r 2  y 2 dy

rh

 3 1  x  

 4 2  2



r

V

1

2 32

1

 4 2



  r 2y 

y3 3



r rh



y

r

−r

x r

1  h 23r  h 3

Section 6.3



r

41. (a) 2



hx 1 

0



x dx (ii) r

is the volume of a right circular cone with the radius of the base as r and height h. y



r

(b) 2

r

Volume: The Shell Method

R  x 2r 2  x 2  dx (v)

is the volume of a torus with the radius of its circular cross section as r and the distance from the axis of the torus to the center of its cross section as R. y

x=R y=h 1− x r

(

(0, h)

(

y=

r2 − x2

x

(r, 0) (r, 0)

(−r, 0)

x

y=−





r2 − x2

r

r

(c) 2

2xr 2  x 2 dx (iii) is the

(d) 2

hx dx (i) is the volume of a

0

0

volume of a sphere with radius r. y

r2 − x2

y=

right circular cylinder with a radius of r and a height of h. y

(r, h) (r, 0)

y=−

x

r2 − x2 x



b

(e) 2

2ax1  x 2b 2 dx (iv)

0

is the volume of an ellipsoid with axes 2a and 2b. y

y =a (0, a)

2 1 − x2 b

(b, 0)

(0, −a)

y = −a



x

2 1− x b2

200

43. (a) V  2

x f x dx

0



2 200 0  42519  25019  47517  210015  412514  215010  41756  0 38

1,366,593 cubic feet (b) d  0.000561x 2  0.0189x  19.39 24

−20

225 −6



200

(c) V 2

xd x dx 2 213,800  1,343,345 cubic feet

0

(d) Number gallons V 7.48  10,048,221 gallons

21

22

Chapter 6

Applications of Integration

Section 6.4

Arc Length and Surfaces of Revolution

1. 0, 0 , 5, 12

3. y 

(a) d  5  0 2  12  0 2  13

y  x 1 2, 0, 1

12 x 5

(b) y 



1

0

y 

  

1

  13 x 5

5 0

 13



2 8  1 1.219 3

2

y 

 x1  dx 2

1   y 2 

1 3

8

3 2

x 2 3  1

1





0

1 x4  2 8 4x 1 3 1 x  3, 1, 2 2 2x

 12 x

3

 





1 2 , 1, 2 2x 3

b

s

1   y 2 dx

a

2



2 dx 3x 1 3







3 2 2 3 x  1 3 2 2 3

1

3 2

y

x 2 3  1 dx x 2 3

1



dx 

 3 1  x 

1 , 1, 8 x 1 3

8



2



7.

1



  12 5

3 2 3 x 2

8

s

1  x dx

0

5

5. y 



1

s

12 y  5 s

2 3 2 x 1 3

1

8 1

 18 x



1 3 1 x  3 dx 2 2x

4



1 4x 2



2 1



33

2.063 16

 55  22 8.352

y  lnsin x ,

9.

y 

 3

 4, 4 

1 cos x  cot x sin x

1  y 2  1  cot2 x  csc2 x s



3 4

csc x dx

 4

 

3 4

 4

 ln csc x  cot x

 ln2  1  ln2  1 1.763 11. (a) y  4  x 2, 0 ≤ x ≤ 2

y  2x

(b) 1

5

 y 2

 1  4x



(c) L 4.647 2

2

L

0

−1

3 −1

1  4x 2 dx

Section 6.4 1 13. (a) y  , 1 ≤ x ≤ 3 x

1 x2

y  

(b)

2

1   y 2  1  −1

1 x4



L

1

1

−1

15. (a) y  sin x, 0 ≤ x ≤ 

1 dx x4

y  cos x

(b)

(c) L 3.820

1   y 2  1  cos 2 x

2





L −

(c) L 2.147

3

4

Arc Length and Surfaces of Revolution

 2

1  cos 2x dx

0

3 2 −0.5

17. (a) x  ey, 0 ≤ y ≤ 2

y  

(b)

y  ln x

1 x

1   y 2  1 

1 ≥ x ≥ e2 0.135



1

L

3

e

−1

2

(c) L 2.221 1 x2

1  x1 dx 2

3 −1

Alternatively, you can do all the computations with respect to y. (a) x  e y 0 ≤ y ≤ 2

dx  ey dy

(b) 1

(c) L 2.221

1e dx dy  2

2y



2

L

1  e2y dy

0

19. (a) y  2 arctan x, 0 ≤ x ≤ 1

(b) y 

2 1  x2

 1

3

L

1

0

−0.5

1.5

−3

(c) L 1.871 4 dx 1  x 2 2

23

24

Chapter 6

 2

21.

Applications of Integration

 dxd  x

1

0

5 1

2



2

y

dx 5

(0, 5) y = 25 x +1

4

s 5

3

Matches (b)

2

(2, 1)

1

x −1

1

2

3

4

23. y  x 3, 0, 4 (a) d  4  0 2  64  0 2 64.125 (b) d  1  0 2  1  0 2  2  1 2  8  1 2  3  2 2  27  8 2  4  3 2  64  27 2

64.525



4

(c) s 



4

1  3x 2 2 dx 

0

1  9x 4 dx 64.666

0

(d) 64.672



4

(c) y1  1, L1 

y

25. (a) 4

y1

y4

1 −1

−1

y2 

y2

3 2

2 dx 5.657

0

5

y3 1

2

y3 

x

3

4

 4

3 1 2 x , L2  4 1 x, L 3  2

5

1

0

  4

1

0

5 3 2 x , L4  y4  16

1

0

1 3 2 x  3x 1 2  2 3 2

2

When x  0, y  3 . Thus, the fleeting object has traveled 3 units when it is caught. y 

1 3 1 2 3 1 2 1 x1  x  x 3 2 2 2 x 1 2

 



1   y 2  1 



1

s

0

x  1 2 x  1 2  4x 4x

x1 1 dx  2x 1 2 2



1

x 1 2  x1 2 dx 

0



1 2 3 2 x  2x 1 2 2 3



1 0





4 2 2 3 3

The pursuer has traveled twice the distance that the fleeing object has traveled when it is caught. 29.

y  20 cosh y  sinh

x , 20 ≤ x ≤ 20 20

x 20

1   y 2  1  sinh 2



20

L

20

cosh

x x  cosh 2 20 20 x dx  2 20



20

0

 40 sinh1 47.008 m.

cosh

x x dx  220 sinh 20 20



20 0

x2 dx 5.916 4

4

(b) y1, y2, y3, y4

27. y 

9x dx 5.759 16

25 3 x dx 6.063 256

Section 6.4

33. y 

y  9  x 2

31.

y 

x

Arc Length and Surfaces of Revolution x3 3

y  x 2, 0, 3

9  x 2

 

3

1   y 2 

  2

s

0

2



S  2

9 9  x2

0

0

9 dx 9  x2

3 dx 9  x 2



 3 arcsin



 3 arcsin

y

x3 1  6 2x

y 

x2 1  2 2 2x

1   y 2 



x 3



2

  2

1

2

 2

1

 2



 9 1  x 



  8282  1 258.85 9

0

3 x  2 37. y  

y 



1  9x1

x

1



x2 1  2 dx 2 2x





x5 x 1   dx 12 3 4x 3

x6 x2 1   2 72 6 8x

  

8



x3 1  6 2x

1 , 1, 8 3x 2 3

S  2



2 1





47 16

39. y  sin x

2 3

 18

4 3

dx

8

x 1 39x 4 3  1 dx

1 8

9x 4 3  1 1 212x 1 3 dx

1



 27 9x



  145145  1010 199.48 27

4 3



 1 3 2

8 1

41. A rectifiable curve is one that has a finite arc length.

y  cos x, 0,  S  2

3

4 3 2



x2 1 2  2 , 1, 2 2 2x

S  2

1  x 4 1 24x 3 dx

0



0

2  arcsin 0 3

 6

3

2

2.1892 3

 3 arcsin

35.



x3 1  x 4 dx 3





sin x1  cos 2 x dx

0

14.4236 43. The precalculus formula is the surface area formula for the lateral surface of the frustum of a right circular cone. The representative element is y 1  x  x .

2 f di xi2  yi2  2 f di

2

i

i

i

25

26

Chapter 6

Applications of Integration

y

hx r

y 

h r

45.

y  9  x 2

47.

y 

r2  h2 r2

1   y 2 



r

S  2



x

0

 

r 0

3 9  x 2



2

r2  h2 dx r2

2r 2  h 2 x 2 r 2





1   y 2 

x 9  x 2

S  2

0

3x 9  x 2



2

 3

  r r 2  h 2

0

dx

2x 9  x 2





 69  x 2

dx

2 0

 6  3  5 14.40 See figure in Exercise 48. 1 1 2 x  x 3 2 3

y

49.

1 1 2 3 1 2 1 1 2 x  x  x  9x 1 2 6 2 6

y 

1 1 1 x  18  81x  x1 2  9x 1 2 2 36 36

1   y 2  1 

    1 3

S  2

0

 3



361 x

1 1 2 x  x 3 2 3

1 2

 9 1 2 2 dx 

1  1  2x  9x 2 dx  x  x 2  3x 3 3 3 3

1 3

0



Amount of glass needed: V 





2 6

1 3 0





1 3

0

 13 x

1 2



 x 3 2 x1 2  9x 1 2 dx

 2 ft 0.1164 ft2 16.8 in 2 27

 0.015

0.00015 ft 3 0.25 in 3 27 12





51. (a) y  f x  0.0000001953x4  0.0001804x3  0.0496x2  4.8323x  536.9270



400

(b) Area 

f x dx 131,734.5 square feet

0

3.0 acres (Answers will vary.)



400

(c) L 

1  fx 2 dx 794.9 feet

0

(Answers will vary.)



b

53. (a) V  

1

1  dx   x2 x

 

b 1



 1

1 b



(b) S  2  2

y = 1x

b

1

y

2

  

b

1

 2

1

b

1

x 1

—CONTINUED—

b

1 x 1 x

1   x1  dx 2

2

1  x1 dx 4

x 4  1

x3

dx

Section 6.5

Work

27

53. —CONTINUED—



(c) lim V  lim  1  b→ 

b→ 



1  b

(d) Since x 4  1

x 4

>

x3

x3

we have



b

x 4  1

x3

1



b

dx >

1



1 > 0 on 1, b x

 

1 dx  ln x x

b 1

 ln b

and lim ln b → . Thus, b→ 



b

lim 2

b→ 

55. (a) Area of circle with radius L: A   L 2 Area of sector with central angle  (in radians) 1   S A

 L 2  L 2 2 2 2

x 4  1

x3

1

dx  .

(b) Let s be the arc length of the sector, which is the circumference of the base of the cone. Here, s  L  2 r, and you have S



1 2 1 1 1 s L   L2  Ls  L 2 r   rL 2 2 L 2 2

(c) The lateral surface area of the frustum is the difference of the large cone and the small one. S   r2 L  L 1   r1L 1 L

  r2 L   L 1 r2  r1

r2

L1

L  L1 L1  ⇒ Lr1  L 1 r2  r1 By similar triangles, r2 r1

r1

Hence, S   r2 L   L 1 r2  r1   r2 L  Lr1   L r1  r2 .

Section 6.5

Work

1. W  Fd  100 10  1000 ft  lb

3. W  Fd  112 4  448 joules (newton-meters)

5. Work equals force times distance, W  FD.

7. Since the work equals the area under the force function, you have c < d < a < b .

9. F x  kx

11. F x  kx

5  k 4 k

5 4



50



7

W

250  k 30 ⇒ k 

0

W

 

5 2 5 x dx  x 4 8

7 0

245  in  lb 8  30.625 in  lb 2.55 ft  lb

20



25 3

50

F x dx 

20



25 25x 2 x dx  3 6

 8750 n  cm  87.5 joules or Nm

50 20

28

Chapter 6

Applications of Integration



1 3

13. F x  kx

15. W  18 

20  k 9

0



W



0

1 3



7 12

324x dx  162x 2

1 3

12



kx 2 2

7 12

20 k 9 W

kx dx 

 

20 10 2 x dx  x 9 9

12 0

Note:

40  ft  lb 3

0



1 3

k ⇒ k  324 18

 37.125 ft  lbs

1 4 inches  3 foot

17. Assume that Earth has a radius of 4000 miles. k x2

F x 

4000

k

4000 2

s

k  80,000,000



4100

(a) W 





4000

4100

487.8 mi

4000

 tons

80,000,000 dx 1395.3 mi  ton x2 1.47 1010 ft  lb

80,000,000 x2

F x 



5.15 109 ft  lb

4300

(b) W 

80,000,000 80,000,000 dx  x2 x

19. Assume that the earth has a radius of 4000 miles. k x2

F x 



15,000

(a) W 

4000



160,000,000 160,000,000 dx   x2 x



15,000 4000

 29,333.333 mi  ton

k

4000 2

10 

2.93 10 4 mi  ton

k  160,000,000 160,000,000 F x  x2

10,666.667  40,000

3.10 1011 ft  lb



26,000

(b) W 

4000



160,000,000 160,000,000 dx   x2 x



26,000 4000

6,153.846  40,000  33,846.154 mi  ton 3.38 10 4 mi  ton 3.57 1011 ft  lb

21. Weight of each layer: 62.4 20 y

y 6

Distance: 4  y

 

4

(a) W 

2

4

(b) W 

0

5









62.4 20 4  y dy  4992y  624y 2

62.4 20 4  y dy  4992y  624y 2

4 2 4 0

4

 2496 ft

 lb  lb

Weight of disk of water: 9800 4 y Distance the disk of water is moved: 5  y



4

0



5  y dy



y2 2

4

5  y 9800 4 dy  39,200

0

 39,200 5y 

2 1

 9984 ft

23. Volume of disk:  2 2 y  4 y

W

4−y

3



4 0

 39,200 12  470,400 newton–meters

x 1

2

3

4

5

6

Section 6.5

25. Volume of disk: 

23 y y 2

Weight of disk: 62.4

y

23 y y 2

4 3 2



x

6

6  y

y 2 dy

0





4 1  62.4  2y 3  y 4 9 4

6 0

−4 −3 −2 −1

 2995.2 ft  lb

1

3

4

10

Weight of disk: 62.4 36  y 2 y

8

4

 

6

y

y 36  y 2 dy

x −6 −4 −2 −2

0 6

 62.4

2

y

2

W  62.4

6−y

5

27. Volume of disk:  36  y 2 y

Distance: y

29

7

Distance: 6  y 4 62.4  W 9

Work

0





1

36y  y 3 dy  62.4 18y 2  y 4 4

2

4

6

6 0

 20,217.6 ft  lb 29. Volume of layer: V  lwh  4 2  9 4  y 2 y

y

Weight of layer: W  42 8  9 4  y 2 y

Tractor

6 4

13 y Distance: 2



1.5

 336





−y x

42 8  9 4  y 2 13 2

13 2

2

1.5

W

8





1.5

1.5

−6 −4 −2 −2

13  y dy 2



1.5

 9 4  y 2 dy 

1.5

2

4

6

−4



 9 4  y 2 y dy

The second integral is zero since the integrand is odd and the limits of integration are symmetric to the origin. The first integral represents the area of a semicircle of radius 32 . Thus, the work is W  336

132   32 12  2457 ft  lb 2

31. Weight of section of chain: 3 y Distance: 15  y



15

W3

15  y dy

0





3   15  y 2 2  337.5 ft

 lb

33. The lower 5 feet of chain are raised 10 feet with a constant force. W1  3 5 10  150 ft  lb The top 10 feet of chain are raised with a variable force.

15

Weight per section: 3 y

0

Distance: 10  y



10

W2  3

0





3

10  y dy   10  y 2 2  150 ft

W  W1  W2  300 ft  lb

 lb

10 0

30

Chapter 6

Applications of Integration 37. Work to pull up the ball: W1  50015  7500 ft  lb

35. Weight of section of chain: 3 y

Work to wind up the top 15 feet of cable: force is variable

Distance: 15  2y W3



7.5

0





3 15  2y dy   15  2y 2 4

7.5

Weight per section: 1 y

0

Distance: 15  x

3  152  168.75 ft 4



15

 lb

W2 

0





1 15  x dx   15  x 2 2

15 0

 112.5 ft  lb Work to lift the lower 25 feet of cable with a constant force: W3  12515  375 ft  lb W  W1  W2  W3  7500  112.5  375  7987.5 ft  lb

39.

p

k V

41. Fx 

1000 

k 2

W

k 2  x 2



k  2000



3

W

2



5

0

1. x 

 32 810.93 ft  lb

(b) x 

0

3. x 

126  3  14  3  62  3  30  3  118  3 99   3 12  1  6  3  11 33

125x  750 x  6 feet

y

 x, y  

17  18  112  115  118  12 11111

7  5  8  5  12  5  15  5  18  5  17  12  5 5

50x  750  75x

x

100x 125  x 3 dx 10,330.3 ft  lb

Moments, Centers of Mass, and Centroids

7. 50x  75L  x  7510  x

9.



5

45. W 

65  31  53 6  635 7

5. (a) x 



3

1000 1.8  lnx  1 dx 3249.44 ft  lb

Section 6.6



 2

2000 dV  2000 ln V V

 2000 ln

43. W 





1 k k 1 dx  k 1 2 2  x 2 4 2 2  x 3k  units of work 4 1

52  13  31 10  513 9 52  11  34 1  513 9

 109 ,  91

y

m1 (2, 2)

2

m2 1 (− 3, 1)

x −3 −2 −1 −1

1

2

3

−2 −3 −4

m3 (1, − 4)



Section 6.6

11.

x

7 32  41  27  10  63  34216 8

y

7 33  40  21  10  60  34216 16



7 7  x, y    ,  8 16

m

 

x dx 

0 4

Mx   y

m5 (− 3, 0) −4 −2 −2

 23 x 

4



32

0

 

x2

x  dx    2 4

4 0

16 3

My  

0

x 4

6

8

4

 4

3 2

 



2

y

Mx 3 3   4 m 16 4 4

m3 (7, 1)

m4 (0, 0)

m1 (−2, −3)

x

0

31

y

m2 6 (− 1, 0)



4

13.

Moments, Centers of Mass, and Centroids

1





2 x x dx   x 52 5

4



0

( x, y )

64 5

x 1

2

3

4

My 64 3 12 x   m 5 16 5

 

 x, y  

125 , 34

 

1

15.

m

x 2  x 3 dx  

0 1

Mx  

Mx  12 12   m 35  35

 



1

My  

 x, y  



0



 12

y

1



x4



x6

0

xx 2  x 3 dx  



x 3  x 4 dx  

4

5 1 0



 20

x 1 4

1 2

3 4

1

35 , 12 35 

  

x 2  4x  2  x  2 dx   

0

 2



3

x 2  5x  4x 2  3x dx 

0



x5

11x 3



3 0



 2

x3

3x 2

3 0



9 2

y 6



( x, y )

1 −1



3

x x 2  4x  2  x  2 dx  

0

 

32 , 225

2

99 5

3

0

3

x 4  8x 3  11x 2  12x dx

0

 

My 27 2 3 x   m 4 9 2

5 4

3

Mx 99 2 22   m 5 9 5



3  2 

x 2  4x  2  x  2 x 2  4x  2  x  2 dx 2

  2x 4   6x 2 2 5 3

My  

 x, y  

 x4  x5 

 

Mx  

y

3 4

( x, y )

0

0 3





My  12 3   m 20  5

m





1

  35 0 1

1 4

3

17.

 x5 x7   dx  2 5 7

1 2

1

0

x

4 1

3

x 2  x 3 2  x  x 3 dx  2 2

0

y

 x3  x4 



x 3  3x 2 dx   



x4  x3 4

3 0



27 4

x 1

2

3

4

5

32

Chapter 6

Applications of Integration

 

8

19.

m

x 23 dx  

0 8

Mx  

 35 x 

96 5



0

x 23 23  3 73 x  dx  x 2 2 7



0



8

y



0

6

192 7

4

Mx 192 5 10   m 7 96 7

y

 



8

My  

2

( x, y ) x





3 xx 23 dx   x 83 8

0

2

8 0

 96

4

6

8

−2

 

My 5 5  96 m 96

x





10 7

 x, y   5 ,

  2

21.

8

53

m  2



4  y 2 dy  2 4y 

0

2

My  2

0



y3 3

2 0



32 3

y

4  y2 8 y5 4  y 2 dy   16y  y 3  2 3 5







2 0

2

256 15



1

( x, y ) x

My 256 3 8 x   m 15 32 5

 

1

−2

85 , 0

  

3

23.

m

2y  y 2  y dy  

0 3

My  

0

 2



 3y2

3

 y 4  4y 3  3y 2 dy 

0



  

3 0



0

1

x 2  x 4 dx 

0

1

x 2  x 3 dx 

2



x3 3





1 0

1 x3 x5  2 3 5



1 6





1 0





1 1 1 1   2 3 5 15

 x3  4   13  4  12 3

x4

 y  y 23y  y 2 dy

( x, y )

0

27 10



 1

3

3y 2  y 3 dy   y 3 

0

2 x





3

x  x 2 dx 

y 3

1

−3

−2

x

−1

1 −1

y 2y  y 2  y dy  

1

0

9 2

 



My 



0



 

3 3  x, y    , 5 2

1 2

3

Mx 27 2 3   m 4 9 2

y

Mx 



y3 3



0

A



 y5  y4  y3 2 5

3

Mx  

2

2y  y 2  y  2y  y 2  y dy  2 2

My 27 2 3   m 10 9 5

x

25.

3

−1

By symmetry, M x and y  0.

 x, y  

2

1 0

1

1

y4 4



3 0



27 4

Section 6.6

   3

27.

A



0

Mx 

3

1 2



3 0

2

0

2x 2  8x  8 dx 

0

2x 2  4x dx 

0

  

3

2x 3

33

 9  12  21

3

2x  4 dx 

3

My 



2x  4 dx  x 2  4x

Moments, Centers of Mass, and Centroids



 2x 2

3

3



2x 3

 4x 2  8x

3 0

 18  36  24  78

 18  18  36

0

5

29. m  

10x 125  x 3 dx 1033.0

0

5

Mx  

10x 125  x 3 2

0



 10x 125  x 3  dx

5

My  

10x 2 125  x 3 dx  

0

x

My 3.0 m

y

Mx 126.0 m

10 3





3,124,375 130,208 24

5

 50

x 2 125  x 3 dx 

0

5

125  x 3 3x 2 dx 

0

12,500 5 3105.6 9

400

−1

Therefore, the centroid is 3.0, 126.0.

 

20

31. m  

3 5 400  x 2 dx 1239.76

20 20

Mx  

3 400  x 2 5 3 400  x 2  dx  5 2 20

25  2 y



20

20

400  x 

2 23

dx 20064.27

6 −50

33.

1 A  2ac  ac 2 1 1  A ac x

x  0 by symmetry. Therefore, the centroid is 0, 16.2.

 y

50

 −25

1 2ac



 x, y  

 c

2

0



4ab 4ab y  2 y 2 dy c c





1 2ab 2 4ab 3 y  2y 2ac c 3c 1 ac 1 ac

25 −5

2

c

0



Mx 16.18 m

ac1  12  b c a y  a  b c a y  a  dy

 

c

y

0 c

0







1 2 b abc  2ac 3 3

b c a y  a  b c a y  a dy



y

0

c





2a 2 y  2a dy  c c

2 y2 y3  c 2 3c



c 0



 c

0

y



y2 dy c

c 3

b3 , 3c 

In Exercise 566 of Section P.2, you found that b3, c3 is the point of intersection of the medians. y

(b, c) y = c (x + a) b+a

y=

c b − a (x − a )

( x, y ) x

(−a, 0)

(a, 0)

34

Chapter 6

Applications of Integration

c 35. A  a  b 2 2 1  A ca  b x  y

2 c a  b



c

b c a x  a dx  ca 2 b  b c a x c

x

0

c2

2 1 ca  b 2

 c

0





ac 2 2

  ca  b 2

2 ba 1 x  a dx  c ca  b



ba c



2bc 2

  c

0

 x3  2abc a x2  a x 2

3

2ac 2

2



3ac 2

6 ba c

c

x 2

2

c2b  a

c 0

a  2bc



1 b  a2c  acb  a  a 2c ca  b 3







1 b 2  2ab  a 2c  3acb  a  3a 2c 3ca  b



a 2  ab  b 2 1 b 2  2ab  a 2  3ab  3a 2  3a 2  3a  b 3a  b

0



2ab  a x  a 2 dx c



1 ca  b





  3a  b  3a  b



2

2 b  a x 3 ax 2  ca  b c 3 2



 ax dx 

0

b  a 2 ca  b 3



2

y

a  2bc a 2  ab  b 2 , . Thus,  x, y   3a  b 3a  b





y = b −c a x + a

The one line passes through 0, a2 and c, b2. It’s equation is y 

ba a x . 2c 2

The other line passes through 0, b and c, a  b. It’s equation is y 

a

(0, a) ( x, y )

( c, b)

a  2b x  b. c

(0, 0) x

(c, 0)

b

 x, y  is the point of intersection of these two lines. 37. x  0 by symmetry

y

1 A  ab 2 b

2 1  A ab 2 1 y ab 2 



a

a

−a



b

a 2  x 2 a

  a x  x3 

1 b2 ab a 2



4b 3

 x, y   0,

39. (a)

3 a

2

a

a

 dx



 

b 4a 3 4b  a 3 3 3

 (e) Mx 

y



y=b

 

b  x 2b  x 2 dx 2  b

b

b2  x4 1 x5 d x  b 2x  2 2 5  b

b



 b 2 b  −5 −4 −3 −2 −1

x 1 2 3 4 5

A (b) x  0 by symmetry (c) M y  (d) y >



b

 b

x

2

xb  x 2 dx  0 because bx  x 3 is odd

b b since there is more area above y  than below 2 2

5





b b b b 24 3 3

 b

 b

5

b  x 2 dx  bx 

b

b

4b 2 b



 b b  y

b 2 b







Mx 4b 2 b5 3   b. A 5 4b b3

x3 3



b

 b

Section 6.6

Moments, Centers of Mass, and Centroids

41. (a) x  0 by symmetry

 

40

A2

f x dx 

0

240 20 5560 30  429  226  420  0  278  34 3 3

f x 2 40 10 72160 dx  30 2  4 29 2  226 2  4 20 2  0  7216  2 34 3 3 40 40

Mx  y

Mx 721603 72160   12.98 A 55603 5560

 x, y   0, 12.98 (b) y  1.02 105  x 4  0.0019x 2  29.28 (c) y 

Mx 23697.68 12.85 A 1843.54

 x, y   0, 12.85 43. Centroids of the given regions: 1, 0 and 3, 0 Area: A  4  

2

4 1   3 4  3  4 4

x

y

4 0   0 y 0 4

1 x 1

3

−1 −2

443 , 0 1.88, 0

 x, y  

 32, 0, 5, and 0, 152

y

45. Centroids of the given regions: 0,

7

Area: A  15  12  7  34

6 5

150  120  70 0 x 34 y

1532  125  7152 135  34 34



 x, y   0,

135 34

Mass: 4  2 4 1  2 3 2  3  4  2 2

y0

 x, y  

3 2 1 −4 −3 −2 −1

x 1

2

3

4



47. Centroids of the given regions: 1, 0 and 3, 0

x

4

223 , 0 2.22, 0

49. V  2 rA  2 516  160 2 1579.14

35

36

Chapter 6

Applications of Integration

1 51. A  44  8 2



1 1 y 8 2 ry



4

0

y 4





x3 1 4  x4  x dx  16x  16 3

4 0

8  3

2

8 3

1

V  2 rA  2

838  1283  134.04

53. m  m1  . . .  mn

x 1

2

55. (a) Yes. x, y 

My  m1x1  . . .  mn xn Mx  m1y1  . . .  mn yn x

( x, y )

3

My Mx ,y m m

3

4

56, 185  2  56, 41 18 

(b) Yes. x, y 

56  2, 185   176, 185 

(c) Yes. x, y 

56,  185 

(d) No. 57. The surface area of the sphere is S  4 r 2. The arc length of C is s   r. The distance traveled by the centroid is

y

S 4 r 2   4r. s r

d

r

This distance is also the circumference of the circle of radius y.

(0, y) −r

x

r

d  2 y Thus, 2 y  4r and we have y  2r. Therefore, the centroid of the semicircle y  r 2  x 2 is 0, 2r.



1

59.

A

x n dx 

0

m  A  Mx 

 2

 

 nx  1

1 0



1 n1

 n1

1

x n 2 dx 

0 1

My  

n1

y

 2  2nx  1 2n1



xx n dx  

0

0



 22n  1

1

(1, 1)

y=xn



 n  2 0  n  2 x n2

x

My n  1  m n2

y

Mx n1 n1   m 22n  1 4n  2

Centroid:

1

1

nn  12, 4nn 12

As n → ,  x, y  →  1, 14 . The graph approaches the x-axis and the line x  1 as n → .

x 1

Section 6.7

Section 6.7

Fluid Pressure and Fluid Force

Fluid Pressure and Fluid Force

1. F  PA  62.453  936 lb

3. F  62.4h  26  62.4h6  62.426  748.8 lb

5. h y  3  y L y  4

 

7. h y  3  y L  y  2

3

F  62.4

3  y4 dy

3y  1

3

3

3

 124.8

0



y2  249.6 3y  2



3 0

3  y

0

3  y dy

 249.6

 

F  262.4

0



y2 dy 3

3

0

 1123.2 lb



 124.8 3y 

y

y3 9

3y  1 dy



3 0

 748.8 lb

y 4 4

3 2

2

1

1

x 1

2

3

4 x −2

9. h y  4  y

−1

1

11. h y  4  y

L y  2 y

 

L y  2

4

F  262.4

4  y y dy

0

4y 1 2  y 3 2 dy

 8y3

3 2

24  y dy





0

0

 124.8



2

F  9800

4

 124.8

2



2y 5 2 5



4 0

 9800 8y  y 2

 1064.96 lb

2 0

 117,600 Newtons

y

y 3

3

x −2

1 x −2

−1

1

2

−1

1

2

37

38

Chapter 6

Applications of Integration

13. h y  12  y

L y  10

2y 3

L y  6 



9

F  9800

15. h y  2  y

0

 

2







2y 3  9800 72y  7y 2  9



9 0

2  y10 dy

F  140.7

2y 12  y 6  dy 3

0 2

 1407

 2,381,400 Newtons

2  y dy

0



 1407 2y 

y

y2 2



2

 2814 lb

0

y 9 4 6

3

3 x −3

3

6

x

9

−6 −4 −2 −1

2

4

6

−2

17. h y  4  y L y  6

 

19. h y  y L y  2

4

F  140.7

4  y6 dy

4

4  y dy

0



 844.2 4y 



y2 4 2

0

 

2

0

F  42

0

 844.2

12 9  4y

 6753.6 lb

3 2

y 9  4y 2 dy

0



42 8



 214 23 9  4y  

y

3 2

9  4y 2 1 2 8y dy 0

2 3 2

3 2

 94.5 lb

y

5 2 3 1

x

1

−2

x −3 −2 −1 −1

1

2

−1

1

2

−1

3

−2

21. h y  k  y

y

water level

L  y  2 r 2  y 2



r

r

Fw

r

k  y r 2  y 2 2 dy

 

r

 w 2k

r



−r

r

r 2  y 2 dy 

r



r 2  y 2 2y dy

r

x

−r

The second integral is zero since its integrand is odd and the limits of integration are symmetric to the origin. The first integral is the area of a semicircle with radius r.



F  w 2k

r2  0  wk r 2 2



Section 6.7 23. h y  k  y

Fluid Pressure and Fluid Force

39

25. From Exercise 22:

L y  b

F  641511  960 lb



h 2

Fw

k  yb dy

h 2



y2 2

 wb ky 



h 2 h 2

 wbhk  wkhb

y

water level h 2

−b 2

x

b 2 −h 2

27. h y  4  y



4

F  62.4

4  y L  y dy

0

Using Simpson’s Rule with n  8 we have:

4380 0  43.53  235  42.58  229  41.510  2110.25  40.510.5  0

F 62.4

 3010.8 lb 29. h y  12  y L y  2 4 2 3  y 2 33 2



4

F  62.4

212  y4 2 3  y 2 33 2 dy

0

31. (a) If the fluid force is one half of 1123.2 lb, and the height of the water is b, then h y  b  y L  y  4



b

6448.73 lb

F  62.4

0

y

1 b  y4 dy  1123.2 2



b

10 8

by  2  y2

6 4

x −6 −4 −2

b  y dy  2.25

0

2

4

6

b2 

b 0

 2.25

b2  2.25 2 b2  4.5 ⇒ b 2.12 ft.

(b) The pressure increases with increasing depth.



d

33. F  Fw  w

c

hyLy dy, see page 471.

40

Chapter 6

Applications of Integration

Review Exercises for Chapter 6



5

1. A 

1

 

1 1 dx   x2 x

5 1





1 dx x2  1





1

4 5

3. A 

y

1

 arctan x (1, 1)

1

1 1

      4 4 2

 

 1 5,, 25

y

x 2

3

(5, 0)

4

(1, 0)

2

1,,

1

1 2

1,

1 (−1, 0)





1

5. A  2



1 (1, 0)

x

2

x  x 3 dx

7. A 

0

e 2  e x dx

0

 12 x

2

1 2

2

1  x4 4





1



 xe 2  e x

0

2 0

 e2  1

1 2

y y

(0, e 2) (2, e 2)

6 1

(1, 1)

4

x

(0, 0) 1

1

(0, 1) x

1

1

2

3

1

( 1,

9. A 

1)



5 4

 4

11. A 

3  8x  x 2  x 2  8x  3 dx

0





 cos x  sin x

5 4

8



 4

 12  12   12  12



4  2 2 2





16x  2x 2 dx

0





 

8

sin x  cos x dx





2  8x 2  x 3 3



8 0



512 170.667 3

20

(8, 3)

−4

(0, 3)

− 16

10

Review Exercises for Chapter 6 13. y   1  x 

2

  1

A

0

2

(0, 1)

1  x  dx 2

−1

2

(1, 0)

1



1  2x 1 2  x dx

−1

0





4 1  x  x3 2  x 2 3 2

1 0

1 0.1667 6



15. x  y 2  2y ⇒ x  1   y  12 ⇒ y  1 ± x  1

 

0

A

1

 1  x  1    1  x  1  dx 

2

A



2

0   y 2  2y dy 

0

0



y 3

0

1



2 x  1 dx

1 2y  y 2 dy  y 2  y 3 3

(0, 2)



2 0



1

4 3

(0, 0) −2

x

−1

2 −1

    2

17. A 

x 2

1 1

0

2



0

x dx  2

y1

 dx  

3

y

1  x  2 dx 3

2

3

3  x dx

2

2

(2, 0) x

y  x  2 ⇒ x  y  2, y  1

 

(3, 1)

(0, 1)

x ⇒ x  2  2y 2 1

3

1

A

 y  2  2  2y dy

0 1



3y dy 

0

 32 y 

1

2

0



3 2

19. Job 1 is better. The salary for Job 1 is greater than the salary for Job 2 for all the years except the first and 10th years. 21. (a) Disk



(b) Shell

4

V

x 2 dx 

0

 3x 

3 4 0



64 3



x 2 dx 

 23 x 

2

4

4

V  2

0

y

y

4

4

3

3

2

2

1

1 x 1

2

3

—CONTINUED—

4

x 1

3

4

3

0



128 3

41

42

Chapter 6

Applications of Integration

21. —CONTINUED— (c) Shell

 

(d) Shell

4

V  2

V  2

0 4

 2

 

4

4  xx dx

6  xx dx

0 4

4x  x 2 dx

 2

0

6x  x 2 dx

0



 2 2x 2 

x3 3



4 0



64 3



1  2 3x 2  x 3 3

y



4 0



160 3

y 5

4

4 3 3 2

2 1

1

x 1

x 1

23. (a) Shell

2

(b) Disk



4

V  4

x

0

3



  212316  x  

 4

3 16  x 2 dx 4

 3 

2

V  2

0

4

2 3 2

0

 64



3 16  x 2 4





4 0



4

2

2 1 x

−3 −2 −1

2

1

3

−3 −2 −1

−2

−2

−4

−4

x 1

2

3

y

 

1

V  2

0

1

0

x dx x4  1

1

2x dx x 2 2  1 x





  arctan x  

2

1

1

0

 4  0  4

2

2

dx

 48

y

4

1



5

9 x3 16x  8 3

y

25. Shell

4

−1

3

Review Exercises for Chapter 6 27. Shell

y 3

u  x  2 x

43

2

2

u2

1 x

dx  2u du

 

1

6

V  2

2 2

 4

0

1  x  2

1

dx  4

u 3  2u du  4 1u

3 u

 4

3



2

x



0

u 2  2u du 1u

2

u2  u  3 

0



1  u 2  3u  3 ln 1  u 2



2

3

4

5

6

−1

2 0



−2 −3



3 du 1u

4 20  9 ln 3 42.359 3

0

29. Since y ≤ 0, A  

31. From Exercise 23(a) we have: V  64 ft 3

x x  1 dx.

1

1 V  16 4

ux1 xu1 dx  du



1

A





1

u  1 u du  

0





Disk:



1 0



16 9  y 2 dy  16 9



y0

3

9  y 2 dy  1

9y  31 y 

4 15

y0

3

9y

y

0

3

9



1  y03  27  9  9 3 y03  27y0  27  0

x

−1

3

1 9

u 3 2  u 1 2 du

0

2 5 2 2 3 2 u  u 5 3



y0

By Newton’s Method, y0 1.042 and the depth of the gasoline is 3  1.042  1.958 ft.

−1

33.

4 f x  x 5 4 5

35.

f x  x 1 4

y  300 cosh y 

1  f x 2  1  x u  1  x x  u  1 2 dx  2u  1 du

  4

s



0

u u  1 du

1

3

u 3 2  u 1 2 du

2

1

2 

 25 u

5 2



2  u 3 2 3

3 1







4 3 2 u 3u  5 15

8  1  6 3  6.076 15

3 x sinh 20 2000

s





1 20

2000

2000





x 1   203 sinh 2000 

2000

2000

2

dx

x 400  9 sinh 2000  dx 2

4018.2 ft (by Simpson’s Rule or graphing utility)

3

1  x dx  2



x 2000   280, 2000 ≤ x ≤ 2000

3 1

44

Chapter 6

Applications of Integration

3 37. y  x 4

39. F  kx y 

1   y  2 

4  k1

3 4

F  4x

25 16

W

5

 4

S  2



0

 

4x dx  2x 2

0

3 x 4

15 dx    25 16 8 2

x2 4 0

 50 in

 15

5 0

 lb 4.167 ft  lb

y 4

(4, 3) 3

2 1 x 1

2

3

4

13 y 2

41. Volume of disk: 

Weight of disk: 62.4

43. Weight of section of chain: 5 x Distance moved: 10  x

 13 y 2

Distance: 175  y 62.4 9

W





10

W5

0

150

175  y dy 

0

62.4 y2 175y  9 2









5 10  x dx   10  x 2 2  250 ft  lb

150 0

 104,000 ft  lb 163.4 ft  ton

 

b

45. W 

Fx dx

a 4

80 

ax 2dx 

0



ax 3 3

4 0



64 a 3

380 15 a   3.75 64 4

 a

47. A 

a  x

0

6 1  A a2 x

6 a2



a

0



a6  12 



 x, y  

2

3 a2



 a

0

0





4 1 a  2 a x 1 2  x dx  ax  a x 3 2  x 2 3 2

x  a  x  2 dx  a

y

 2 dx 

6 a2



a 0



a2 6

a

ax  2 a x 3 2  x 2 dx

y

0

 a  x  4 dx

a

( x, y )

a

a 2  4a 3 2x 1 2  6ax  4a 1 2x 3 2  x 2 dx

0





3 2 8 8 1 a x  a 3 2x 3 2  3ax 2  a 1 2x 5 2  x 3 a2 3 5 3

a5 , 5a

a

a 0



a 5

x

10 0

Review Exercises for Chapter 6 49. By symmetry, x  0.



y

1

A2



a 2  x 2 dx  2 a 2x 

0

x3 3



a

4a 3 3



0

a2

1 3  A 4a 3

( x, y )

4a3  12 

a

y 

3

a



a 2  x 2 2 dx

−a

a 4  2a 2x 2  x 4 dx

0





a



2a 2 3 1 5 6 4 x  x 3 a x  8a 3 5



6 2 5 1 5 2a 2 5  3 a  a  a 8a 3 5 5





x

a

6 8a 3

 x, y   0,

a

0



2a 2 5



51. y  0 by symmetry

y 4

For the trapezoid:

   6

x

0

6



1

 

1 1 x1   x1 6 6







x



x3

−1

dx

1 2 x  2x dx   x2 3 9

0

6 0

−2 −3 −4

 60

For the semicircle: m

122  2 2



8

My 

x 4  x  6 2    4  x  6 2  dx  2

6



8

x 4  x  6 2 dx

6

Let u  x  6, then x  u  6 and dx  du. When x  6, u  0. When x  8, u  2.



2

My  2



2

u  6 4  u 2 du  2

0

  234  u   1

2

2

2 3 2

0

 12





2

u 4  u 2 du  12

0

 2 

x

 2 2 16 4 4  9  12   4 3 3



4 4  9 3

180  4 4  9 3

The centroid of the blade is

1

 2 9   

 , 0. 239  49 9

4  u 2 du

0

Thus, we have: x 18  2   60 

(6, 2)

2

m  46  16  18 My 

y = 61 x + 1

3

29  49 3  9

1

2

3

4

5

7

(6, −2)

45

46

Chapter 6

Applications of Integration

53. Let D  surface of liquid;   weight per cubic volume.

 

d

F

D  y f  y  g y dy

c

d





D  f  y  g y dy 

c



d

c

y  f  y  g y dy

 

d

  f  y  g y dy D 

D



d

c



y

c

y  f  y  g y dy

d

 f  y  g y dy

c

d f

c



x

 AreaD  y   Areadepth of centroid

Problem Solving for Chapter 6 1 1 1. T  c c2  c3 2 2



c

R

cx  x2 dx 

0

cx2

2



x3 3



c



0

c3 c3 c3   2 3 6

1 3 c T 2 lim  lim 3 c→0 R c→0 1 c3 6

3. (a)

1 V 2

    1

 2  1  y2   2  1  y2  dy

0

1

2

2

4  41  y2  1  y2  4  41  y2  1  y2 dy



0

1

 8

1  y2 dy

Integral represents 1 4 area of circle

0

 8

4  2

⇒ V  42

2

(b) x  R2  y2  r2 ⇒ x  R ± r2  y2 1 V 2

   r

 R  r2  y2   R  r 2  y2  dy

0

2

2

r



4Rr2  y2 dy

0

1   4R  r2  2 r2 R 4 V  2 2 r 2 R



r

5. V  22  2 

r2  h2 4

23r

2

xr2  x2 dx



 x23 2



x2 + y2 = r2

r

r

r2  h2 4

4 h3  h3   which does not depend on r! 3 8 6

( x, y )

g

2 r2 − h 4 r

h 2

Problem Solving for Chapter 6 (b) Tangent at Aa, a3: y  a3  3a2x  a

7. (a) Tangent at A: y  x3, y  3x2 y  1  3x  1

y  3a2x  2a 3

y  3x  2

x3  3a2x  2a3  0

To find point B:

x  a2x  2a  0 ⇒

x3  3x  2

To find point B:

B  2a, 8a3

x3  3x  2  0

x  12x  2  0 ⇒ B  2, 8

y  8a3  12a2x  2a

Tangent at B:

y  x3, y  3x2

Tangent at B:

y  12a2x  16a3

y  8  12x  2

x3  12a2x  16a3  0

To find point C:

x  2a2x  4a  0 ⇒

y  12x  16 x3  12x  16

To find point C:

x3  12x  16  0

 

x  2 x  4  0 ⇒ C  4, 64

Area of R 

2

Area of S 

27 4

x3  3x  2 dx 

4

2

x3  3a2x  2a3 dx 

27 4 a 4

2a

12a2x  16a3  x3 dx  108a4

Area of S  16area of R

12x  16  x3 dx  108 area S  16 area R

Area of S  16area of R



2a

4a

1

Area of S 

 

C  4a, 64a3

a

2

Area of R 

47

x

9. sx 



1  ft2 dt

ds  1  fx2 dx

(a) sx 

ds  1  fx2 dx

(b)



dydx dx 2

ds2  1  fx2dx2  1 

  x

(c) sx 

1

1

2

(d) s2 

32t

2

1 2

2

 x

dt 

9 1  t dt 4

1



9 8 9 1  t dt  1 t 4 27 4

1

 dx2  dy2

This is the length of the curve y  x

3 2



3 2 2 1



22 13 22  13 2.0858 27 27

from x  1 to x  2.

 

 dx  

6

My 

1

6

1

x



5 3 12  35 36 7

2 1

x

−2 −3

3

4

5

6 1

6

(b) m  2



2 1 dx  2 x2 x



6 1

1

5  3

6

My  2

1



35 36

x, y 

3

2

1

1 1 dx   2 x3 x

y

−1

6

1 1 x 3  3 x x

m2

 

b

11. (a) y  0 by symmetry

127, 0

x

1 b2  1 dx  3 x b2

1 2b  1 dx  x2 b

2b  1 b 2b  b2  1 b2 b  1

(c) lim x  lim b→

b→

2b 2 b1

x, y 

b 2b 1, 0

x, y  2, 0

48

Chapter 6

Applications of Integration

13. (a) W  area  2  4  6  12 (b) W  area  3  1  1  2 

15. Point of equilibrium: 50  0.5x  0.125x x  80, p  10

1 1 7 2 2

P0, x0  10, 80

 

80

50  0.5x  10 dx  1600

Consumer surplus 

0

80

Producer surplus 

10  0.125x dx  400

0

17. (a) Wall at shallow end From Exercise 22: F  62.42420  9984 lb (b) Wall at deep end From Exercise 22: F  62.44820  39,936 lb 20

(c) Side wall From Exercise 22: F1  62.42440  19,968 lb

 

F2  62.4

15

y=8 10

4

8  y10y dy

4



8y  y 2 dy  624 4y 2 

0

 26,624 lb Total force: F1  F2  46,592 lb

x = 40

5

0

 624

y

y3 3



4

x 5 10 15 20 25

0

40 45 1x y = 10

C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1

Basic Integration Rules . . . . . . . . . . . . . . . . . . . 308

Section 7.2

Integration by Parts . . . . . . . . . . . . . . . . . . . . . 312

Section 7.3

Trigonometric Integrals . . . . . . . . . . . . . . . . . . . 321

Section 7.4

Trigonometric Substitution . . . . . . . . . . . . . . . . . 328

Section 7.5

Partial Fractions

Section 7.6

Integration by Tables and Other Integration Techniques . . 343

Section 7.7

Indeterminate Forms and L’Hôpital’s Rule

Section 7.8

Improper Integrals

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . 336

. . . . . . . . 348

. . . . . . . . . . . . . . . . . . . . . 353

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1

Basic Integration Rules

Solutions to Even-Numbered Exercises

2. (a)





d x  2 ln x2  1  C  21 x2 2x dx 1 x 1

(b)

d 2x x2  122  2x2x2  12x_ 21  3x2 C   2 dx x2  12 x2  14 x  13

(c)

1 d arctan x  C  dx 1  x2

(d)

2x d lnx2  1  C  2 dx x 1







x dx matches (a). x2  1

4. (a)

d 2x sinx2  1  C  2xcosx2  12x  2 sinx2  1  22x2 cosx2  1  sinx2  1 dx





(b)

d 1 1  sinx2  1  C   cosx2  12x  x cosx2  1 dx 2 2

(c)

d 1 1 sinx2  1  C  cosx2  12x  x cosx2  1 dx 2 2

(d)

d 2x sinx2  1  C  2xcosx2  12x  2 sinx2  1  22x2 cosx2  1  sinx2  1 dx







x cosx2  1 dx matches (c).

6.



2t  1 dt t2  t  2

u  t 2  t  2, du  2t  1 dt Use

12.



du . u



sec 3x tan 3x dx

u  3x, du  3 dx Use

308



sec u tan u du.

8.



2 dt 2t  12  4

10.

u  2t  1, du  2dt, a  2 Use





2x x2  4

u  x2  4, du  2x dx, n  

du . u2  a2

Use

14.



1 dx x x2  4

u  x, du  dx, a  2 Use



dx

du . u u2  a2



un du.

1 2

Section 7.1

309

18. Let u  t  9, du  dt.

16. Let u  x  4, du  dx.



Basic Integration Rules



6x  45 dx  6 x  45 dx  6



x  46 C 6



2 2 dt  2 t  92 dt  C t  92 t9

 x  46  C

20. Let u  4  2x2, du  4x dx.



x 4  2x2 dx  

22.





x



3 dx  2x  32

1 4  2x21 24xdx 4

1   4  2x23 2  C 6



x dx 

3 2





x2 3 2x  31  C 2 2 1



3 x2  C 2 22x  3

24. Let u  x2  2x  4, du  2x  1 dx.



x1 x2  2x  4

dx 



1 x2  2x  41 22x  1 dx 2

 x2  2x  4  C

26.



28.



2x dx  x4



2 dx 



8 dx  2x  8 ln x  4  C x4







1 1 1 1 1 1  dx  3 dx  3 dx 3x  1 3x  1 3 3x  1 3 3x  1 

30.



32.



x 1

1 x



3



sec 4x dx  

1 4



x 1



1 1 1 3x  1 ln 3x  1  ln 3x  1  C  ln C 3 3 3 3x  1





3 1 3  2  3 dx  x x x





x3



3 1 1 1  2 dx  x2  3x  3 ln x   C x x 2 x



sec4x4 dx



34. Let u  cos x, du  sin x dx.



1 ln sec 4x  tan 4x  C 4



sin x cos x



dx   cos x1 2sin x dx  2 cos x  C

2

36. Let u  cot x, du  csc x dx.





csc2 xecot x dx   ecot xcsc2 x dx  ecot x  C

38.



3ex



 

5 dx  5 2 5

3ex

1 2

x

ee dx x

ex dx 3  2ex



5 1 2ex dx 2 3  2ex



5 ln 3  2ex  C 2

2

2x  3 2 dx

310

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals sin x dx cos x

40. Let u  lncos x, du 

tan xln cos x dx  

1  cos  d  sin 





csc  d 



cot  d



ln cos xtan x dx

   

2 1 2 dx  3sec x  1 3 sec x  1

sec x  1

 sec x  1 dx

46.



2 sec x  1 dx 3 tan2 x



2 sec x 2 dx  cot2 x dx 3 tan2 x 3



2 cos x 2 dx  csc2 x  1 dx 3 sin2 x 3



2 1 2 2   cot x  x  C 3 sin x 3 3





3 dt  3 arctan t  C t2  1

 



2   csc x  cot x  x  C 3 1 1 50. Let u  , du  2 dt. t t

48. Let u  3 x, du  3 dx.







3 1 1 dx dx  4  3x2 3 4   3x 2





3 x 1 arctan C 2 2 3

52.



54.



56.

dy  tan22x, 0, 0 dx

1

x  1 4x2  8x  3 1 1  4x  x2

dx 



dx 

2

2x  1 2x  12  1 1

5  x2  4x  4

y

(a)



(b)

1

dx 





tan22xdx 



e1 t 1 dt   e1 t 2 dt  e1 t  C t2 t





dx  arcsec 2x  1  C

1 5  x  22

dx  arcsin



sec22x  1 dx 

x 52  C

a  5

1 tan2x  x  C 2 1.2

0, 0: 0  C x

−0.6

0.6

y

1 tan2x  x 2

− 1.2

1.2

−1

58.

− 1.2

60. r 

(0, 1) 5

−2

2 −2

 ln csc   cot   ln sin   C

 lncos x2 C 2







 tan x dx

 44.

42.



 

1  et2 dt  et



1  2et  e2t dt et

et  2  et dt  et  2t  et  C

Section 7.1 62. Let u  2x, du  2 dx. y



1 dx  x 4x2  1



Basic Integration Rules

64. Let u  sin t, du  cos t dt.





2 dx 2x 2x2  1

sin2 t cos t dt 

0



 13 sin t 3

0

0



 arcsec 2x  C

66. Let u  1  ln x, du 



e

1

1  ln x dx   x



68.

1

e

1  ln x

1





4

0

72.



1 25  x2



dx  arcsin

x 5



4 0

x2 dx  x

e



1

 arcsin





2

1

1



2 dx x



1x dx

1   1  ln x2 2

70.



2

1 dx. x



2

 x  2 ln x

1

 1  ln 4  0.386

1 2

4  0.927 5 6

4 x2 1 x2 dx  lnx2  4x  13  arctan C x2  4x  13 2 3 3 `





−10

10

The antiderivatives are vertical translations of each other. −6

74.



ex  ex 2



3

dx 

1 3x e  9ex  9ex  e3x  C 24



sec u tan u du  sec u  C

76.

The antiderivatives are vertical translations of each other. 5

−5

5

−5

78. Arctan Rule:





du 4 1  arctan C a2  u2 a a

1 82. f x  x3  7x2  10x 5



5

f x dx < 0 because

80. They differ by a constant: sec2 x  C1  tan2 x  1  C1  tan2 x  C.



2

84.

0

4 dx  4 x2  1

86. A 

sin 2x dx

0



Matches (d).

0



 2

y

more area is below the x-axis than above.

 2



1   cos 2x 2

0

1

y

3

1

5 2 1 2

1 0

5 x 1

−5

2

3

4

x π 4

π 2

311

312

Chapter 7



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

2

88.

2 x2 dx

0



2

A

(c) Let f x  x over the interval 0, 2. Revolve this region about the y-axis.

(b) Let f x  2 x over the interval 0, 2. Revolve this region about the x-axis.

(a) Let f x  2 x2 over the interval 0, 2.

2 x2 dx

 

V

V  2



2

2 x dx

0

y

f ( x) =



2π x 2

20



xx dx

0

2



2

25



2

2

0

2 x2

dx

2 x2 dx

0

0

y 15

y

10 3

f ( x) =

2x

2

f ( x) = x

5 x 1

2

2

1

1 x 1

x 1

90. (a) (b)

1  n  0

 

 n

sinnx dx 

0 3

1 



 n



sinnxn dx  

0





1 1 dx  arctan x 3  3 31  x2 6 1

3 3



y 

 n



1 cosnx 

94.

1

0



2 

y  x 2 3 y 

x

1  y 2  1 

 

1 x1  x x 2 x

0

2 3x1 3

1   y 2  1 

x x 1 dx

9

S  2

3

1 arctan 3 3

y  2 x

92.

2

2

4 9x 2 3

 8

s

1

1

4 dx  7.6337 9x2 3

9

 2

2 x  1 dx

0

 3 x  1 

 4 

2

3 2

9 0

8  10 10  1  256.545 3

y 12 9 6 3 x 3

6

Section 7.2 2.

9

12

Integration by Parts

d 2 x sin x  2x cos x  2 sin x  x2 cos x  2x sin x  2x sin x  2 cos x  2 cos x  x2 cos x. Matches (d) dx

Section 7.2

Integration by Parts



4.

1 d x  x ln x  1  x  ln x  ln x. Matches (a) dx x

6.



x2 e2x dx

8.

u  x2, dv  e2x dx

12. dv  ex dx ⇒

ln 3x dx

10.

u  ln 3x, dv  dx



v

ex dx  ex

ux

⇒ du  dx





2



x dx  2 xex dx ex





14.



x2 cos x dx

u  x2, dv  cos x dx





e1 t 1 dt   e1 t 2 dt  e1 t  C t2 t

 



ex dx  2xex  ex C

 2 xex 

 2xex  2ex  C

16. dv  x 4 dx ⇒

⇒ du 

u  ln x



x 4 ln x dx  

20. dv 



v

⇒ du 

2









1 dx  x ln x 3

x5 x5 1 1 4 dx  ln x  x dx 5 x 5 5 

x5

5 ln x  1  C 25

1 1 dx   x2 x

1 dx x



1 ln x 1  C dx   x2 x x

v



x2  1 2 x dx  

1 2 x2  1

⇒ du  2x3ex  2xex dx  2xex x2  1 dx 2

2

2

x3ex x2ex dx   2  2

 1 2 x  1 x2

24. dv 

1 dx ⇒ v  x2

u  ln 2x ⇒ du 





x dx ⇒

x2  1 2

u  x2ex



x5 1 ln x  x5  C 5 25

ln x ln x  dx   x2 x

22. dv 

18. Let u  ln x, du 

1 dx x

x5 ln x  5

1 dx ⇒ x2

u  ln x

x5 5

v





2

2

2

xex dx   2

2

1 1 dx   x2 x

1 dx x

ln 2x ln 2x dx    x2 x



2

x2ex ex ex  C C 2 2 2 x  1 2 2 x  1

ln 2x  1 1 ln 2x 1 dx    C C x2 x x x

1 dx. x



ln x 3

1x dx  2 1 ln x

2

C

313

314

Chapter 7

26. dv 

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1 2  3x

dx ⇒

2

2  3x 1 2 dx  2  3x 3

⇒ du  dx

ux





v

x 2  3x



2x 2  3x 2 2  3x dx  3 3

dx 

2x 2  3x 4 2 2  3x 2 2  3x  2  3x 3 2  C  9x  2 2  3x   C 

3x  4  C 3 27 27 27



28. dv  sin x dx ⇒

v  cos x

⇒ du  dx

ux





x sin dx  x cos x 

cos x dx  x cos x  sin x  C

30. Use integration by parts twice. (2) u  x, du  dx, dv  sin x dx, v  cos x

(1) u  x2, du  2x dx, dv  cos x dx, v  sin x









x2 cos x dx  x2 sin x  2 x cos x 

x2 cos x dx  x2 sin x  2 x sin x dx



 x2 sin x  2x cos x  2 sin x  C

32. dv  sec tan d ⇒

v



sec tan d  sec

34. dv  dx

⇒ du  d

u



 sec tan d   sec 

v





sec d



  

v



(2) dv  e x dx ⇒

e x dx  e x

v







ex cos 2x dx  ex cos 2x  2 ex sin 2x dx  ex cos 2x  2 ex sin 2x  2 ex cos 2x dx

5 e x cos 2x dx  ex cos 2x  2ex sin 2x e x cos 2x dx 

38. dv  dx



ex

cos 2x  2 sin 2x  C 5

vx

u  ln x ⇒ du 

1 dx x

y  ln x y



ln x dx  x ln x 

 x

x 1  x2



e x dx  e x

u  sin 2x ⇒ du  2 cos 2x dx

u  cos 2x ⇒ du  2 sin 2x dx





dx



dx

 4 x arccos x  1  x2  C

36. Use integration by parts twice. ⇒

1 1  x2

4 arccos x dx  4 x arccos x 

  sec  ln sec  tan  C

(1) dv  e x dx

dx  x

u  arccos x ⇒ du  





1 dx  x ln x  x  C  x 1  ln x  C x



cos x dx

Section 7.2 40. Use integration by parts twice. (1) dv  x  1 dx ⇒

v

315



2

x  1 1 2 dx  x  1 3 2 3

⇒ du  2x dx

u  x2

(2) dv  x  1 3 2dx ⇒

v



2

x  1 3 2 dx  x  1 5 2 5

⇒ du  dx

ux y

Integration by Parts



x 2 x  1 dx





2 4 4 2 2 2  x2 x  1 3 2  x x  1 3 2 dx  x 2 x  1 3 2  x x  1 5 2  3 3 3 3 5 5





x  1 5 2 dx

2 x  1 3 2 2 8 16  x 2 x  1 3 2  x x  1 5 2 

x  1 7 2  C 

15x2  12x  8  C 3 15 105 105



42. dv  dx u  arctan y



v



dx  x



1 2 1 x ⇒ du  dx  dx 2 1  x 2 2 2 4  x2

arctan

x x dx  x arctan  2 2

y

44. (a)

(b)

4



x 2x dx  x arctan  ln 4  x 2  C 4  x2 2

y x

−6



dy 18  ex 3 sin 2x, 0,  dx 37





ex 3 sin 2x dx

Use integration by parts twice.

4

(1) u  sin 2x, du  2 cos 2x −4

dv  ex 3 dx, v  3ex 3



ex 3 sin 2x dx  3ex 3 sin 2x 



6ex 3 cos 2x dx

(2) u  cos 2x, du  2 sin 2x dv  ex 3 dx, v  3ex 3

  



ex 3 sin 2x dx  3ex 3 sin 2x  6 3ex 3 cos 2x 



37 ex 3 sin 2x dx  3ex 3 sin 2x  18ex 3 cos 2x  C y

ex 3 sin 2x dx 



1 3ex 3 sin 2x  18ex 3 cos 2x  C 37

18 1 :  0  18  C ⇒ C  0 0, 18 37  37 37 y



1 x 3 3e sin 2x  18ex 3 cos 2x 37



6ex 3 sin 2x dx  C

316

46.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

dy x  sin x, y 0  4 dx y

48. See Exercise 3.

(0, 4)

8



1



0

−5



x2e x dx  x2e x  2xe x  2e x

1 0

 e  2  0.718

10 −2

50. dv  sin 2x dx ⇒



1 sin 2x dx   cos 2x 2

v

⇒ du  dx

ux



1 1 x sin 2x dx  x cos 2x  2 2 

52. dv  x dx



Thus,





cos 2x dx

x arcsin x2 dx 

1 1 x cos 2x  sin 2x  C 2 4

x sin 2x dx 

0

v

u  arcsin x2 ⇒ du 

1  sin 2x  2x cos 2x  C 4 





 14 sin 2x  2x cos 2x 

0

  . 2



2x

dx

1  x4



x3 dx 1  x 4



1 x2 arcsin x2  2 1  x 4 1 2  C 2 4



1 2 x arcsin x2  1  x 4  C 2

x arcsin x2dx 

0

x2 2

x dx 

x2 arcsin x2  2

1

Thus,





1    2 . 4 54. Use integration by parts twice. (1) dv  ex, v  ex, u  cos x, du  sin x dx



ex cos x dx  ex cos x 



ex sin x dx

(2) dv  ex dx, v  ex, u  sin x, du  cos x dx





ex cos x dx  ex cos x  ex sin x 







ex cos x dx ⇒ 2 ex cos x dx  ex sin x  ex cos x

Thus,



2

ex cos x dx 

0





56. dv  dx

x

e

e 2

sin x  ex cos x 2

2

v

u  ln 1  x2 ⇒ du 



1

0



0

1 2

dx  x

2x dx 1  x2

 

 x ln 1  x2  2



2



ln 1  x2 dx  x ln 1  x2 

Thus,



sin 2  cos 2 

2x2 dx 1  x2 1



1 dx  x ln 1  x2  2x  2 arctan x  C 1  x2



ln 1  x2 dx  x ln 1  x2  2x  2 arctan x

1 0

 ln 2  2 

 . 2



1 2 x arcsin x2  1  x 4 2

1 0

Section 7.2 58. u  x, du  dx, dv  sec2 x dx, v  tan x



x sec2 x dx  x tan x 

60.







 4

tan x dx



2











4  ln 22   0



 1  ln 2 4 2







x3 cos 2x dx  x3

u and its derivatives



x3

e2x



3x2

 2e2x



6x

1 2x 4e



6

 8e2x



0

1 2x 16 e



2 8 16 x2 x  2 3 2dx  x2 x  2 5 2  x x  2 7 2 

x  2 9 2  C 5 35 315 

76.



5

0

68. Yes. u  ln x, dv  x dx

v and its antiderivatives

u and its derivatives



x3



3x2

1 2

6x

 14

cos 2x



6

 18

sin 2x



0

1 16

Alternate signs

u and its derivatives



x2



2x

2 5

x  2 5 2



2

4 35

x  2 7 2



0

8 315

x  2 9 2

2

x  2 5 2 35x2  40x  32  C 315

66. Answers will vary. See pages 488, 493.

4 sin  d 

1

Alternate signs





1

2

1  4x3 sin 2x  6x2 cos 2x  6x sin 2x  3 cos 2x  C 8

74.

v and its antiderivatives

Alternate signs

12 sin 2x  3x  41 cos 2x  6x 81 sin 2x  6161 cos 2x  C

3 3 3 1  x3 sin 2x  x2 cos 2x  x sin 2x  cos 2x  C 2 4 4 8

64.

 4

0

1 1 2x 1 1 x 3e2x dx  x 3  e2x  3x2 e2x  6x  e2x  6 e C 2 4 8 16 1   e2x 4x3  6x2  6x  3  C 8

62.

x sec x dx  x tan x  ln cos x

0



317

Hence,





Integration by Parts

70. No. Substitution.

cos 2x sin 2x

cos 2x

v and its antiderivatives

x  2 3 2

72. No. Substitution.

1   4 cos   4  3 sin   12  2 cos   24  sin   24 cos   C 5

x 4 25  x2 3 2 dx 



1,171,875 arcsin x 5 x 2x2  25 25  x2 5 2 625x 25  x2 3 2 46,875x 25  x2    128 16 64 128

 14,381.0699



5 0

318

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

78. (a) dv  4  x dx ⇒

v



2

4  x 1 2 dx  4  x 3 2 3

⇒ du  dx

ux

 x

2 2 4  x dx  x 4  x 3 2  3 3



4  x 3 2 dx

4 2 2  x 4  x 3 2  4  x 5 2  C  4  x 3 2 3x  8  C 3 15 15 (b) u  4  x ⇒ x  u  4 and dx  du



x 4  x dx 



u  4 u1 2du 



u3 2  4u1 2 du

8 2 2  u5 2  u3 2  C  u3 2 3u  20  C 5 3 15 

2 2

4  x 3 23 4  x  20  C  4  x 3 2 3x  8  C 15 15

80. (a) dv  4  x dx ⇒

v



4  x 1 2 dx

82. n  0:

2   4  x 3 2 3 ⇒ du  dx

ux



2 2 x 4  x dx   x 4  x 3 2  3 3



n  1: n  2:

4  x

3 2 dx

4 2   x 4  x 3 2  4  x 5 2  C 3 15

(b) u  4  x ⇒ x  4  u and dx  du



 

  4u1 2  u3 2 du 2 8   u3 2  u5 2  C 3 5

u  xn



xex dx  xex  ex  C  xex 



ex dx

x2ex dx  x2ex  2xex  2ex  C



n  3:



x3ex dx  x3ex  3x2ex  6xex  6ex  C



 x3ex  3 x2e x dx



n  4: x 4ex dx  x 4ex  4x3ex 12x2ex 24xex  24ex C

x 4  x dx   4  u u du

84. dv  cos x dx ⇒

ex dx  ex  C

 x2ex  2 xex dx

2   4  x 3 25x  2 4  x   C 15 2   4  x 3 2 3x  8  C 15

  



2 3 2 u 20  3u  C 15



2

4  x 3 220  3 4  x   C 15



2

4  x 3 2 3x  8  C 15

v  sin x

⇒ du  n x n1 dx



x n cos x dx  xn sin x  n xn1 sin x dx



 x 4ex  4 x3ex dx In general, x nex dx  xnex  nx n1ex dx. (See Exercise 86)

1 86. dv  eax dx ⇒ v  eax a u  x n ⇒ du  nx n1 dx



x neax dx 

x neax n  a a



x n1eax dx

Section 7.2

Integration by Parts

88. Use integration by parts twice. 1 v  eax a

(1) dv  eax dx ⇒

u  cos bx ⇒ du  b sin bx



eax cos bx dx  



Therefore, 1 

eax cos bx b  a a

u  sin bx ⇒ du  b cos bx



eax sin bx dx 

eax cos bx beax sin bx b2   2 a a2 a b2 a2

e

ax

1 v  eax a

(2) dv  eax dx ⇒





eax cos bx b eax sin bx b   a a a a





eax cos bx dx

eax cos bx dx

eax a cos bx  b sin bx a2

cos bx dx 



eax a cos bx  b sin bx  C. a2  b2

eax cos bx dx 

90. n  2 (Use formula in Exercise 84.)





x2 cos x dx  x2 sin x  2 x sin x dx (Use formula in Exercise 83.) n  1



 x2 sin x  2 x cos x 





cos x dx  x2 sin x  2x cos x  2 sin x  C

92. n  3, a  2 (Use formula in Exercise 86 three times.)



x3e2x dx 

x3e2x 3  2 2

1 A 9 

1 9



x2e2x dx n  3, a  2









x3e2x 3 x2e2x   2 2 2



x3e2x 3x2e2x 3 xe2x 1    2 4 2 2 2



e2x 3

4x  6x2  6x  3  C 8

xe2x dx n  2, a  2



94. dv  ex 3 dx ⇒ ux



v  3ex 3





e2x dx 

x3e2x 3x2e2x 3xe2x 3e2x     C n  1, a  2 2 4 4 8

96. A 

x 3

xe



0

⇒ du  dx

3





  See Exercise 83.

dx

3

0

3xe   3 e x 3

3

3

x 3

0

0

1 9  9ex 3  9 e







dx

 0

1 1 2     1  1   0.264 e e e 0.4

−1

4

− 0.1

−1

4

3

−1





x sin x dx  x cos x  sin x

0

319

320

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

98. In Example 6, we showed that the centroid of an equivalent region was

1,  8 . By symmetry, the centroid of this region is  8, 1 . π 2

You can also solve this problem directly.

 1

A

0

   arcsin x dx  x  x arcsin x  1  x2 2 2





 My  A

x

Mx  A

y

  1

x

0

1

0

y



1 0

Example 3

x 1

2  2  0  1  1

   arcsin x dx  2 8



 2  arcsin x   arcsin x dx  1 2 2



 



2

100. (a) Average 

1 4

(b) Average 









2

1.6t ln t  1 dt  0.8t2 ln t  0.4t2  t

1

1.6t ln t  1 dt  0.8t2 ln t  0.4t2  t

3

4 3

 3.2 ln 2  0.2  2.018  12.8 ln 4  7.2 ln 3  1.8  8.035

102. c t  30,000  500t, r  7%, t1  5





5

30,000  500t e0.07t dt  500

P

0

5

60  t e0.07t dt

0

Let u  60  t, dv  e0.07t dt, du  dt, v  

 60  t  1007 e 

P  500

0.07t

5 0



100 0.07t e . 7





5

100 7

e0.07t dt

0

e    $131,528.68  60  t  1007 e    10,000 49

 500





104.



0.07t

5

0.07t

0

0

x 2 cos nx dx 



5





x2 2 2x sin nx  2 cos nx  3 sin nx n n n



2 2 cos n  2 cos n n2 n



4 cos n n2





44 n n ,, ifif nn isis even odd



1 n 4 n2



2 2

106. For any integrable function,  f x dx  C   f x dx, but this cannot be used to imply that C  0.

 2 , sin x ≤ 1 ⇒ x sin x ≤ x ⇒ 

108. On 0,



 2

0

x sin x dx ≤



 2

0

x dx.

Section 7.3

Trigonometric Integrals

321

110. fx  cosx, f 0  2 (a) It cannot be solved by integration.

Section 7.3

(b) You obtain the points 4

n

xn

yn

0

0

2

1

0.05

2.05

2

0.10

2.098755

3

0.15

2.146276

 



80

2.8403565

4.0

0

4 0

Trigonometric Integrals

2. (a) y  sec x ⇒ y  sec x tan x  sin x sec2 x.

(b) y  cos x  sec x ⇒ y  sin x  sec x tan x  sin x  sec2 x sin x

Matches (iii)

 sin x1  sec2 x  sin x tan2 x Matches i (c) y  x  tan x 

1 3 tan x ⇒ y  1  sec2 x  tan2 x sec2 x 3  tan2 x  tan2 x1  tan2 x  tan4 x Matches iv

(d) y  3x  2 sin x cos3 x  3 sin x cos x ⇒ y  3  2 cos xcos3 x  6 sin x cos2 xsin x  3 cos2 x  3 sin2 x  3  2 cos4 x  6 cos2 x1  cos2 x  3 cos2 x  31  cos2 x  8 cos4 x Matches ii

4.



cos 3 x sin4 x dx  

 



cos x1  sin2 xsin4 x dx

sin4 x  sin6 xcos x dx

sin5 x sin7 x  C 5 7

6. Let u  cos x, du  sin x dx.



sin3 x dx   

1 x x 8. Let u  sin , du  cos dx. 3 3 3



cos3

x dx  3

 

cos

3

x 3

1  sin 3x  dx

1  sin2



2

x 3

13 cos 3x  dx 

 3 sin

x 1 x  sin3 C 3 3 3

 3 sin

x x  sin3  C 3 3

 

sin x1  cos2 x dx

cos2 xsin x dx 

1 cos3 x  cos x  C 3



sin x dx

322

10.

Chapter 7



sin5 t dt  cos t  

12.



sin2 2x dx 

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

  

sin t1  cos2 t2cos t12 dt

sin t1  2 cos2 t  cos4 tcos t12 dt 4 2 cos t12  2cos t32  cos t72 sin t dt  2cos t12  cos t52  cos t92  C 5 9



1  cos 4x 1 1 dx  x  sin 4x  C 2 2 4





14.



sin4 2 d 

1  4x  sin 4x  C 8

   

   

1  cos 4 2



1  cos 4 d 2

1 1  2 cos 4  cos2 4 d 4 1  cos 8 d 2



1 4

1  2 cos 4 

1 4

3 1  2 cos 4  cos 8 d 2 2







1 3 1 1   sin 4  sin 8  C 4 2 2 16

1 1 3 sin 8  C    sin 4  8 8 64 16. Use integration by parts twice. dv  sin2 x dx 

1  cos 2x x sin 2x 1  2x  sin 2x ⇒ v  2 2 4 4

u  x2 ⇒ du  2x dx dv  sin 2x dx ⇒

1 v   cos 2x 2

⇒ du  dx

ux



1 1 x2 sin2 x dx  x22x  sin 2x  4 2



2x2  x sin 2x dx

1 1 1 1  x3  x2 sin 2x  x3  2 4 3 2



x sin 2x dx



1 1 1 1 1  x3  x2 sin 2x   x cos 2x  6 4 2 2 2





cos 2x dx

1 1 1 1  x3  x2 sin 2x  x cos 2x  sin 2x  C 6 4 4 8 

1 4x3  6x2 sin 2x  6x cos 2x  3 sin 2x  C 24



2

18. Let u  sin x, du  cos x dx.



2

cos5 x dx 

0

 

20.

0

2

1  sin2 x2 cos x dx



0



2

1  2 sin2 x  sin4 x cos x dx

0



 sin x  

8 15

sin2 x dx 

2



2 3 1 sin x  sin5 x 3 5

0

1 2



2

1  cos 2x dx

0



2



1 1 x  sin 2x 2 2

0



 4

Section 7.3

22.



sec22x  1 dx 

1 tan2x  1  C 2

24.



sec6 3x dx   



28.



30. Let u  sec 2t, du  2 sec 2t tan 2t

32.



36.



26.



tan2 x dx 

sec2 x  1dx  tan x  x  C



tan3 2t  sec3 2t dt   

34.



 

sec2







   

42. y    

   

sin2 x cos2 x

2 1 1 tan 3x  tan3 3x  tan5 3x  C 3 9 15

tan5 2x sec2 2x dx 



tan3 3x dx 





x x x 1 x tan dx  2 tan sec2 dx 2 2 2 2 2

tan2 x  sec5 x

1  2 tan2 3x  tan4 3xsec2 3x dx

1 x x x sec2 dx  C tan4 2 2 2 2

x C 2

 tan2

38.

1  tan2 3x2 sec2 3x dx

1 tan6 2x  C 12

sec5 2t sec3 2t  C 10 6





 

sec4 2t  sec2 2tsec 2t tan 2t dt

 sec2 or

323

sec2 2t  1sec3 2t  tan 2t dt

x x x 1 x x tan dx  2 sec sec tan dx 2 2 2 2 2 2

sec2

tan3

Trigonometric Integrals

 

sec2 3x  1tan 3x dx





1 3 sin 3x 1 tan 3x3 sec2 3x dx  dx 3 3 cos 3x



1 2 1 tan 3x  ln cos 3x  C 6 3



x C 2

  

cos2 d 2 2

 cos5 x dx

40. s 

sin2 x  cos3 x dx



sin2 x1  sin2 xcos x dx



sin2 x  sin4 xcos x dx



sin 2 1  C 8 2



1 2  sin 2   C 16

sin3 x sin5 x  C 3 5

  

tan x sec4 x dx

tan12 xtan2 x  1sec2 x dx

tan52 x  tan12 x sec2 x dx

2 2 72 tan x  tan32 x  C 7 3

sin2

1  cos 2

1 4

1  2cos  d  1  cos 4

sin2 d 



1 8



1  cos 2  d



2



d

324

Chapter 7

44. (a)

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

y

(b)

1

y



y

tan3 x C 3

x

−1

1

( ) 1

0, 4

−1



1 dy  sec2 x tan2 x, 0,  dx 4



sec2 x tan2 x dx u  tan x, du  sec2 x dx

0,  41:  41  C ⇒ y  31 tan

3

46.

dy  3y tan2 x, y0  3 dx 8

48.



cos 4 cos3 d 

(0, 3)

−1

1

x

1 4

 

cos 4 cos 3 d



1 cos 7  cos  d 2



sin 7 sin   C 14 2

−2

50.



 

x 1 x 52. Let u  tan , du  sec2 dx. 2 2 2

sin4x cos 3x dx   sin 4x cos 3x dx





1 2



1 1 cos x  cos 7x  C 2 7



sin x  sin 7xdx



tan4

x x sec4 dx  2 2





csc2 3x cot 3x dx  

1 3



56.



tan4

2

1 7 cos x  cos 7x  C 14

54. u  cot 3x, du  3 csc2 3x dx

 



cot3 t dt  csc t

cot 3x3 csc2 3x dx



1   cot2 3x  C 6



 





x x x tan2  1 sec2 dx 2 2 2

tan6

x x  tan4 2 2

12 sec 2x dx 2

x 2 2 7x tan  tan5  C 7 2 5 2

cos3 t dt  sin2 t

cos t dt  sin2 t

 

1  sin2 tcos t dt sin2 t

cos t dt

1  sin t  C sin t

 csc t  sin t  C

58.



60.



sin2 x  cos2 x dx  cos x

1  sec t dt  cos t  1 

 





1  2 cos 2 x dx  cos x

sec x  2 cos x dx  ln sec x  tan x  2 sin x  C

cos t  1 dt cos t  1 cos t

62.



0

3

0



sec2 ttan t dt 

2





3 tan t 32

0





2 3



3

sec2 x  1 dx

0

3



 tan x  x

66.  4

tan2 x dx 



sec t dt  ln sec t  tan t  C

64. Let u  tan t, du  sec2 t dt. 4



0

sin 3 cos  d 

1 2











 3 

 3

sin 4  sin 2 d

1 1 1 cos 4  cos 2 2 4 2







0

Section 7.3



2

68.

sin2 x  1 dx 

2



70.



sin2 x cos2 x dx 

 

2

2

2

2

Trigonometric Integrals

325

2x  1 dx 1  cos 2 2

32  21 cos 2x dx  32 x  41 sin 2x

1 4x  sin 4x  C 32

72.

2



3 2



tan31  x dx  

tan21  x  ln cos1  x  C 2



2 2

−6

6

−3

3

−2

74.

−2



sec41  x tan1  x dx  



2

sec41  x C 4

76.

1  cos 2 d 

0

2



− 3.5

3

1

3 2 4

3.5

−2



2

78.

sin6 x dx 

0



2



1 5x 3 1  2 sin 2x  sin 4x  sin3 2x 8 2 8 6

0



5 32

80. See guidelines on page 500. 82. (a) Let u  tan x, du  sec2 x dx.



sec2 x tan x dx 

(b)

8

1 2 tan x  C1 2 −4

Or let u  sec x, du  sec x tan x dx.



(c)





1 1 1 1 1 sec2 x  C  tan2 x  1  C  tan2 x   C  tan2 x  C2 2 2 2 2 2

84. Disks

y

Rx  tan x rx  0 V  2

1 1 2

 

4 2

tan x dx

− 12

0

 2

4 −2

1 sec xsec x tan x dx  sec2 x  C 2

−1

4

sec x  1 dx 2

0





 2 1 

4



 2 tan x  x

0

  1.348 4



π 8

π 4

x

2

2  2 sin  4 sin 2

0

326

Chapter 7

 

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

2

86. (a) V  

cos2 x dx 

0

(b) A 

2

 2



2

0



2



cos x dx  sin x

0

1  cos 2x dx 

0

 1 x  sin 2x 2 2



2



0



2 4

1

Let u  x, dv  cos x dx, du  dx, v  sin x. x



2



0

y 

1 2 1 4

 

0





2



2



sin x dx  x sin x  cos x

0

0



 2 1 2 2

2

cos2 x dx

y

0

2

1

1  cos 2x dx

0



2



1 1  x  sin 2x 4 2

x, y 

2



x cos x dx  x sin x

0

( π 2− 2 , π8 (

1 2

  8

π 4

 2 2, 8 

88. dv  cos x dx ⇒

π 2

x

v  sin x

u  cosn1 x ⇒ du   n  1cosn2 x sin x dx



  

cosn x dx  cosn1 x sin x  n  1 cosn2 x sin2 x dx  cosn1 x sin x  n  1 cosn2 x1  cos2 x dx



 cosn1 x sin x  n  1 cosn2 x dx  n  1 cosn x dx

 

 

Therefore, n cosn x dx  cosn1 x sin x  n  1 cosn2 x dx cosn x dx 

cosn1 x sin x n  1  n n

cosn2 x dx.

90. Let u  secn2 x, du  n  2secn2 x tan x dx, dv  sec2 x dx, v  tan x.



secn x dx  secn2 x tan x 



n  2 secn2 x tan2 x dx

  

 secn2 x tan x  n  2 secn2 xsec2 x  1 dx  secn2 x tan x  n  2

 

secn x dx 





secn2 x dx

n  1 secn x dx  secn2 x tan x  n  2 secn2 x dx secn x dx 

92.



cos4 x dx  

1 n2 secn2 x tan x  n1 n1

cos3 x sin x 3  4 4



cos2 x dx 



secn2 x dx



cos3 x sin x 3 cos x sin x 1   4 4 2 2





dx

1 3 3 1 cos3 x sin x  cos x sin x  x  C  2 cos3 x sin x  3 cos x sin x  3x  C 4 8 8 8

Section 7.3

94.



sin4 x cos2 x dx   

cos3 x sin3 x 1  6 2



cos2 x sin2 x dx



cos3 x sin x 1 cos3 x sin3 x 1    6 2 4 4





cos2 x dx





x 1 1 cos x sin x 1  C   cos3 x sin3 x  cos3 x sin x  6 8 8 2 2 

1 8 cos3 x sin3 x  6 cos3 x sin x  3 cos x sin x  3x  C 48

96. (a) n is odd and n ≥ 3.



2

cosn x dx 

0

   



cosn1 x sin x n

2



0



2

n1 n



n1 n

 n  2

n1 n

n2n4

n1 n

n2n4...

cosn3 x sin x n2

n3 n3 n3

2





0

n3 n2

cosn5 x sin x n4

n5



cosn2 x dx

0

2



0

0

n5





2

cos x dx

0

n3

n5

n2n4...1

0

(Reverse the order)

234567. . .n n 1

234567. . .n n 1 n1 n

n3

n5



n2n4...

n1 n

n3

2

cos2 x dx

(From part (a).)

0

n5

2

 n  2  n  4 . . . 2  4 sin 2x 0







n1 n



2  123456. . .n n 1



123456. . .n n 12 

n3

n5

x



n2n4... 4

1

(Reverse the order)



cosn6 x dx

0

2

(b) n is even and n ≥ 2.

0

n5 n4

2

n1 n

cosn x dx 



cosn4 x dx

0

cosn6 x dx



2

2

2

n n 1  nn  32  nn  54 . . . sin x









 1





n1 n

Trigonometric Integrals

327

328

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

Section 7.4 2.

Trigonometric Substitution

1 x 1 d  x x2  16   1  1 x 8 ln x2  16  x  xx2  16  C  8  x2  16 2 2 dx 2 2 2 x  16  x x  16











4.



x2 x2  16





x2  16 8 x  x2  16  x2   2 2 2 x  16 x  16  x 2x  16



16  x2  x2  16 2x2  16

 Indefinite integral:





2

x2 x2  16

Matches (d)



 

x  3 x  37  6x  x2 1 d 8 arcsin  C 8 dx 4 2 1  x  34 2 

8 16  x  3

2



 4  2 x  3 1

3x

1

7  6x  x2

16  x  32 x  32  2 2 216  x  3



16  x2  6x  9  16  x2  6x  9 216  x  32



2 16  x  32 216  x  32

 16  x  32

Indefinite integral:

 7  6x  x2



7  6x  x2 dx

Matches (c)

6. Same substitution as in Exercise 5.



10 x225



x2



dx  10

5 cos  d

25

sin2



5 cos 



2 2 225  x2 csc2  d   cot   C  C 5 5 5x

8. Same substitution as in Exercise 5



x2 dx  25  x2



25 sin2  25 5 cos  d  5 cos  2











1 25 25   sin 2  C    sin  cos   C 2 2 2



25 x x arcsin  2 5 5

25  x2

5

10. Same substitution as in Exercise 9



x2  4

x

1  cos 2 d



dx 



2 tan  2 sec  tan  d  2 2 sec 



 2tan     C  2

x2  4

2

  C  21 25 arcsin 5x  x





25  x2  C



tan2  d  2 sec2   1 d  arcsec

1  7  6x  x2 2

2x   C  x

2

 4  2 arcsec

2x  C

Section 7.4 12. Same substitution as in Exercise 9



x3 dx  4

x2

 



8 sec3  2 sec  tan  d  8 sec4  d 2 tan 



 8 1  tan2  sec2  d  8 tan   



8 x2  4 3 2

3  x 4 4  C  31 2

14. Same substitution as in Exercise 13.



Trigonometric Substitution



tan3  8  C  tan  3  tan2   C 3 3



1 3

x2  4 12  x2  4  C  x2  4 x2  8  C



9x3 tan3  sec3  dx  9 sec2  d  9 sec2   1sec  tan  d  9  sec   C 2 1  x sec  3





 3 sec sec2   3  C  31  x2 1  x2  3  C  31  x2x2  2  C 16. Same substitution as in Exercise 13



x2 dx  1  x22  

 

x2 dx  1  x2 4

1 2



tan2  sec2  d  sec4 

1  cos 2 d 







sin2  d

1 sin 2 1     sin  cos   C 2 2 2

x 1 arctan x  2 1  x2







1 1  x2

 C  21 arctan x  1 x x   C 2

18. Let u  x, a  1, and du  dx.



1  x2 dx 

20.







1  x1  x2  ln x  1  x2   C 2



x 1 dx   9  x21 22x dx 2 9  x 2   9  x21 2  C

22.



1 25  x2

dx  arcsin

x C 5

(Power Rule)

24. Let u  16  4x2, du  8x dx.



x16  4x2 dx  



1 8



16  4x21 28x dx  



1 2 16  4x23 2  C   4  x23 2  C 12 3

26. Let u  1  t 2, du  2t dt.



t 1 dt   1  t 23 2 2

28. Let 2x  3 tan , dx 



4x2  9

x4



1  t 23 22t dt 

C

3 sec2  d, 4x2  9  3 sec . 2

dx 





8 9



8 C 27 sin3 

3 sec  3 2 sec2  d 3 24 tan4 



 

1 1  t 2

cos  d sin4 

8 csc3   C 27

 4x2  93 2 C 27x3

4x 2 + 9 2x

θ 3

329

330

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

30. Let 2x  4 tan , dx  2 sec2  d, 4x2  16  4 sec .



1 dx  x4x2  16



1  4

2 sec2  d 2 tan  4 sec 



sec  1 d  tan  4

x2 + 4



x

csc  d

θ





2

1 1 x2  4  2   ln csc   cot   C   ln C 4 4 x





32. Let x  3 tan , dx  3 sec2  d, x2  3  3 sec2 .





x2

1 dx   33 2 

 1 3

3 sec2  d

33 sec3 

x2 + 3



x

cos  d

θ 3

1  sin   C 3 

x C 3x2  3

34. Let u  x2  2x  2, du  2x  2 dx.



x  1x2  2x  2 dx 

1 2



1 x2  2x  21 22x  2 dx  x2  2x  23 2  C 3

36. Let x  sin , x  sin2 , dx  2 sin  cos  d, 1  x  cos .



1  x x

dx 

  

cos 2 sin  cos  d sin  1

 2 cos2  d 

x

θ 1− x

1  cos 2 d

   sin  cos   C  arcsinx  x1  x  C 38. Let x  tan , dx  sec2  d, x2  1  sec2 .



1 x3  x  1 dx  x 4  2x2  1 4 



x4

 

4x3  4x dx   2x2  1

1 lnx 4  2x2  1  4

1 1  lnx2  1  2 2



1 dx x2  12

d sec4 

θ 1

1  cos 2 d



1 1 lnx2  1    sin  cos   C 2 2



1 x lnx2  1  arctan x  2 C 2 x 1



x2 + 1 x

sec2 



Section 7.4

40. u  arcsin x, ⇒ du 



x arcsin x dx 

1 x2 dx, dv  x dx ⇒ v  2 2 1  x



x2 1 x2 arcsin x  dx 2 2 1  x2

x  sin , dx  cos  d, 1  x2  cos 



x arcsin x dx 

Trigonometric Substitution

x2 1 arcsin x  2 2



x2 1 sin2  cos  d  arcsin x  cos  2 4





1  cos 2 d





1 1 1 x2 x2 arcsin x    sin 2  C  arcsin x    sin cos  C 2 4 2 2 4



1 1 x2 arcsin x  arcsin x  x1  x2  C  2x2  1 arcsin x  x1  x2  C 2 4 4

42. Let x  1  sin , dx  cos  d, 1  x  12  2x  x2  cos .



x2 2x  x2

dx    

   

x2

1  x  12

dx 1

1  sin 2cos  d cos 

1  2 sin  

sin2 

x−1

θ 1 − (x − 1)2

 d



3 1  2 sin   cos 2 d 2 2

1 3    2 cos   sin 2  C 2 4 1 3    2 cos   sin  cos   C 2 2 

1 3 arcsinx  1  22x  x2  x  12x  x2  C 2 2



3 1 arcsinx  1  2x  x2x  3  C 2 2

44. Let x  3  2 sec , dx  2 sec  tan  d, x  32  4  2 tan .



x dx  x  6x  5 2



x dx  x  32  4 



2 sec   3 2 sec  tan  d 2 tan 



2 sec2   3 sec  d





 2 tan   3 ln sec   tan   C1



2

x  33  4

2

 3 lnx 2 3 



x  32  4

2





 C1

 x2  6x  5  3 ln x  3  x2  6x  5  C

331

332

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

46. Same substitution as in Exercise 45 (a)



1 dt  1  t25 2 



3 2

Thus,

0



cos  d  cos5 



sec4  d 



tan2   1 sec2  d



1 3 1 t tan   tan   C  3 3 1  t 2



t 1 t3  2 5 2 dt  1  t  31  t 23 2 1  t 2

 3



t 1  t 2

C

3 2

0

3 2 33 8    3  3  23  3.464. 31 43 2 1 4

(b) When t  0,   0. When t  3 2,    3. Thus,



3 2

0



1 1 3 dt  tan   tan  1  t25 2 3

48. (a) Let 5x  3 sin , dx 



 

1  3 3  3  23  3.464. 3



3 cos  d, 9  25x2  3 cos . 5

9 1  cos 2 d 5 2





0

3 3 cos  cos  d 5

9  25x2 dx 







9 1   sin 2  C 10 2



9   sin  cos   C 10



5x 5x 9 arcsin  10 3 3



3 5

Thus,

 3



9  25x2 dx 

0



9  25x2

3



C



9 5x 5x9  25x2  arcsin 10 3 9



3 5



0

9  9 .  10 2 20

 

3  (b) When x  0,   0. When x  ,   . 5 2



3 5

Thus,

9  25x2 dx 

 2

 109   sin  cos 

0

0



9  9  . 10 2 20

50. (a) Let x  3 sec , dx  3 sec  tan  d, x2  9  3 tan .



x2  9

x2

dx     

    

3 tan  3 sec  tan  d 9sec2  tan2  d sec  sin2  d cos  1  cos2  d cos 

sec   cos  d





 ln sec   tan   sin   C  ln —CONTINUED—



x  3



x2  9 9  C 3 x

x2



Section 7.4

Trigonometric Substitution

333

50. —CONTINUED—



6

Hence,

x2  9

x2

3





dx  ln

 . 3

(b) When x  3,   0; when x  6,  



6

Hence,

x2  9

x2

3

52.



54.





x2  9 x2  9 x   3 3 x

 



dx  ln sec   tan   sin 

 3



0



6





3

 ln 2  3 

3





 ln 2  3 

2

3

2

.

.





1 75 x2  2x  113 2 dx  x  1x2  2x  26x2  2x  11  ln x2  2x  11  x  1  C 4 2

x2x2  4 dx 





1 3 2 1 x x  4  xx2  4  2 ln x  x2  4  C 4 2

56. (a) Substitution: u  x2  1, du  2x dx (b) Trigonometric substitution: x  sec  58. (a) x2   y  k2  25

1 (b) Area  square  circle 4

y

Radius of circle  5 k 2  52  52  50

1   25   52  25 1  4 4



(0, k)

k  52

5

1  (c) Area  r 2   r 2  r 2 1  4 4



5 5





x

60. (a) Place the center of the circle at 0, 1; x2  y  12  1. The depth d satisfies 0 ≤ d ≤ 2. The volume is



V32 6

d

1   y  12 dy

0



1 arcsiny  1  y  11  y  12 2



d

(Theorem 7.2 (1)) 0

 3 arcsind  1  d  11  d  12  arcsin1  (b)

3  3 arcsind  1  3d  12d  d 2. 2



d

10

V6

(d)

1  y  12 dy

0

dV dV  dt dd 0



dd  61  d  12 dt

1

 d t  4

2 0

(c) The full tank holds 3  9.4248 cubic meters. The horizontal lines y

⇒ d t  (e)

1 241  d  12

0.3

9 3 3 , y , y 4 2 4

intersect the curve at d  0.596, 1. 0, 1.404. The dipstick would have these markings on it.

0

2 0

The minimum occurs at d  1, which is the widest part of the tank.

334

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

62. Let x  h  r sin , dx  r cos  d, r 2  x  h2  r cos .

y

Shell Method:

 

hr

V  4

xr 2  x  h2 dx

x

hr

 4

 2

 2

 h2 

 2

 4 r 2





 2

1  cos 2 d  r

 2

2 r 2h



h  r sin  r cos r cos  d  4 r 2

1   sin 2 2

 2



 2





h−r



 2

4 r 3



h  r sin  cos2  d

sin  cos2  d

3

h+r

 2

 2

cos3 

h

 2



r

2 2 r 2h



 2



x−h

θ r 2 − (x − h)2

1 64. y  x2, y  x, 1  y 2  1  x2 2



4

s

1  x2 dx 

0



 12xx

2





4

 1  ln x  x2  1

(Theorem 7.2)

0

1 417  ln4  17  9.2936 2

66. (a) Along line: d1  a2  a4  a1  a2

y

Along parabola: y  x2, y  2x



(a, a 2)

a

d2 

1  4x2 dx

0

 







y = x2

a

1 2x4x2  1  ln 2x  4x2  1 4

(Theorem 7.2)

0

x

(0, 0)

1 2a4a2  1  ln2a  4a2  1  4

(b) For a  1, d1  2 and d2 

5

2



1 ln2  5   1.4789. 4

For a  10, d1  10101  100.4988 d2  101.0473. (c) As a increases, d2  d1 → 0. 68. (a)

(b) y  0 for x  72

25

− 10

80 −5

(c) y  x 



x2 x x , y  1  , 1   y  2  1  1  72 36 36

 72

s



1 1

0



36 2



x 36



2

 72

dx  36

 18   

x 36



0

1 1 

x 36

2

x 36

1 1

 2  ln 1  2  

1



2



 ln 1 



 361 dx 2



x  36



1 1

  36

2  ln 1  2

x 36

2  18 ln



 2



72 0

2  1 2  1

 82.641

Section 7.4

Trigonometric Substitution y

70. First find where the curves intersect. y 2  16  x  42 

6

1 4 x 16

(4, 4) 4 2

16 2  16x  4 2  x4

x −2 −2

16 2  16x 2  128x  162  x4 

x4

16x2

2

  4

0

−6

 128x  0

1 1 1 2 x dx   42  x3 4 4 12

4

My 

x

0



x4 16



1 2 x dx  4







4 0

 4 

y=

16  4 3

8

x16  x  42 dx

4

8



4



0



8

x  416  x  42 dx 

4

 16 

416  x  42 dx

4

 13 16  x  4  

8

2 3 2

4



 2 16 arcsin

x4  x  416  x  42 4



1   16  163 2  2 16 3 2

 16    16  643  16  112 3



4

Mx 

0

dx  

8

2

1 1 2 x 2 4

4

1 16  x  42 dx 2



 321  x5   8x  x 6 4 



64 416 32  64   32  5 6 15

5 4

3 8

0

4





x

My 112 3  16 112  48 28  12     4.89 A 16 3  4 16  12 4  3

y

Mx 416 15 104    1.55 A 16 3  4 54  3

x, y  4.89, 1.55 72. Let r  L tan , dr  L sec2  d, r 2  L2  L2 sec2 . 1 R



R

0



b

2mL 2mL dr  r 2  L23 2 R 2m  RL



a

L sec2  d L3 sec3 

b

cos  d

 RL sin 



2m RL

b

a

r r 2  L2

2m  LR 2  L2

r 2 + L2 r

θ L

a



2m

6

10

−4

xx  4x2  4x  32 ⇒ x  0, 4 A

4



R 0

8 4

16 − (x − 4)

2

335

336

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



0.8

74. (a) Finside  48

1

0.8  y21  y 2 dy



0.8

 96 0.8

1





0.8

1  y2 dy 

1

y1  y 2 dy

 2  arcsin y  y1  y   31  y   0.8

 96

0.8

1

2

 961.263  121.3 lbs

2 32

1



0.4

(b) Foutside  64

1

0.4  y21  y 2 dy



0.4

 128 0.4  128



1





0.4

1  y 2 dy 

y1  y 2 dy

1



0.4  arcsin y  y1  y 2   31 1  y 232 2

76. S  1520.4  111.2t  15.8t2 (a)

0.4

1

 92.98

78. False



60

x2  1

x

dx  

0

7



tan  sec  tan  d sec 

tan2  d

0

1 (b) St  1520.4  111.2t  15.8t212111.2  31.6t 2 S5  2.71 (c) Average value 

80. True



1

1



St dt  68.24



x21  x2 dx  2

1 2

12

10



1

x21  x2 dx  2

0

Section 7.5

sin2 cos cos  d  2

0

2

sin2  cos2  d

0

Partial Fractions

2.

4x 2  3 A B C    x  53 x  5 x  52 x  53

6.

2x  1 A Bx  C Dx  E   2  2 xx 2  12 x x 1 x  12

8.

1 1 A B    4x 2  9 2x  32x  3 2x  3 2x  3

4.

1  A2x  3  B2x  3 3 2,

1 1 dx  4x2  9 6

 2x 1 3 dx  2x 1 3 dx



1 ln 2x  3  ln 2x  3  C 12



1 2x  3 ln C 12 2x  3







10.

x2 x2 A B    x 2  4x  3 x  1x  3 x  1 x  3



x1 dx  x2  4x  3 

1 6.

When x  1  6A, A  When x   32 , 1  6B, B   16 .





2







x  1 dx x  1x  3

1 dx  ln x  3  C x3





Section 7.5

12.

Partial Fractions

337

5x2  12x  12 A B C    xx  2x  2 x x2 x2 5x2  12x  12  Ax2  4  Bxx  2  Cxx  2 When x  0, 12  4A ⇒ A  3. When x  2, 16  8B ⇒ B  2. When x  2, 32  8C ⇒ C  4.



14.



5x2  12x  12 dx  x3  4x

3 dx  x



2 dx  x2



4 dx  3 ln x  2 ln x  2  4 ln x  2  C x2











x3  x  3 2x  1 A B x1 x1  x2  x  2 x  2x  1 x2 x1 2x  1  Ax  1  Bx  2 When x  2, 3  3A, A  1. When x  1, 3  3B, B  1.



x3  x  3 dx  x2  x  2 

16.



x1



1 1  dx x2 x1

x2 x2  x  ln x  2  ln x  1  C   x  ln x 2  x  2  C 2 2











x2 A B   xx  4 x  4 x

18.

2x  3 A B   x  12 x  1 x  12

x  2  Ax  Bx  4

2x  3  Ax  1  B

When x  4, 6  4A, A  32 . When x  0, 2  4B, B   12 .





x2 dx  x 2  4x

When x  1, B  1. When x  0, A  2.





32 12  dx x4 x

2x  3 dx  x  12









2 1  dx x  1 x  12





 2 ln x  1 

3 1 ln x  4  ln x  C 2 2



20.





1 C x1

4x2 4x2 4x2 A B C      x3  x2  x  1 x2x  1  x  1 x2  1x  1 x  1 x  1 x  12 4x2  Ax  12  Bx  1x  1  Cx  1 When x  1, 4  2C ⇒ C  2. When x  1, 4  4A ⇒ A  1. When x  0, 0  1  B  2 ⇒ B  3.



x3

4x2 dx   x1 x2



1 dx  x1







3 dx  x1





 ln x  1  3 ln x  1 

22.



2 dx x  12

2 C x  1

6x A 6x Bx  C    x3  8 x  2x2  2x  4 x  2 x2  2x  4 6x  Ax2  2x  4  Bx  Cx  2 When x  2, 12  12A ⇒ A  1. When x  0, 0  4  2C ⇒ C  2. When x  1, 6  7  B  21 ⇒ B  1.



6x dx  x3  8



1 dx  x2



x  2 dx  x2  2x  4



1 dx  x2

3 arctan



x  1 dx  x2  2x  4







1 3 x1 arctan C ln x2  2x  4   3 2 3





1 ln x2  2x  4   2

 ln x  2   ln x  2 









3x  1

3

C



3 dx x2  2x  1  3

338

24.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

x2  x  9 Ax  B Cx  D  2  2 x2  92 x 9 x  92 x2  x  9  Ax  Bx2  9  Cx  D  Ax3  Bx2  9A  Cx  9B  D By equating coefficients of like terms, we have A  0, B  1, D  0, and C  1.



x2  x  9  x2  92 

26.





1 dx  x2  9

x dx x2  92



x 1 1 arctan  C 3 3 2x2  9

x 2  4x  7 A Bx  C   x  1x 2  2x  3 x  1 x 2  2x  3 x 2  4x  7  Ax 2  2x  3  Bx  Cx  1 When x  1, 12  6A. When x  0, 7  3A  C. When x  1, 4  2A  2B  2C. Solving these equations we have A  2, B  1, C  1.





x 2  4x  7 dx  2 x3  x 2  x  3

1 dx  x1





 2 ln x  1 

28.



x  1 dx x 2  2x  3

1 ln x 2  2x  3  C 2





x 2  x  3 Ax  B Cx  D  2  2 x 2  32 x 3 x  32 x 2  x  3  Ax  Bx 2  3  Cx  D  Ax 3  Bx 2  3A  Cx  3B  D By equating coefficients of like terms, we have A  0, B  1, 3A  C  1, 3B  D  3. Solving these equations we have A  0, B  1, C  1, D  0.



x2  x  3 dx  x4  6x 2  9 

30.





1 x  dx x 2  3 x 2  32

1 3

arctan

x 3



1 C 2x 2  3

x1 A B C   2 x 2x  1 x x x1 x  1  Axx  1  Bx  1  Cx 2 When x  0, B  1. When x  1, C  2. When x  1, 0  2A  2B  C. Solving these equations we have A  2, B  1, C  2.



5

1



x1 dx  2 x  1

x2

5

1

1 dx  x



5

1



5

1 dx  2 x2



1

1

1  2 ln x   2 ln x  1 x



 2 ln  2 ln



x 1  x1 x

5 4  3 5





5 1

1 dx x1 5

Section 7.5



x2



x1 2 7 6x 2  1 1  dx  3 ln   C x 2x  13 x x x  1 2x  12

1

32.

0

34.

x2  x dx  x1

1

0

0

x2

2x  1 dx  x  ln x 2  x  1 x1



0  1  ln 3



1





2, 1: 3 ln

1

dx 

Partial Fractions

4

1 1 2 7 1     C  1⇒ C  2  3 ln 2 2 1 2 2

(2, 1)

− 4.7

4.7

−4

36.





x2

3, 4:

x3 1 2 C dx  ln x 2  4  2  4 2 2 x 4





8

2 22 1 1 ln 5   C  4 ⇒ C   ln 5 2 5 5 2

(3, 4) −8

8 −2

38.



x2x  9 1 5 dx  2 ln x  2   C x 3  6x 2  12x  8 x  2 x  22





10

3, 2: 0  1  5  C  2 ⇒ C  4

(3, 2) − 10

10 −3

40.



x2  x  2 dx  arctan x  ln x  1  C x3  x2  x  1





10

2, 6: arctan 2  0  C  6 ⇒ C  6  arctan 2

(2, 6) −2

5 −2

42. Let u  cos x, du  sin x dx.

44.

1 A B   uu  1 u u1

1  Au  1  Bu

1  Au  1  Bu When u  0, A  1. When u  1, B  1, u  cos x. du  sin dx.





sin x 1 dx   du cos x  cos2 x uu  1 

1 A B   , u  tan x, du  sec2 x dx uu  1 u u1









1 du u

 ln u  1  ln u  C





 ln

u1 C u

 ln

cos x  1 C cos x







sec2 x dx  tan xtan x  1 

1 du  u1



When u  0, A  1. When u  1, 1  B ⇒ B  1.

 ln 1  sec x  C



1 du uu  1



1 1  du u u1







 ln u  ln u  1  C





 ln

u C u1

 ln

tan x C tan x  1

339

340

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

46. Let u  ex, du  ex dx. 1 A Bu  C   2 u2  1u  1 u  1 u 1 1  Au2  1  Bu  Cu  1 When u  1, A  12 . When u  0, 1  A  C. 1 1 1 When u  1, 1  2A  2B  2C. Solving these equations we have A  2 , B   2 , C   2 , u  e x, du  e x dx.



48.

e

2x

ex dx   1e x  1





1 2



1 1 ln u  1  ln u2  1  arctan u  C 2 2



1  2 ln e x  1  ln e 2x  1  2 arctan e x  C 4

1 du u2  1u  1

u 1 1 du  uu  11 du 2













1 A B   a2  x2 a  x a  x







1 A C B   2 x2a  bx x x a  bx

50.

1  Axa  bx  Ba  bx  Cx 2

1  Aa  x  Ba  x

When x  0, 1  Ba ⇒ B  1a. When x  ab, 1  Ca2b2 ⇒ C  b2a2. When x  1, 1  a  bA  a  bB  C ⇒

When x  a, A  12a. When x  a, B  12a.



1 1 dx  a2  x2 2a





1 1  dx ax ax

1   ln a  x  ln a  x   C 2a













A  ba 2. 1 dx  x a  bx 2

1 ax  ln C 2a a  x

52.

dy 4  , y0  5 dx x2  2x  3

54. (a)

8

(b)

−1



56. A  2

0

y

3

2



3

dx  14

0



 2x  6



0

5 2

2 3 2

1 dx 16  x2



14 4  x ln 8 4x

7 ln 7  2.595 4

3 0

x

(From Exercise 46)

−3 −2 −1





1 b b ln x   ln a  bx  C a2 ax a2



a  bx b 1  ln C ax a2 x



1 x b  ln C ax a2 a  bx











Nx A1  B1x An  Bn x  . . . Dx ax2  bx  c ax2  bx  cn

−2

7 1 dx 16  x2

ba2 1a b2a2  2  dx x x a  bx

Nx A1 A2 Am   . . . Dx px  q px  q2 px  qm

3

3



1

2

3

Section 7.5 58. (a)

Partial Fractions

341

(e) k  1, L  3

y 6

i y0  5: y 

5 4

15 5  2e3t

1 32 3 ii y0  : y   2 12  52e3t 1  5e3t

3 2 1

5

t 1

2

3

4

5

6

(b) The slope is negative because the function is decreasing. (c) For y > 0, lim yt  3.

0

B A dy   yL  y y Ly

(d)

dy  kyL  y dt

(f )

dy dy d 2y k y  L  y 0 dt 2 dt dt



1 1 1  AL  y  By ⇒ A  , B  L L



dy  yL  y

1 L

1 dy  y







5 0

t →

⇒ y

k dt



1 dy  Ly





L 2

From the first derivative test, this is a maximum.

1 ln y  ln L  y  kt  C1 L









ln

y  k L t  LC1 Ly C2ekLt 

When t  0,

y Ly

y y0 y0  C2 ⇒  ekLt. L  y0 L  y L  y0 y0L . y0  L  y0ekLt

Solving for y, you obtain y 

3

60. (a) V  

0



2x 2 dx  4 2 x 1

3

0



3

 4

0

x2

x2 dx  12



1 1  dx x2  1 x2  12

(partial fractions)



1 x arctan x  2 2 x 1



x x2  1

 4 arctan x   2 arctan x  —CONTINUED—



dy dy  L  y dt dt y

k dt





3 0





3

(trigonometric substitution)

0

 2 arctan 3 



3  5.963 10

342

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

60. —CONTINUED—

3

(b) A 

0

x 

1 A

x2 3

0



2x2 1 dx  2 x 1 ln 10







2 ln 10

3

0

3

0

0

 ln 10

3

2

0



3

1 2x  2 arctan x ln 10 1 1 y A 2



3



2x dx  lnx2  1 1

0



y

2



2 dx x2  1

(1.521, 0.412) 1

2 3  arctan 3  1.521 ln 10



2 2x 2 dx  x2  1 ln 10





(partial fractions)



1 x 2 arctan x  arctan x  2 ln 10 2 x 1



2 1 x arctan x  ln 10 2 2x2  1





3 0

3

x2 dx x2  12

1 1 dx  x2  1 x2  12



2

−1

3

0

x 1





3

(trigonometric substitution)

0



1 x arctan x  2 ln 10 x 1



3 0







1 3 arctan 3   0.412 ln 10 10

x, y  1.521, 0.412 B 1 1 A 1  ,A  ,B y0  xz0  x y0  x z0  x z0  y0 z0  y0

62. (a) 1 z0  y0



(Assume y0 z0)



1 1  dx  kt  C y0  x z0  x



1 z x ln 0  kt  C, when t  0, x  0 z0  y0 y0  x C





z 1 ln 0 z0  y0 y0

  kt

1 z x z ln 0  ln 0 z0  y0 y0  x y0

y0z0  x  z0  y0k t 0 0  x

z  y

ln



y0z0  x  ez0 y0kt z0 y0  x x (b) (1) If y0 < z0, lim x  y0. t →

(2) If y0 > z0, lim x  z0. t →

y0z0 ez0 y0kt  1 z0ez0 y0kt  y0 (c) If y0  z0, then the original equation is



1 dx   y0  x 2



k dt

 y0  x1  kt  C1 x  0 when t  0 ⇒

1  C1 y0

kt y0  1 1 1  kt   y0  x y0 y0 y0  x 

y0 kt y0  1

x  y0 

y0 kt y0  1

As t → , x → y0  x0.

Section 7.6

Section 7.6

Integration by Tables and Other Integration Techniques

Integration by Tables and Other Integration Techniques

2. By Formula 13: b  2, a  5



 

 

2 2 1 4 1 5  4x x dx   ln 3 x22x  52 3 25 x5  2x 5 2x  5 

 

2 4x  5 x 8 ln  C 375 2x  5 75 x2x  5

4. By Formula 29: a  3



C

6. By Formula 41:



1 1 x  9 x dx  x2  9  arcsec C 3 x 3 3 2

8. By Formulas 51 and 47:





cos3 x dx  2

x

u  x, du  10. By Formula 71:



1 1 dx  1  tan 5x 5



2

x

9  x 4

2 1 x dx

x sin x

3









1 dx 2 x



1 1  u  ln cos u  sin u   C 5 2



1  5x  ln cos 5x  sin 5x   C 10









u  5x, du  5 dx

12. By Formula 85:



a   21, b  2

ex 2 sin 2x dx  

ex 2 1  sin 2x  2 cos 2x  C 1 4  4 2









4 x 2 1 e  sin 2x  2 cos 2x  C 17 2

14. By Formulas 90 and 91:





ln x3 dx  xln x3  3 ln x2 dx  xln x3  3x 2  2 ln x  ln x2  C  x ln x3  3ln x2  6 ln x  6  C

16. (a) By Formula 89:



x 4 ln x dx 

x5 x5 1 5  x ln x  C 2 1  4  1 ln x  C  5 25 5

(b) Integration by parts: u  ln x, du 



x 4 ln x dx 

x5 ln x  5



x5 1 dx, dv  x 4 dx, v  x 5

x5 1 x5 x5 dx  ln x  C 5 x 5 25



1 2x dx 2 32  x 22 1 x2 arcsin  C 2 3

2 1 2 cos x dx  sin x cos 2 x  2  C 3 3 2 x

1 5 dx 1  tan 5x



dx  

cos3 x

cos

2



343

344

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

18. (a) By Formula 24: a  75, x  u, and





(b) Partial fractions:



1 1 x  75 dx  ln C x 2  75 2 75 x  75 

3

30

ln





A 1 B   x 2  75 x  75 x  75 1  A x  75   B x  75 

x  75 C x  75

x  75: 1  2A 75 ⇒ A 

3 1 1   30 2 75 10 3

x   75: 1  2B 75 ⇒ B  



1 dx  x 2  75 

20. By Formula 21:



22. By Formula 79:



x

1  x



30

3 30

3 30  dx x  75 x  75

3

30

3

ln







x  75 C x  75

2 dx   2  x 1  x  C 3

arcsec 2x dx 

1 2x arcsec 2x  ln 2x  4x 2  1  C 2





u  2x, du  2 dx

24. By Formula 52:

26. By Formula 7:

 

28. By Formula 14:

x sin x dx  sin x  x cos x  C







1  sin

3



1 2 2x  2 dx  arctan  C  arctanx  1  C x 2  2x  2 2

4



30. By Formula 56:

2

  C

x2 1 25  10 ln 3x  5 dx  3x  3x  52 27 3x  5

d 



32. By Formula 71:





1 1 3 2 d 3 1  sin  3



1 dt  t 1  ln t2

u  ln t, du 





u  e x, du  e x dx

1  tan  3  sec  3  C 3

34. By Formula 23:

ex 1 dx   e x  ln cos e x  sin e x   C 1  tan e x 2



1 1 dt  arctanln t  C 1  ln t2 t

1 dt t

36. By Formula 26:



1  x x 2  3  3 ln x  x 2  3   C 2

38. By Formula 27:



1 3x2  2 2  3x2 3 dx 27

3  x 2 dx 



x 2 2  3x2 dx  





1 3x18x 2  2 2  9x 2  4 ln 3x  2  9x 2  C 827







Section 7.6

40. By Formula 77:



2 3

x arctanx3 2 dx 



42. By Formula 45:





arctanx3 2

Integration by Tables and Other Integration Techniques

32 x dx

2 3 2 x arctanx3 2  ln 1  x3  C 3

ex ex dx  C 2x 3 2 1  e 

1  e 2x

u  e x, du  e x dx 44. By Formula 27:



2x  32 2x  32  4 dx 



1 2x  32 2x  3)2  42 dx 2

1  2x  3 2x  32  2 2x  32  4  ln 2x  3  2x  32  4  C 8





u  2x  3, du  2 dx

46. By Formula 31:



cos x

sin2 x  1





dx  ln sin x  sin2 x  1  C

u  sin x, du  cos x dx

48.



3x dx  3x

 

3x

9  x 2

3

1 dx 

9  x 2

 3 arcsin

50. By Formula 67:

dx



un

a  bu

du 

x  9  x 2  C 3



   

du

a  bu

2 , v  a  bu b



a  bu 2n n1 2u n

a  bu  u a  bu  du b b

a  bu



2n au n1  bu n 2u n

a  bu  du b b

a  bu



2u n 2na u n1 un

a  bu  du  2n du b b a  bu

a  bu



54.



2u n 2n n1

a  bu  u a  bu du b b

Therefore, 2n  1



tan3  d 

x dx

9  x 2

52. Integration by parts: w  u n, dw  nu n1 du, dv 





un

a  bu



un

a  bu

du 



 



2 n un1 u a  bu  na du and b

a  bu







2 un1 un a  bu  na du . 2n  1b

a  bu



uncos u du  un sin u  n un1sin u du

w  un, dv  cos u du, dw  nun1 du, v  sin u

tan2   2



tan  d

tan2   ln cos x  C 2





345

346

56.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



ln un du  uln un 



nln un1

1uu du  uln u

w  ln un, dv  du, dw  nln un1

58.



x x 2  2x dx 

0, 0:

n



 n ln un1 du

1u du, v  u

1 2x 2  2x3 2  3x  1 x 2  2x  3 ln x  1  x 2  2x  C 6





15

1 3 ln 1  C  0 ⇒ C  0 6



−6

6

(0, 0)

−15

60.



2  2x  x 2

x1

 0, 2 :

dx  2  2x 



x2



 3 ln



3  2  2x  x 2

x1





3

(0, 2 )

C

2  3 ln 3  2  C  2 ⇒ C  3 ln 3  2

−2.5

1

 −6

62.





0, 1: C  1 ⇒ y 

64.





sin  1 sin  1  sin  d   ln cos 1  sin  2 1  sin  cos 





1 sin  1  sin   ln 2 1  sin  cos 

  C

10

  1



sin  sin  d   d 1  cos2  1  cos 2

−8

8

(0, 1) −2



 2

66.

0

1 d  3  2 cos 

 arctancos   C

 1

0



1

2

0

  u  tan

68.



cos  d  1  cos    

   

cos 1  cos  d 1  cos 1  cos 

70.



 2

1 d  sec   tan 

2u 1  u2 21  u2 3 1  u2



1 du 5u2  1

 25 arctan 5 u

1 0

2

5



arctan 5

1 d 1 cos   sin  cos 



cos   cos2  d sin2 



csc  cot   cot2  d

 ln 1  sin   C

csc  cot   csc2   1 d

 csc   cot     C

cos  d 1  sin 



u  1  sin , du  cos  d



Section 7.6

  2

72. A 

0



1 2

0

1 2

2x dx 2 1  ex

1 4





2



1 2 2 x  ln1  e x  2



1 1 4  ln1  e4  ln 2 2 2



347

y

x 2 dx 1  ex 2

Integration by Tables and Other Integration Techniques

x 1

2

0



 0.337 square units

74. Log Rule:



1 du, u  ex  1 u

78. Formula 16 with u  e2x

76. Integration by parts



5

82. W 

80. A reduction formula reduces an integral to the sum of a function and a simpler integral. For example, see Formula 50, 54.

0

500x

26  x 2



dx

5

 250

26  x 21 22x dx

0





 500 26  x 2  500 26  1  2049.51 ft  lbs

84.



2

1 20

0

2500 5000 dt  1  e4.81.9t 1.9

2

0

1.9 dt 1  e4.81.9t





2500 4.8  1.9t  ln1  e4.81.9t 1.9



2500 1  ln1  e  4.8  ln1  e4.8 1.9

2500 1e 3.8  ln 1.9 1  e4.8





86. (a)

  401.4

20

k

6x 2ex 2

dx  50

0

By trial and error, k  5.51897.



0

5.51897

(b)

0

88. True

6x 2ex 2 dx

2









−1

5.52

0

5 0

348

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

Section 7.7

Indeterminate Forms and L’Hôpital’s Rule

1  ex  1 x →0 x

2. lim

1

−1

0.1

0.01

0.001

0.001

0.01

0.1

0.9516

0.9950

0.9995

1.00005

1.005

1.0517

x f x

6x

4. lim

x →

3x2  2x

 3.4641

exact: 63

5

1

10

102

103

104

105

f x

6

3.5857

3.4757

3.4653

3.4642

3.4641

x →1

(b) lim

x →1

8. (a) lim

x →0

x →

(b) lim

x →

0

100 0

2x2  x  3 2x  3x  1  lim  lim 2x  3  5 x →1 x →1 x1 x1 2x2  x  3 ddx 2x2  x  3

4x  1  lim  5  lim x →1 x →1 x1 ddx x  1

1





sin 4x sin 4x  lim 2  21  2 x →0 2x 4x

10. (a) lim

−2



x

6. (a) lim

(b) lim

x →0

sin 4x 4 cos 4x ddx sin 4x

 lim  lim 2 x →0 x →0 2x ddx 2x

2

2x  1 2x  1x2 0  lim  0 2 x → 4x  x 4  1x 4  2x  1 ddx 2x  1

2  lim  lim 0 4x2  x x → ddx 4x2  x x → 8x  1

x2  x  2 2x  1  lim  3 x →1 x →1 x1 1

12. lim

14. lim x →2

4  x2

x2

 lim x →2

 lim x →2

16. lim x →0

ex  1  x ex  1  lim 3 x →0 x 3x2  lim x →0

ex  6x 

sin ax a cos ax a  lim  x→0 sin bx x→0 b cos bx b

20. lim

x →

x1 1  lim 0 x2  2x  3 x → 2x  2

x2 2x 2  lim x  lim x  0 x→  ex x→  e x→  e

28. lim

x4  x2 1 x 4  x2

 

2 18. lim ln x  lim 2 ln x x→1 x2  1 x→1 x2  1

 lim

2x 2x

 lim

1 1 x2

x→1

x→1

24. lim

1

arctan x  4 11  x2 1  lim  x →1 x →1 x1 1 2

22. lim

26. lim

x→ 

x3 3x2  lim  x→ x1  1

Section 7.7

30. lim

x→ 

x2 x  lim  x→  1  1x2 1

Indeterminate Forms and L’Hôpital’s Rule

32. lim

x2

x→ 

sin x 0 x

Note: Use the Squeeze Theorem for x > . 

e x2 12e x2  lim  x→  x x→  1

ln x 4 4 ln x 4x  lim  lim x→  x3 x→  x→  3x2 x3

36. lim

34. lim

 lim

x→ 

4 0 3x3

38. (a) lim x3 cot x  0 (b) lim x3 cot x  lim (c)

x→0



40. (a) lim x tan x→ 

x→0

x→0

1 sin x 1 ≤ ≤ x x x

x3 tan x

 lim x→0

3x2 sec2 x

0

(b) lim x tan x→ 



1  0 x

1 tan1x  lim x x→ 1x

1

 lim

x→ 

0

 1x2 sec21x  1x2

3

 lim sec2 x→ 

−1

(c)

1x   1

2

1

10

−1

42. (a) lim e x  x2x  1 x→0

(b) Let y  lim e x  x2x. x→0

ln y  lim x→0

2 ln

ex

 x

 1 1 (b) Let y  lim 1   . x x→ 

1 x

x



x

x→ 

x

ln y  lim

2e x  1e x  x  lim 4 x→0 1

x→ 

x ln1  1x   lim ln 1 1x1x

x→

1  1x 1x2

Thus, ln y  4 ⇒ y  e 4  54.598. (c)



44. (a) lim 1 

 lim

x→ 

60

1x2

 lim

x→ 

1 1 1  1x

Thus, ln y  1 ⇒ y  e1  e. Therefore,



lim 1 

x→  0

1 x



x

 e.

2 0

(c)

5

0 −1

10

349

350

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 48. (a) lim 3x  4 x4  00

46. (a) lim 1  x1x  0 x →

x→4

(b) Let y  lim 3x  4 x4.

(b) Let y  lim 1  x

1x.

x→ 

ln y  lim

x→ 

 lim

x→ 

x→4

ln y  lim x  4ln 3x  4

ln1  x x

x→4

111 x  0

ln 3x  4

1x  4

 lim

1x  4 1x  42

x→4

x→4

Thus, ln y  0 ⇒ y  e0  1. Therefore, lim 1  x1x  1.

 lim  x  4  0

x →

(c)

 lim

x→4

Hence, lim 3x  4 x4  1.

5

x→4

(c)

2

10

0 −1

4

7 0

2  x

x

50. (a) lim cos x→0

 00

2  x . x

(b) Let y  lim cos x→0

x 1 4  x x41     1 x1 1 x1   lim lim  x 4 x 4 x 4

52. (a) lim (b)



x →2

2

x →2

2

2





2

x →2

2  x

ln y  lim x ln cos x→0

 lim x →2

000

2  x

x

Hence, lim cos x→0

(c)

 lim x →2

 1. (c)

2

1 2x  1  2x 1 4xx  1

0.25

2 4

2

− 0.25

0

3 0

54. (a) lim x→0

(b) lim x→0

10x  x3     

(c)

2

10x  x3   lim 10xx 3    2



x→0

10

0

5

2

−20

56. (a)

(b) Let y  sin xx, then ln y  x lnsin x.

2



lim

x →0

 2



−1

lnsin x cos xsin x x2 2x  lim  lim  lim 0 2 x →0 x →0 tan x x →0 sec2 x 1x 1x

Therefore, since ln y  0, y  1 and lim sin xx  1. x →0



1 8

Section 7.7

58. (a)

Indeterminate Forms and L’Hôpital’s Rule x3 3x2 6x 6  lim 2x  lim 2x  lim 2x  0 2x x→  e x→  2e x→  4e x→  8e

(b) lim

1 −1

5

−3

62. Let f x  x  25 and gx  x.

60. See Theorem 7.4.

64. lim

x3 3x2 6x 6  lim  lim 0  lim e2x x→ 2e2x x→ 4e2x x→ 8e2x

66. lim

ln x2 2 ln xx  lim x→  x3 3x2

x→ 

x→ 

x→ 

xm mxm1  lim enx x→ nenx mm  1xm2 n2enx

 lim

2 ln x 3x3

 lim

 lim

2x 2  lim 3  0 x→  9x 9x2

 . . .  lim

x→ 

x→ 

70.

68. lim

x→ 

x→ 

m! 0 nmenx

x

1

5

10

20

30

40

50

100

ex x5

2.718

0.047

0.220

151.614

4.40  105

2.30  109

1.66  1013

2.69  1033

ln x x Horizontal asymptote: y  0 (See Exercise 29)

74. y 

72. y  x x, x > 0 lim x x   and lim x x  1

x→ 

x→0

dy x1x  ln x1 1  ln x   0 dx x2 x2

No horizontal asymptotes ln y  x ln x

Critical number:



1 1 dy x  ln x y dx x

0, e  Sign of dydx: y  f x: Increasing 1 Relative maximum: e, e

dy  x x1  ln x  0 dx

e1, 0  Increasing 1 1 1 Relative minimum: e1, e1e   , e e

e,   Decreasing

 

x  e1

Critical number:

xe

Intervals:

0, e1  Sign of dydx: y  f x: Decreasing Intervals:

1 −1

4

(e, 1e (

   1e

−4

4

(

−1

((

1

1, 1 e e e

( 4

−1

sin  x  1 0 x→  x

76. lim

(Numerator is bounded)

Limit is not of the form 00 or . L’Hôpital’s Rule does not apply.

ex 0  0 x →  1  ex 10

78. lim

Limit is not of the form 00 or . L’Hôpital’s Rule does not apply.

351

352

Chapter 7



80. A  P 1 

r n



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals nt





r ln A  ln P  nt ln 1   ln P  n

lim

n →





ln 1 

r n



 lim



r n



1 nt



1 r n2 1  rn 1  2 nt

 

n →

1 nt



ln 1 



   lim

n →

rt

1

1

r n

 rt

Since lim ln A  ln P  rt, we have lim A  eln Prt  eln Pert  Pert. Alternatively, n→ 



r lim A  lim P 1  n → n → n



n→ 

nt

1  n 

 lim P n →

r

nr rt

 Pert.

82. Let N be a fixed value for n. Then

N  1x N2 N  1N  2x N3 N  1! x N1  lim  lim  . . .  lim  0. x x x→  e x→  x→  x→  e ex ex



lim

84. f x 

xk  1 k

k  1,

k=1

f x  x  1 1  10x 0.1  1 0.1

x 0.1

f x 

k  0.01,

x 0.01  1  100x 0.01  1 f x  0.01

k →0

(See Exercise 68)

6

k  0.1,

lim



k = 0.1 k = 0.01 −2

10 −2

xk  1 xk ln x  lim  ln x k →0 k 1

1 86. f x  , gx  x2  4, 1, 2

x f c f 2  f 1  g2  g1 g c

88. f x  ln x, gx  x3, 1, 4

f 4  f 1 f c  g4  g1 g c

12 1c2  3 2c

ln 4 1c 1  2 3 63 3c 3c 3c3 ln 4  63

1 1   3 6 2c

c3 

2c3  6 3 3 c 

90. False. If y  exx2, then y 

x2ex  2xex xex x  2 ex x  2   . x4 x4 x3

c

21 ln 4

ln214  2.474 3

92. False. Let f x  x and gx  x  1. Then lim

x →

x  1, but lim x  x  1  1. x → x1

Section 7.8



e1x , 0,

94. gx 

2

Improper Integrals

x0

y

x0

1.5

gx  g0 e1x  lim g0  lim x →0 x →0 x0 x

2

e1x e1x , then ln y  ln Let y  x x



2

2



0.5

1 1  x2 ln x   2  ln x  . Since x x2

x −2

−1

1

2

− 0.5

 

ln x 1x x2  lim  lim  0 lim x2 ln x  lim 2 3 x →0 x →0 1x x →0 2x x →0 2

1 x x

2

we have lim

x →0

ln x

2

   . Thus, lim y  e



x →0

 0 ⇒ g0  0.

Note: The graph appears to support this conclusion—the tangent line is horizontal at 0, 0. 98. lim x ln 21ln x

96. lim f xgx

x →0

x →a

Let y  x ln 21ln x, then:

y  f xgx ln y  gx ln f x

ln y 

lim gx ln f x      

ln 2 1  ln x

x →a

As x → a, ln y ⇒

, and hence y  . Thus,

lim ln y  lim

x →0

lim f xgx  .

x →0

ln 2ln x ln 2x  lim x →0 1  ln x 1x

x→0

Thus, lim y  eln 2  2. x →

Improper Integrals

2. Infinite discontinuity at x  3.



4

3

1 dx  lim b →3 x  332



x  332 dx







2  b  3

4

b

 lim 2x  312 b →3

 lim 2  b →3

4 b



Diverges 4. Infinite discontinuity at x  1.



2

0

1 dx  x  123



1

0

1 dx  x  123



b

 lim b→1

0

b→1





2

1

1 dx x  123

1 dx  lim c→1 x  123



3 x  1  lim 3

Converges

ln 2ln x 1  ln x

 lim ln 2  ln 2

x →a

Section 7.8

 ln x 

b 0





2

c

1 dx x  123



3 x  1  lim 3 c→1

2 c

 0  3  3  0  6

353

354

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals





6. Infinite limit of integration.





0

8.

0

e2x dx  lim

b→



ex dx  0. You need to evaluate the limit.

0

lim

b→ 



0

1 2x e 2

 lim

b→

b



b

e2x dx

b

e



ex dx  lim b→

0

1 1  0 2 2

 lim

b→ 

b

x

0

e



1 1

b

Converges

10.



5

1



b

dx  lim b→  x3

1

b→

xex2 dx  lim





x  1ex dx  lim



eax sin bx dx  lim

b→

0



b→ 



18.

e 

x2

c→

0



x  1ex dx  lim xex b→

0

ax

e 

a sin bx  b cos bx a2  b2







x2

0

x3 dx  lim b→   12



b

0

x2

b→

x dx  lim b→  1

 1 lnx  2

 lim

2

b

0

 1 

1

 lim

b 0

b→ 

 0  0 by L’Hôpital’s Rule. b e b





20.

1

ln x dx  lim b→  x b→ 

b

0



1 2  1 x2





x



x2  1 2

dx

Diverges

b→ 

 lim





3 4



0

b b 0 2  a  b2 a 2  b2

22.

 163x

 lim eb22b  4  4  4

b

c



4x14 dx

1



2x  4

b

0

b→ 

b→ 

xex2 dx  lim



b

 lim

b

b→ 



dx  lim

5 2



1



0

16.

b

4 4 x

1

2



14.

12.

 25x



 lim





5 dx x3

24.

0





b

1

ln x dx x

ln x2 2





b 1

  Diverges





b

ex dx  lim ln1  ex b→  1  ex

   ln 2

0

b

Diverges

0

1 2

 Diverges





26.



6

30.





x x b dx  lim 2 cos b→ 2 2 0  0 x Diverges since cos does not approach a limit as x → . 2 sin

0

4 dx  lim b→6 6  x





0

4

b





8 dx  lim 8 ln x b→0 x

4 b



32.



0



b



e

ln x2 dx  lim b→0

2 ln x dx

0





 lim 2x ln x  2x b→0

0

e b

 80  8 6

 lim 2e  2e  2b ln b  2b

 8 6

0

sec d  lim

Diverges



e

46  x12 dx



8 dx  lim b→0 x

Diverges

0

2

34.

0

b

 lim 86  x12 b→6



4

28.

b→  2

b→0

ln sec  tan

b 0



2

 ,

36.

0



 

1 x dx  lim arcsin b→2 2 4  x2

b 0



2

Section 7.8



2

38.

0

1 dx  lim b→2 4  x2



b

0



1 1 1 1 2x  dx  lim ln b→2 4 2x 2x 4 2x







Diverges



3

40.

1





2

2 dx  x  283



b 0

Improper Integrals

355

0

3

2x  283 dx 

1



2x  283 dx

2

b

 lim b→2

1



2x  283 dx





3

2x  283 dx  lim c→2



6  lim  x  253 b→2 5



b

c

6  lim  x  253 c→2 5

1

3 c



Diverges

42.





Thus,





1

1 dx  x ln x



0



1 dx  x ln x 1



 lim lnln x b→1

44. If p  1,

e

e

 lim

1



1

1 dx  ln ln x  C x ln x

c→ 



1 dx  lim ln x a→0 x

a

 lim ln a  . a→0

Diverges. If p  1,





e



1

1 dx x ln x

0



lnln x

.



1 x1p dx  lim a→0 xp 1p



1 a

 lim a→0

 1 1 p  1a p . 1p

1 if 1  p > 0 or p < 1. 1p

This converges to

e

Diverges



1



46. (a) Assume

gx dx  L (converges).

a

Since 0 ≤ f x ≤ gx on a, , 0 ≤







f x dx ≤

a

gx dx diverges, because otherwise, by part (a), if

a



1

48.

0

3 x

56.

f x dx converges.

a



gx dx converges, then so does

dx 



f x dx.





1 3  converges. 1  13 2

1 1 ≥ on 2,  and x x  1



a

50.

x 4ex dx converges.

0

 See Exercise 44, p  13 .

(See Exercise 45.)



1

2

x

1 1 ≤ 32 on 1,  and x x1  x

54. Since



gx dx  L and

a

1

52. Since





a



(b)







dx diverges by Exercise 43,

2





1

1 x32

1 x  1



dx diverges.



dx converges by Exercise 43,

1 1 ≥ since x ln x < x on 2, . Since x x ln x

1



1

2

x

1 x1  x





dx diverges by Exercise 43,

2

dx converges.

1 x ln x

dx diverges.

58. See the definitions, pages 540, 543. 60. Answers will vary.





(a)



1e

Converges



62. f t  t



ex 2x

dx

(b)

x dx



(Example 4)

Diverges

Fs 





 st  1e

 s

test dt  lim b→

0



1

2

1 ,s > 0 s2

st

b 0

356

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

64. f t  eat Fs 



66. f t  sin at







eat est dt 

0

etas dt

0

 1 e  as



b

t as

0

1 1  ,s > a as sa

68. f t  sinh at





est sinh at dt 

0





est sin at dt

b→







2

est s sin at  a cos at  a2



a a  ,s > 0 s2  a2 s2  a2



 eat 1 dt  2 2

at

  s

0

et sa  et sa dt

0



b

1 1 1 et sa  et sa b→  2 s  a s  a





 lim

0

e

est

0

 lim



0

 lim b→

Fs 

Fs 

0

0



1 1 1  2 s  a s  a



1 1 a 1   2 ,s > a 2 s  a s  a s  a2



70. (a) A 





1







1 1 dx   x2 x

1



1

(b) Disk: V





1

(c) Shell: V  2





1

x

x1  dx  lim 2 ln x

b

2

b→ 

1

1

dx  lim  3 b→  x4 3x





b 1



Diverges 72. x  22  y2  1 2x  2  2yy  0 y 

 x  2 y

1  y 2  1 



3

S  4

1

x dx  4

y

x  2 2y 2 



3

1

1 (Assume y > 0. y

x dx  4

1  x  22

 3

1

 

74. (a) Fx  W (b)



2 1  x  22

dx

  4

0  2 arcsin1  2 arcsin1  8

 lim 4  1  x  22  2 arcsinx  2 a→1 b→3

x2 1  x  22 b

a

K K ,5 , K  80,000,000 x2 40002





80,000,000 80,000,000 dx  lim b→  x2 x 4000



80,000,000 W  10,000  2 x





b 4000



80,000,000  10,000 b b  8000 Therefore, 4000 miles above the earth’s surface.



b 4000

 20,000 mi-ton

80,000,000  20,000 b

2



3

b 0

Section 7.8





76. (a)

2 2t5 e dt   5 4

(b)

0



0





b 2 2t5 e dt  lim e2t5  1 b→  5 0





4

2 2t5 e dt  e2t5 5

0

 e85  1

 0.7981  79.81%





(c)



Improper Integrals

 25 e dt  lim te 2t5

t

0

2t5

b→



5  e2t5 2



b 0



5 2

5

78. (a) C  650,000 

25,0001  0.08te0.06t dt

0



 650,000  25,000 







 $778,512.58



 $905,718.14

1 0.06t t 0.06t 1 e  0.08 e  e0.06t 0.06 0.06 0.062

5 0

10

(b) C  650,000 

25,0001  0.08te0.06t dt

0



 650,000  25,000  (c) C  650,000 





1 0.06t t 0.06t 1 e e  0.08  e0.06t 0.06 0.06 0.062

10 0



25,0001  0.08te0.06t dt

0

t e  0.06

 650,000  25,000 lim

0.06t

b→ 





80. (a)

1



1



xn

1

1 e0.06t 0.062



b 0

 $1,622,222.22

(b) It would appear to converge. y

1

1.00

dx will converge if n > 1 and will diverge if n ≤ 1.

0.50 0.25

u 

1

0.06t

0.75

(c) Let dv  sin x dx ⇒



b

t e 0.06



1



1 1 dx  lim  b→  x2 x

1

1

b

1 dx  lim ln x b→  x

 0.08

1 x

v  cos x

⇒ du  



sin x cos x dx  lim  b→0 x x  cos 1 





1



b 1

x −5 − 0.25

1 dx x2







1

15

20

cos x dx x2

cos x dx x2

Converges 82. (a) Yes, the integral is not defined at x  2.

(b)

5

(c) As n → , the integral approaches 4 4  . (d) In 



2

0

4 dx 1  tan xn

I2  3.14159 I4  3.14159 I8  3.14159 I12  3.14159

0 −2

2

357

358

Chapter 7

84. (a) f x 



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1 2 ex70 18 32

(b) P72 ≤ x <

  0.2525

(c) 0.5  P70 ≤ x ≤ 72  0.5  0.2475  0.2525

90

f x dx  1.0

These are the same answers because by symmetry,

50

P70 ≤ x <

0.4

  0.5

and 50

0.5  P70 ≤ x <

90



 P70 ≤ x ≤ 72  P72 ≤ x <

− 0.2

86. False. This is equivalent to Exercise 85.

.

88. True

Review Exercises for Chapter 7 2.



2

xe x1 dx 



2 1 x1 e 2x dx 2

4.





x 1 dx   1  x2122x dx 2 1  x 2 

1 2  e x1  C 2

1 1  x212 C 2 12

  1  x2  C

6.





u4  3u2 du 

2x2x  3 dx 

10.

8.

x x 4  2x2  x  1 1 2 x 4  2x2  1 x  12



22x  332 x  1  C 5

 u  2x  3, x 

u5  u3  C 5

x4  2x2  x  1 dx  x2  12

u2  3 , dx  u du 2





dx 

x



1 2



2x dx x2  12

1 C 2x2  1



x2  1ex dx  x2  1ex  2 xex dx  x2  1ex  2xex  2 ex dx  exx2  2x  1  1

(1) dv  ex dx



v  ex

u  x2  1 ⇒ du  2x dx (2) dv  ex dx ⇒ ux

⇒ du  dx

12. u  arctan 2x, du 



v  ex

2 dx, dv  dx,v  x 1  4x2

arctan 2x dx  x arctan 2x   x arctan 2x 



14.



lnx2  1 dx 

2x dx 1  4x2



1 ln1  4x2  C 4

1 2



lnx2  1 dx

1 x ln x2  1  2





1  x ln x2  1  2





   x2

x2 dx 1

dx 

1 dx x2  1

 

1 x1 1 C  x ln x2  1  x  ln 2 2 x1



dv  dx





vx

u  lnx2  1 ⇒ du 

2x dx x2  1

Review Exercises for Chapter 7

16.



ex arctanex dx  ex arctanex   ex arctanex  ⇒

dv  ex dx



20.



x dx  2

sin2



ex dx 1  e2x



or

tan  sec4  d 

22.

tan3   tan  sec2  d 



sec3 sec  tan  d 



cos 2sin   cos 2 d 



x2  9

x

dx 







24.

1 ln1  e2x  C 2

1 1 1 1 1  cos  x dx  x  sin  x  C   x  sin  x  C 2 2  2

tan  sec4  d 



e2x dx 1  e2x

v  ex

u  arctan ex ⇒ du 

18.



359

1 4 1 tan   tan2   C1 4 2

1 sec4   C2 4

 

cos 2   sin2 sin   cos 2 d

1 sin   cos 3cos   sin  d  sin   cos4  C 4

  

3 tan  3 sec  tan  d 3 sec 

x

 3 tan2  d

x2 − 9

θ 3

 3 sec2   1 d  3tan     C  x2  9  3 arcsec

3x   C

x  3 sec , dx  3 sec  tan  d, x2  9  3 tan 

26.



9  4x2 dx 



1 9  2x2 2 dx 2

 2 9 arcsin



1 2



9 2x x arcsin  9  4x2  C 4 3 2

1

28.



2x  2x9  4x2  C 3



sin  1 d  1  2 cos2  2 

1 2



1   2 sin  d 1  2 cos2 

arctan 2 cos   C

u  2 cos , du   2 sin  d

360

Chapter 7

30. (a)



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

 

x4  x dx  64 tan3  sec3  d

(b)





x4  x dx  2 u4  4u2 du

 64 sec4   sec2 sec  tan  d 

64 sec3  3 sec3   5  C 15



24  x32 3x  8  C 15



2u3 2 3u  20  C 15



24  x32 3x  8  C 15

u2  4  x, dx  2u du

x  4 tan2 , dx  8 tan  sec2  d, 4  x  2 sec 

(c)



x4  x dx 



u32  4u12 du

(d)



x4  x dx 

4  x32 dx

2u32 3u  20  C 15



4 2x 4  x32  4  x52  C 3 15



24  x32 3x  8  C 15



24  x32 3x  8  C 15

dv  4  x dx ⇒

2 v  4  x32 3

⇒ du  dx

ux 2x3  5x2  4x  4 4 3  2x  3   x2  x x x1

32.

34.





u  4  x, du  dx



2x 2 4  x32  3 3

2x3  5x2  4x  4 dx  x2  x



2x  3 



3 4  dx  x2  3x  4 ln x  3 ln x  1  C x x1







4x  2 A B   3x  12 x  1 x  12 4x  2  3Ax  1  3B Let x  1: 2  3B ⇒ B 

2 3

Let x  2: 6  3A  3B ⇒ A 

 36.



4x  2 4 dx  3x  12 3



sec2  d  tan tan   1

4 3

2 1 dx  x1 3





1 du  uu  1









1 du  u1



 ln u  1  ln u  C  ln u  tan , du  sec2  d 1 A B   uu  1 u u1 1  Au  1  Bu Let u  0: 1  A ⇒ A  1 Let u  1: 1  B



4 1 2 2 1 dx  lnx  1   C  2 lnx  1  C x  12 3 3x  1 3 x1



1 du u



tan   1  C  ln 1  cot   C tan 





Review Exercises for Chapter 7

38.



x 2  3x

dx  

24  3x 2  3x  C (Formula 21) 27

40.





x 1 1 dx 2 dx  1  ex 2 1  eu

6x  8 2  3x  C 27

u  x2

1  u  ln1  eu  C 2

(Formula 84)

1 2  x2  ln1  e x   C 2

42.





3 3 1 dx  3 dx 2 3x3x2  1 2x9x2  1 

44.



(Formula 33)





tann x dx   

50.

 

u  3x

1 1 1 dx dx  1  tan x  1  tan x 

46.

3 arcsec 3x  C 2

u  x

11 x  lncos x  sin x  C (Formula 71) 2

 

tann2xsec2 x  1 dx

tann2 x sec2 x dx 

1 tann1 x  n1



1  x dx 



48.







4u4  4u2 du 

4u5 4u3 4   C  1  x 323x  2  C 5 3 15

u  1  x, x  u4  2u2  1, dx  4u3  4u du

52.

3x3  4x Cx  D Ax  B  2  2 x2  12 x 1 x  12 3x3  4x  Ax  Bx2  1  Cx  D  Ax3  Bx2  A  Cx  B  D A  3, B  0, A  C  4 ⇒ C  1, BD0 ⇒ D0





3x3  4x x dx  dx  3 2 x2  12 x 1 

54.



x dx x2  12

3 1 lnx2  1  C 2 2x2  1



sin   cos 2 d  

 

sin2   2 sin  cos   cos2  d

1  sin 2 d   



1 dx u  2x, du  2x

tann2 x dx

u4u3  4u du 



csc2x 1 dx  2 csc2x dx x 2x



  2 ln csc2x  cot2x  C

tann2 x dx





1 1 cos 2  C  2  cos 2  C 2 2

361

362

Chapter 7



56. y 

4  x2

2x

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

dx  

 

2 cos 2 cos  d 4 sin 

csc   sin  d





 ln csc   cos   cos   C  ln





4  x2 2  4  x2 C  x 2

x  2 sin , dx  2 cos  d, 4  x 2  2 cos 



1  cos  d 

58. y 



sin  1  cos 



d   1  cos 12sin d  21  cos   C

u  1  cos, du  sin  d



1

60.

x

x  2x  4

0







2

 0



dx  2 ln x  4  ln x  2

1

62.

xe3x dx 

0

e9 3x  1

2

3x

0

1  5e6  1  224.238 9

 2 ln 3  2 ln 4  ln 2  ln



3

64.

0

9  0.118 8

x 22  x 1  x dx  3 1  x





3 0



4 4 8   3 3 3



1 dx 25  x2



1 x5 ln 10 x  5

4

66. A 

0

 

68. By symmetry, y  0. A    4  5 1  44 x   4 

17  3.4 5

70. s 

y





 



4 0



1 1 1 ln  ln 9  0.220 10 9 10

1  sin2 2x dx  3.82

0

3 2 1

(3.4, 0) x

−1

1

3

4

5

−2 −3

x, y  3.4, 0

72. lim

x →0

76.

sin  x  cos  x  1  lim   sin 2 x x →0 2 cos 2 x 2 2

74. lim xex  lim 2

x →

x →

y  lim x  1ln x x →1

ln y  lim ln x lnx  1 x →1

 lim x →1

 lnx  1  lim x →1 1 ln x

 lim 2xln x  0 x →1

Since ln y  0, y  1.



1 1 2 ln x x1 ln2 x x  lim  lim x →1 x →1 1 1 x1 1 x ln2 x x x2



x 1 2  lim 2  0 x →  2xe x ex

358

Chapter 7

84. (a) f x 



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1 2 ex70 18 32

(b) P72 ≤ x <

  0.2525

(c) 0.5  P70 ≤ x ≤ 72  0.5  0.2475  0.2525

90

f x dx  1.0

These are the same answers because by symmetry,

50

P70 ≤ x <

0.4

  0.5

and 50

0.5  P70 ≤ x <

90



 P70 ≤ x ≤ 72  P72 ≤ x <

− 0.2

86. False. This is equivalent to Exercise 85.

.

88. True

Review Exercises for Chapter 7 2.



2

xe x1 dx 



2 1 x1 e 2x dx 2

4.





x 1 dx   1  x2122x dx 2 1  x 2 

1 2  e x1  C 2

1 1  x212 C 2 12

  1  x2  C

6.





u4  3u2 du 

2x2x  3 dx 

10.

8.

x x 4  2x2  x  1 1 2 x 4  2x2  1 x  12



22x  332 x  1  C 5

 u  2x  3, x 

u5  u3  C 5

x4  2x2  x  1 dx  x2  12

u2  3 , dx  u du 2





dx 

x



1 2



2x dx x2  12

1 C 2x2  1



x2  1ex dx  x2  1ex  2 xex dx  x2  1ex  2xex  2 ex dx  exx2  2x  1  1

(1) dv  ex dx



v  ex

u  x2  1 ⇒ du  2x dx (2) dv  ex dx ⇒ ux

⇒ du  dx

12. u  arctan 2x, du 



v  ex

2 dx, dv  dx,v  x 1  4x2

arctan 2x dx  x arctan 2x   x arctan 2x 



14.



lnx2  1 dx 

2x dx 1  4x2



1 ln1  4x2  C 4

1 2



lnx2  1 dx

1 x ln x2  1  2





1  x ln x2  1  2





   x2

x2 dx 1

dx 

1 dx x2  1

 

1 x1 1 C  x ln x2  1  x  ln 2 2 x1



dv  dx





vx

u  lnx2  1 ⇒ du 

2x dx x2  1

Review Exercises for Chapter 7

16.



ex arctanex dx  ex arctanex   ex arctanex  ⇒

dv  ex dx



20.



x dx  2

sin2



ex dx 1  e2x



or

tan  sec4  d 

22.

tan3   tan  sec2  d 



sec3 sec  tan  d 



cos 2sin   cos 2 d 



x2  9

x

dx 







24.

1 ln1  e2x  C 2

1 1 1 1 1  cos  x dx  x  sin  x  C   x  sin  x  C 2 2  2

tan  sec4  d 



e2x dx 1  e2x

v  ex

u  arctan ex ⇒ du 

18.



359

1 4 1 tan   tan2   C1 4 2

1 sec4   C2 4

 

cos 2   sin2 sin   cos 2 d

1 sin   cos 3cos   sin  d  sin   cos4  C 4

  

3 tan  3 sec  tan  d 3 sec 

x

 3 tan2  d

x2 − 9

θ 3

 3 sec2   1 d  3tan     C  x2  9  3 arcsec

3x   C

x  3 sec , dx  3 sec  tan  d, x2  9  3 tan 

26.



9  4x2 dx 



1 9  2x2 2 dx 2

 2 9 arcsin



1 2



9 2x x arcsin  9  4x2  C 4 3 2

1

28.



2x  2x9  4x2  C 3



sin  1 d  1  2 cos2  2 

1 2



1   2 sin  d 1  2 cos2 

arctan 2 cos   C

u  2 cos , du   2 sin  d

360

Chapter 7

30. (a)



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

 

x4  x dx  64 tan3  sec3  d

(b)





x4  x dx  2 u4  4u2 du

 64 sec4   sec2 sec  tan  d 

64 sec3  3 sec3   5  C 15



24  x32 3x  8  C 15



2u3 2 3u  20  C 15



24  x32 3x  8  C 15

u2  4  x, dx  2u du

x  4 tan2 , dx  8 tan  sec2  d, 4  x  2 sec 

(c)



x4  x dx 



u32  4u12 du

(d)



x4  x dx 

4  x32 dx

2u32 3u  20  C 15



4 2x 4  x32  4  x52  C 3 15



24  x32 3x  8  C 15



24  x32 3x  8  C 15

dv  4  x dx ⇒

2 v  4  x32 3

⇒ du  dx

ux 2x3  5x2  4x  4 4 3  2x  3   x2  x x x1

32.

34.





u  4  x, du  dx



2x 2 4  x32  3 3

2x3  5x2  4x  4 dx  x2  x



2x  3 



3 4  dx  x2  3x  4 ln x  3 ln x  1  C x x1







4x  2 A B   3x  12 x  1 x  12 4x  2  3Ax  1  3B Let x  1: 2  3B ⇒ B 

2 3

Let x  2: 6  3A  3B ⇒ A 

 36.



4x  2 4 dx  3x  12 3



sec2  d  tan tan   1

4 3

2 1 dx  x1 3





1 du  uu  1









1 du  u1



 ln u  1  ln u  C  ln u  tan , du  sec2  d 1 A B   uu  1 u u1 1  Au  1  Bu Let u  0: 1  A ⇒ A  1 Let u  1: 1  B



4 1 2 2 1 dx  lnx  1   C  2 lnx  1  C x  12 3 3x  1 3 x1



1 du u



tan   1  C  ln 1  cot   C tan 





Review Exercises for Chapter 7

38.



x 2  3x

dx  

24  3x 2  3x  C (Formula 21) 27

40.





x 1 1 dx 2 dx  1  ex 2 1  eu

6x  8 2  3x  C 27

u  x2

1  u  ln1  eu  C 2

(Formula 84)

1 2  x2  ln1  e x   C 2

42.





3 3 1 dx  3 dx 2 3x3x2  1 2x9x2  1 

44.



(Formula 33)





tann x dx   

50.

 

u  3x

1 1 1 dx dx  1  tan x  1  tan x 

46.

3 arcsec 3x  C 2

u  x

11 x  lncos x  sin x  C (Formula 71) 2

 

tann2xsec2 x  1 dx

tann2 x sec2 x dx 

1 tann1 x  n1



1  x dx 



48.







4u4  4u2 du 

4u5 4u3 4   C  1  x 323x  2  C 5 3 15

u  1  x, x  u4  2u2  1, dx  4u3  4u du

52.

3x3  4x Cx  D Ax  B  2  2 x2  12 x 1 x  12 3x3  4x  Ax  Bx2  1  Cx  D  Ax3  Bx2  A  Cx  B  D A  3, B  0, A  C  4 ⇒ C  1, BD0 ⇒ D0





3x3  4x x dx  dx  3 2 x2  12 x 1 

54.



x dx x2  12

3 1 lnx2  1  C 2 2x2  1



sin   cos 2 d  

 

sin2   2 sin  cos   cos2  d

1  sin 2 d   



1 dx u  2x, du  2x

tann2 x dx

u4u3  4u du 



csc2x 1 dx  2 csc2x dx x 2x



  2 ln csc2x  cot2x  C

tann2 x dx





1 1 cos 2  C  2  cos 2  C 2 2

361

362

Chapter 7



56. y 

4  x2

2x

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

dx  

 

2 cos 2 cos  d 4 sin 

csc   sin  d





 ln csc   cos   cos   C  ln





4  x2 2  4  x2 C  x 2

x  2 sin , dx  2 cos  d, 4  x 2  2 cos 



1  cos  d 

58. y 



sin  1  cos 



d   1  cos 12sin d  21  cos   C

u  1  cos, du  sin  d



1

60.

x

x  2x  4

0







2

 0



dx  2 ln x  4  ln x  2

1

62.

xe3x dx 

0

e9 3x  1

2

3x

0

1  5e6  1  224.238 9

 2 ln 3  2 ln 4  ln 2  ln



3

64.

0

9  0.118 8

x 22  x 1  x dx  3 1  x





3 0



4 4 8   3 3 3



1 dx 25  x2



1 x5 ln 10 x  5

4

66. A 

0

 

68. By symmetry, y  0. A    4  5 1  44 x   4 

17  3.4 5

70. s 

y





 



4 0



1 1 1 ln  ln 9  0.220 10 9 10

1  sin2 2x dx  3.82

0

3 2 1

(3.4, 0) x

−1

1

3

4

5

−2 −3

x, y  3.4, 0

72. lim

x →0

76.

sin  x  cos  x  1  lim   sin 2 x x →0 2 cos 2 x 2 2

74. lim xex  lim 2

x →

x →

y  lim x  1ln x x →1

ln y  lim ln x lnx  1 x →1

 lim x →1

 lnx  1  lim x →1 1 ln x

 lim 2xln x  0 x →1

Since ln y  0, y  1.



1 1 2 ln x x1 ln2 x x  lim  lim x →1 x →1 1 1 x1 1 x ln2 x x x2



x 1 2  lim 2  0 x →  2xe x ex

Problem Solving for Chapter 7 78. lim x →1

ln2x  x 2 1 

lim

x →1

1

0

2  2x

 x  11x  ln x

 lim

2x  2 2  lim 1 x  1  x ln x x→1 1  1  ln x

x→1





 lim x →1

80.

2x  2  2 ln x ln xx  1





0    b

6 dx  lim 6 ln x  1 b→1 x1

82.



 e1x

x

0

2

a→0 b →

Diverges





84. V  

xex 2dx

0





x2e2x dx

0

 lim

b→ 

 e4

2x

 

86.

2

b→



1 1 1   dx < x5 x10 x15

 4x1 

lim



1 1  9x9 14x14



4

b

2x2  2x  1



0





2





b

<

2

2



0.015846 <

2

 4

1 dx < x5  1

x5

 

2



1 1 2   dx x5 x10 x15



1 1 1 1 dx < lim  4  9  14 b→  1 4x 9x 7x

1 dx < 0.015851 x5  1

Problem Solving for Chapter 7



1

2. (a)

0





ln x dx  lim x ln  x b→0

1 b

 1  lim b ln b  b  1 b→0

Note: lim b ln b  lim



b→0

b→0

1

0

ln b 1b  lim 0 b1 b→0 1b2





ln x2 dx  lim xln x2  2x ln x  2x b→0

1 b

 2  lim bln b2  2b ln b  2b  2 b→0

(b) Note first that lim bln bn  0 (Mathematical induction). Also,





b→0

ln x

n1



dx  xln xn1  n  1 ln xn dx.

1

Assume



ln xn dx  1n n!.

0

1

Then,

0



ln xn1 dx  lim xln xn1 b→0



1 b



1

 n  1

ln xn dx

0

 0  n  11n n!  1n1n  1!.



dx  lim e1x



b 2



b a

101

363

364

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

lim

4.

x→ 

xx  cc

lim x ln

x→ 

lim

x→ 

x



1 4

xx  cc  ln 41

lnx  c  lnx  c  ln 4 1x 1 1  xc xc lim  ln 4 x→  1  2 x

lim

x→ 

2c x2  ln 4 x  cx  c lim

x→ 

2cx2  ln 4  c2

x2

2c  ln 4 2x  2 ln 2 c  ln 2 6. sin   BD, cos   OD 1 1 Area DAB  DABD  1  cos sin  2 2 Shaded area  R

 1  1  1BD   sin  2 2 2 2 DAB 121  cos sin   Shaded area 12  sin 

lim R  lim

 →0

 →0

1  cos sin  1  cos cos   sin2   lim  →0   sin  1  cos 

 lim

1  cos sin   cos  sin   2 sin  cos  sin 

 lim

sin   4 cos  sin  4 cos   1  lim 3  →0 sin  1

 →0

 →0

1  u2 x 1  u2 3  u2 8. u  tan , cos x  , 2  cos x  2   2 2 1u 1  u2 1  u2 dx 



2

0

2 du 1  u2

1 dx  2  cos x

 1

0

1



0





1 2 u  du 2

2 du 3  u2

  2 1 arctan 3 3

 2 

1  u2 3  u2

1 u arctan 3 3



2  3 6

1

0





 3 0.6046 9

Problem Solving for Chapter 7 10. Let u  cx, du  c dx.





b

cb

ec

2 x2

dx 

0

du 1  c c

eu

2

0

As b → , cb → . Hence,





cb

eu du 2

0



dx 

ec

2 x2

0

1 c





ex dx. 2

0

x  0 by symmetry.

y

Mx  m



 ec2x2

2

0

dx

2



ec x dx

2

2 2

0



1  2

0

e2c x dx 2 2



0

ec x dx 2 2



 1 2 ex dx 1 2c 0  2 1  x2 e dx c 0



1 2 2





Thus, x, y  0,

2

4

2

4

.

12. (a) Let y  f 1x, f y  x, dx  fy dy.



f 1x dx 



y fy dy



 y f y 

u  y, du  dy

dv  fy dy, v  f y 

f y dy

 x f 1x 



f y dy

(b) f 1x  arcsin x  y, f x  sin x



arcsin x dx  x arcsin x 



sin y dy 1

 x arcsin x  cos y  C  x arcsin x  1  x2  C

y 1 − x2

(c) f x  ex, f 1x  ln x  y



e

1





ln x dx  x ln x



1

e



1

e y dy

0

 

 e  ey

1 0

 e  e  1  1

x  1 ⇔ y  0; x  e ⇔ y  1

x

365

366

Chapter 7

14. (a) Let x 

I

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

  u, dx  du. 2



2

0

sin x dx  cos x  sin x







2

2

0

Hence, 2I 



2

sin x dx  cos x  sin x

0



2

1 dx 

0



0

(b) I 



2



2

0

cos x dx sin x  cos x

  ⇒ I . 2 4

2  u du   cos   u  sin   u 2 2 n

n

cosn u du sinn u  cosn u

Thus, 2I 



2

0

16.



cos u du sin u  cos u

sinn

2

0

2  u du   cos  u  sin  u 2 2 sin

0

1 dx 

  ⇒ I . 2 4

P1 P2 Pn Nx   ... Dx x  c1 x  c2 x  cn Nx  P1x  c2x  c3. . .x  cn  P2x  c1x  c3. . .x  cn  . . .  Pnx  c1x  c2. . .x  cn1 Let x  c1: Nc1  P1c1  c2c1  c3. . .c1  cn  P1 

Nc1 c1  c2c1  c3. . .c1  cn 

Let x  c2: Nc2  P2c2  c1c2  c3. . .c2  cn  P2 



Nc2 c2  c1c2  c3. . .c2  cn 



Let x  cn: Ncn   Pncn  c1cn  c2. . .cn  cn1 Pn 

Ncn  cn  c1cn  c2. . .cn  cn1

If Dx  x  c1x  c2x  c3. . .x  cn, then by the Product Rule Dx  x  c2x  c3. . .x  cn   x  c1x  c3. . .x  cn   . . .  x  c1x  c2x  c3. . .x  cn1 and Dc1  c1  c2c1  c3. . .c1  cn  Dc2  c2  c1c2  c3. . .c2  cn 

 Dcn   cn  c1cn  c2. . .cn  cn1. Thus, Pk  Nck Dck  for k  1, 2, . . ., n.

Problem Solving for Chapter 7

18.

st 





50,000 dt 50,000  400t

32t  12,000 ln



 16t 2  12,000 ln 50,000  ln50,000  400t dt



 16t 2  12,000t ln 50,000  12,000 t ln50,000  400t 





400t dt 50,000  400t





 16t 2  12,000t ln

50,000  12,000t 50,000  400t

 16t 2  12,000t ln

50,000  12,000t  1,500,000 ln50,000  400t  C 50,000  400t

1

50,000 dt 50,000  400t

s0  1,500,000 ln 50,000  C  0 C  1,500,000 ln 50,000



st  16t 2  12,000t 1  ln

50,000 50,000  400t  1,500,000 ln 50,000  400t 50,000



When t  100, s100 557,168.626 feet 20. Let u  x  ax  b, du  x  a  x  b dx, dv  f x dx, v  fx.



b

a





b

x  ax  b dx  x  ax  b fx 



b



a



b

a

x  a  x  b fx dx u  2x  a  b

dv  fx dx 

2x  a  b fx dx



  2x  a  b f x 2

b

a

a





f x dx

b a





b

a

2 f x dx

367

C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1

Basic Integration Rules

Section 7.2

Integration by Parts

Section 7.3

Trigonometric Integrals . . . . . . . . . . . . . . . . . . . 65

Section 7.4

Trigonometric Substitution

Section 7.5

Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . 84

Section 7.6

Integration by Tables and Other Integration Techniques

Section 7.7

Indeterminate Forms and L’Hôpital’s Rule . . . . . . . . . 96

Section 7.8

Improper Integrals

Review Exercises

. . . . . . . . . . . . . . . . . . . 50

. . . . . . . . . . . . . . . . . . . . . 55

. . . . . . . . . . . . . . . . . 74

. . 90

. . . . . . . . . . . . . . . . . . . . . 102

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C H A P T E R 7 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 7.1

Basic Integration Rules

Solutions to Odd-Numbered Exercises 1. (a) (b)

d x2  1  C  21x2  11 22x   2x dx x 1

(c)

1 1 2 x d 1 2 x  1  C  x  11 22x  dx 2 2 2 2x2  1

(d)

2x d lnx2  1  C  2 dx x 1





x x2  1

3. (a)





dx matches (b).



d 2x x2  122  2x2x2  12x 21  3x2  2 2 2  C  dx x  1 x2  14 x  13

(c)

1 d arctan x  C  dx 1  x2

(d)

2x d lnx2  1  C  2 dx x 1





1 dx matches (c). x2  1



3x  24 dx

u  3x  2, du  3 dx, n  4 Use

11.





t sin t 2 dt

Use

7.





sin u du.



1

x 1  2x



dx

9.

u  1  2x, du  

un du.

u  t 2, du  2t dt

50



x d  2 lnx2  1  C  21 x2 2x dx 1 x 1

(b)

 5.



d 2x2  1  C  2 12 x2  11 22x   2x dx x2  1

Use



1 x

dx



3 1  t2

u  t, du  dt, a  1 Use

du . u

13.



cos xesin x dx

u  sin x, du  cos x dx Use



eu du.

dt



du a 2  u 2

Section 7.1

17. Let u  z  4, du  dz

15. Let u  2x  5, du  2 dx.



2x  53 2 dx  





1 2x  53 22 dx 2



5 z  44 C dz  5 z  45 dx  5 5 z  4 4

1   2x  55 2  C 5



19. Let u  t3  1, du  3t2 dt.



3 t3  1 dt  t2

1 3

Basic Integration Rules

21.





v

5 C 4z  44



1 dv  3v  13

t3  11 33t2 dt



1 t3  14 3 C 3 4 3



t3  14 3 C 4



v dv 



1 3v  133dv 3

1 1  v2  C 2 63v  12

23. Let u  t3  9t  1, du  3t2  9 dt  3t2  3 dt.



25.





t2  3 1 3t 2  3 1 dt   dt   ln t 3  9t  1  C t 3  9t  1 3 t 3  9t  1 3

x2 dx  x1 

29.



x  1 dx 



1 dx x1

1 2 x  x  ln x  1  C 2



1  2x22 dx 



27. Let u  1  ex, du  ex dx.



ex dx  ln1  ex  C 1  ex



4 4 x 4x 4  4x2  1dx  x5  x3  x  C  12x 4  20x2  15  C 5 3 15

31. Let u  2 x2, du  4 x dx.



xcos 2 x2 dx  



1 cos 2 x24 x dx 4 1 sin 2 x 2  C 4

33. Let u   x, du   dx.



cscx cot x dx 



1 csc x cot x dx   1 cscx  C  

35. Let u  5x, du  5 dx.



e5x dx 



1 5x 1 e 5 dx  e5x  C 5 5

37. Let u  1  e x, du  e x dx.







2 dx  2 ex  1

2

1 ex  1

ee dx x x

ex dx  2 ln1  e x  C 1  ex

51

52

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

39.



ln x2 1 ln x 2 dx  2 ln x dx  2  C  ln x  C x x 2



41.



1  sin x dx  cos x

2



sec x  tan x dx  ln sec x  tan x  ln sec x  C  ln sec xsec x  tan x  C

1 1  cos   1 cos   1

43.



 csc  1 d  cos   1



cos   1

cos   1

 cos   1  cos2   1 

cos   1 sin2 

 cot   csc2 

csc  cot   csc2  d

 csc   cot   C

45.





1 cos   C sin  sin 



1  cos  C sin 





3z  2 3 2z dz dz  dz  2 2 z2  9 2 z2  9 z 9 

47. Let u  2t  1, du  2 dt.





3 2 z lnz2  9  arctan C 2 3 3

1 1  2t  12

dt  



1 2 dt 2 1  2t  12

1   arcsin2t  1  C 2

49. Let u  cos



2t , du  2 sint 2 t dt. 2



1 tan2 t 1 2 sin2 t dt  dt t2 2 cos2 t t2 



1 2 ln cos 2 t

51.



6x  x2

53.



4 dx  4x2  4x  65

55.

ds t 1  , 0,  dt 2 1  t 4

3



dx  3





C

1 9  x  32



dx  3 arcsin









(b) u  t 2, du  2t dt



1

t

−1

x 3 3  C

1 1 1 x  1 2 2x  1 dx  arctan  C  arctan C x  1 22  16 4 4 4 8

s

(a)



1



0, 

t 1  t 4

dt 



1 1 2t dt  arcsin t 2  C 2 2 1  t22 0.8



1 1 1 1 :   arcsin 0  C ⇒ C   2 2 2 2 −1.2

−1

1.2

1 1 s  arcsin t 2  2 2 − 0.8

Section 7.1

57.

59. y 

10

Basic Integration Rules



1  ex2 dx 

53



e2x  2ex  1 dx

1  e2x  2ex  x  C 2

−10

10 −2

y  3e0.2x

61.

dy sec2 x  dx 4  tan2 x

63. Let u  2x, du  2 dx.



 4

Let u  tan x, du  sec2 x dx. y



0





sec2 x 1 tan x dx  arctan C 4  tan2 x 2 2



1

2

x

xe

dx  

0

1 2



1



0



1 2 2x dx   ex 2

2

x

e



4

1



2 3

0

1 1 dx  4  9x2 3  





2 3

0



 4

cos 2x2 dx

0

 4

 2 sin 2x

0

0

2x dx  x2  9

1  1  e1  0.316 2

69. Let u  3x, du  3 dx.

1 2

1

0



1 2

67. Let u  x2  9, du  2x dx.

65. Let u  x2, du  2x dx.



cos 2x dx 

3 4  3x2



x2  91 22x dx





4

0

 2x2  9

71.

1 3x arctan 6 2



dx



4 0

4

1 1 x2 dx  arctan C x2  4x  13 3 3





The antiderivatives are vertical translations of each other. 1

2 3 0 −7

  0.175 18

5

−1

73.



1 2 d  tan   sec   C or 1  sin  1  tan 2





The antiderivatives are vertical translations of each other.

75. Power Rule:



un du 

un1  C, n  1. n1

u  x2  1, n  3

6

− 2

7 2

−6

77. Log Rule:



du  ln u  C, u  x2  1. u



79. The are equivalent because exC1  e x  eC1  Ce x, C  eC1

54

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

81. sin x  cos x  a sinx  b sin x  cos x  a sin x cos b  a cos x sin b sin x  cos x  a cos b sin x  a sin b cos x Equate coefficients of like terms to obtain the following. 1  a cos b

1  a sin b

and

Thus, a  1 cos b. Now, substitute for a in 1  a sin b.

cos1 b sin b

1

1  tan b ⇒ b  Since b 

 

2

83.

0

 4

 1  ,a  2. Thus, sin x  cos x  2 sin x  . 4 cos 4 4



dx  sin x  cos x

dx 2 sinx   4



1 2







csc x 



 1   dx   ln csc x   cot x  4 4 4 2













C

1 a

4x dx  3 x2  1

85. Let u  1  x2, du  2x dx.



0

 12x



1 6a2

x1  x2 dx

A4

y

x  ax2 dx 

0

1

Matches (a).

87.



2

a  x3 3

1

 2

3

1  x21 22x dx

0



2



4   1  x23 2 3

1

1 0



Let

4 3

1 2 1  , 12a 2  3, a  . 6a 2 3 2 y

( a1 , a1)

2

y

y=x

x 1

2

3 1

1

y = ax 2

1 2

x

x − 12

1

1 2

− 12

2

−1

89. (a) Shell Method: Let u  x2, du  2x dx.

 

1

V  2

(b) Shell Method:

y

V  2

dx

1 2



  ex

0 1

 

2

x

2x dx

e

0



xex dx 2

0

2

x

xe



b

1

x 1 2



2

b 0

1

  1  eb   2

  e



x2

1 0

 1  e   1.986 1

eb  2

b

4 3

3  4 3

ln 33 4

 0.743



1 a 0

Section 7.2



4

91. A 

0

x

1 A



x 5 dx  5 arcsin 5

25  x2



4

x

0



4

y 4



3

25  x  4

2

2 12

2x dx

(2.157, y )

1

0



x



1  5 25  x212 5 arcsin45



4 5

5 dx

25  x2

1 5   5 arcsin45 2



 5 arcsin

0

Integration by Parts

1

4

2

3

4

0

1 3  5 arcsin45

2  2.157 arcsin45 y  tan x

93.

y   sec2 x 1   y 2  1   2 sec4 x



14

s

1   2 sec4x dx

0

 1.0320

Section 7.2

Integration by Parts

1.

d sin x  x cos x  cos x  x sin x  cos x  x sin x. Matches (b) dx

3.

d 2 x x e  2xex  2ex  x2ex  2xex  2xex  2ex  2ex  x2ex. Matches (c) dx

5.



xe2x dx

7.

ux



ln x2 dx

u  ln x 2, dv  dx

u  x, dv  e2x dx

11. dv  e2x dx ⇒



v



1 e2x dx   e2x 2

⇒ du  dx

1 xe2x dx   xe2x  2



1  e2x dx 2

1 1 1   xe2x  e2x  C  2x 2x  1  C 2 4 4e

9.



x sec2 x dx

u  x, dv  sec2 x dx

55

56

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

13. Use integration by parts three times. (1) dv  ex dx ⇒



v

(2) dv  ex dx ⇒

ex dx  ex

⇒ du  3x2 dx

u  x3



u  x2



v



(3) dv  ex dx ⇒

ex dx  ex

⇒ du  2x dx

v



⇒ du  dx

ux



x3ex dx  x3ex  3 x2ex dx  x3ex  3x2ex  6 xex dx  x3ex  3x2ex  6xex  6ex  C  exx3  3x2  6x  6  C

15.



x2 ex dx  3

17. dv  t dt

1 3



1 3 3 ex 3x2dx  ex  C 3





v

t dt 



t2 2

1 dt t1

u  lnt  1 ⇒ du 



t lnt  1 dt 

t2 1 lnt  1  2 2

t2 dt t1



t2 1 lnt  1  2 2

t1



t2 2

lnt  1 





1 dt t1



t2

1  t  lnt  1  C 2 2

1  2t 2  1 ln t  1  t 2  2t  C 4



19. Let u  ln x, du 



ln x2 dx  x



1 dx. x



21. dv 

ln x2

1x dx  ln3x

3

1 dx ⇒ 2x  12

v





u  x2



xe2x xe2x dx    2x  12 22x  1

⇒ du  2x dx

x2  1ex dx 



x2ex dx 







ux





e2x dx 2

e2x xe2x C  22x  1 4



e2x C 42x  1

v



ex dx  ex

⇒ du  dx

exdx  x2ex  2 xex dx  ex

 x2ex  2 xex 





(2) dv  ex dx ⇒

ex dx  ex

1 22x  1

 e2x2x  1 dx

23. Use integration by parts twice. v

2x  12 dx

⇒ du  2xe2x  e2x dx

u  xe2x

(1) dv  ex dx ⇒





C

ex dx  ex  x2ex  2xex  ex  C  x  12ex  C

ex dx  ex

Section 7.2

25. dv  x  1 dx ⇒



2 x  112dx  x  132 3

v

27. dv  cos x dx ⇒

⇒ du  dx

ux



2 2 x x  1 dx  xx  132  3 3



x  132 dx



cos x dx  sin x

x cos x dx  x sin x 



sin x dx  x sin x  cos x  C

4 2  xx  132  x  152  C 3 15 

2x  132 3x  2  C 15

29. Use integration by parts three times. (1) u  x3, du  3x2, dv  sin x dx, v  cos x





x3 sin dx  x3 cos x  3 x2 cos x dx

(2) u  x2, du  2x dx, dv  cos x dx, v  sin x









x3 sin x dx  x3 cos x  3 x2 sin x  2 x sin x dx  x3 cos x  3x2 sin x  6 x sin x dx

(3) u  x, du  dx, dv  sin x dx, v  cos x





x3 sin x dx  x3 cos x  3x2 sin x  6 x cos x 





cos x dx

 x3 cos x  3x2 sin x  6x cos x  6 sin x  C



t csc t cot t dt  t csc t 



csc t dt





33. dv  dx

31. u  t, du  dt, dv  csc t cot dt, v  csc t

v

u  arctan x ⇒ du 





 t csc t  ln csc t  cot t  C



dx  x

1 dx 1  x2

arctan x dx  x arctan x   x arctan x 

35. Use integration by parts twice. (1) dv  e2xdx ⇒



v



1 e2x dx  e2x 2

1 1 e2x sin x dx  e2x sin x  2 2

5 4

(2) dv  e2x dx ⇒





1 1 1 2x 1 e2x cos x dx  e2x sin x  e cos x  2 2 2 2

1 1 e2x sin x dx  e2x sin x  e2x cos x 2 4 1 e2x sin x dx  e2x2 sin x  cos x  C 5

v



x dx 1  x2

1 ln1  x2  C 2



1 e2x dx  e2x 2

u  cos x ⇒ du  sin x dx

u  sin x ⇒ du  cos x dx

57

⇒ du  dx

ux



v

Integration by Parts



e2x sin x dx



58

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

37. y  xex

2

y



1 2 2 xe x dx  ex  C 2

39. Use integration by parts twice. (1) dv 

1

2  3t

dt ⇒

v

(2) dv  2  3t dt ⇒

41.

v



2 2  3t12 dt  2  3t32 9

⇒ du  dt

ut



2 2  3t12 dt  2  3t 3

⇒ du  2t dt

u  t2

y



2t 2 2  3t 4 t2 dt   3 3

2  3t



t 2  3t dt





2 2t 2 2  3t 4 2t  2  3t32  3 3 9 9



8t 16 2t 2 2  3t  2  3t32  2  3t52  C 3 27 405



2 2  3t 27t 2  24t  32  C 405





2  3t32 dt

cos yy  2x



cos y dy 



2x dx

sin y  x 2  C 43. (a)

dy  x y cos x, 0, 4 dx

(b)

y

8



6



dy

y



y12 dy 

2

2

2

x cos x dx

4

u  x, du  dx, dv  cos x dx, v  sin x

x cos x dx

2y12  x sin x 

x 4





sin x dx

6

 x sin x  cos x  C

0, 4: 2412  0  1  C ⇒ C  3 2 y  x sin x  cos x  3

45.

dy x x8  e , y0  2 dx y

10

−10

10 −2

−6

6 −2

Section 7.2

Integration by Parts

47. u  x, du  dx, dv  ex2 dx, v  2ex2



xex2 dx  2xex2 





4

Thus,



2ex2 dx  2xex2  4ex2  C

xex2 dx  2xex2  4ex2

0

 8e2  4e2  4



4 0

 12e2  4  2.376. 49. See Exercise 27.



2



0

1

51. u  arccos x, du  



1  x2





0

 1 2

dx, dv  dx, v  x



arccos x dx  x arccos x 

x

1  x2

dx  x arccos x  1  x2  C



12

Thus,

2



x cos x dx  x sin x  cos x



arccos x  x arccos x  1  x2

0

12 0

34  1



1 1 arccos  2 2



 3   1  0.658. 6 2

53. Use integration by parts twice. (1) dv  e x dx ⇒



v



(2) dv  ex dx ⇒

e x dx  e x

u  sin x ⇒ du  cos x dx

e x sin x dx  e x sin x 



e x cos x dx  e x sin x  e x cos x 



v



ex dx  ex

u  cos x ⇒ du  sin x dx

e x sin x dx

2 e x sin x dx  e xsin x  cos x e x sin x dx 



ex sin x  cos x  C 2

1

Thus,

e x sin x dx 

0

55. dv  x2 dx, v 



x2 ln x dx  



x

1 0

e 1 esin 1  cos 1  1  sin 1  cos 1    0.909. 2 2 2

1 x3 , u  ln x, du  dx 3 x

x3 ln x  3



x3 1 dx 3 x

1 2 x3 ln x  x dx 3 3

2

Hence,

 e2 sin x  cos x

x2 ln x dx 

 x3 ln x  9x 3

1

2

3

1

1



8 1 8 7 8 ln 2    ln 2   1.071. 3 9 9 3 2

59

60

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

57. dv  x dx, v 



x2 1 dx , u  arcsec x, du 

2 x x2  1

x2 x arcsec x dx  arcsec x  2

Hence,





4

x22 dx x x2  1

 2 arcsec x  2 x x2

x arcsec x dx 

2

1





x2 2x 1 dx arcsec x  2 4 x2  1

 8 arcsec 4 



x2 1 arcsec x  x2  1  C 2 2

 8 arcsec 4 

2

15

2

15

2



1

4 2

 23  23





3

2



2 3

 7.380.

59.



x2e2x dx  x2

12 e  2x 14 e  2 18 e  C 2x

2x

2x

u and its derivatives



x2

e2x



2x

1 2x 2e



2

1 2x 4e



0

1 2x 8e

1 1 1  x2e2x  xe2x  e2x  C 2 2 4 1  e2x2x2  2x  1  C 4

61.

63.



u and its derivatives

 x3 cos x  3x2 sin x  6x cos x  6 sin x  C



x3

sin x

 3x2  6 sin x  x3  6x cos x  C



3x2

cos x



6x

sin x



6

cos x



0

sin x







x sec2 x dx  x tan x  ln cos x  C

71. Yes. Let u  x and du 

v and its antiderivatives

Alternate signs

u and its derivatives



x

sec2 x



1

tan x



0

ln cos x



67. No. Substitution.

1 , dx.

x  1

73.



t 3e4t dt  

Substitution also works. Let u  x  1



2

0

v and its antiderivatives

Alternate signs

x3 sin x dx  x3cos x  3x2sin x  6x cos x  6 sin x  C

65. Integration by parts is based on the product rule.

75.

v and its antiderivatives

Alternate signs

e2x sin 3x dx 



e2x2 sin 3x  3 cos 3x 13

2



0



1 2e  3  0.2374 13

 69. Yes. u  x2, dv  e2x dx

e4t 32t3  24t2  12t  3  C 128

Section 7.2 77. (a) dv  2x  3 dx ⇒

v

Integration by Parts



1 2x  312 dx  2x  332 3

⇒ du  2 dx

u  2x



2 2 2x 2x  3 dx  x2x  332  3 3



2x  332 dx

2 2  x2x  332  2x  352  C 3 15 

2 2 2x  3323x  3  C  2x  332x  1  C 15 5 1 u3 and dx  du 2 2

(b) u  2x  3 ⇒ x 



2x 2x  3 dx 



2

1 u  3 12 1 u du  2 2 2





u32  3u12 du 





1 2 52 u  2u32  C 2 5

1 1 2  u32u  5  C  2x  3322x  3  5  C  2x  332x  1  C 5 5 5 x

79. (a) dv 

4  x2

dx ⇒ v 



4  x212x dx  4  x2

u  x2 ⇒ du  2x dx





x3 dx  x2 4  x2  2 x 4  x2 dx

4  x2 2 1  x2 4  x2  4  x232  C  4  x2 x2  8  C 3 3

(b) u  4  x2 ⇒ x2  u  4 and 2x dx  du ⇒ x dx 



x3 dx 

4  x2

1 2



x2 x dx 

4  x2





1 du 2

u41 du

u 2

u12  4u12 du 





1 2 32 u  8u12  C 2 3

1 1 1  u12u  12  C  4  x2 4  x2  12  C  4  x2 x2  8  C 3 3 3

81. n  0: n  1: n  2: n  3: n  4:



ln x dx  xln x  1  C

x ln x dx 

x2 2 ln x  1  C 4

x2 ln x dx 

x3 3 ln x  1  C 9

x3 ln x dx 

x4 4 ln x  1  C 16

x 4 ln x dx 

x5 5 ln x  1  C 25

In general,



xn ln x dx 

xn1 n  1ln x  1  C. (See Exercise 85.) n  12

61

62

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

83. dv  sin x dx ⇒

⇒ du  nx n1 dx

u  xn



x n sin

85. dv  x n dx ⇒

v  cos x

x dx 

x n



cos x  n

u  ln x

x n1

cos x dx

v

1 dx x

⇒ du 



x n ln x dx 

x n1 n1

x n1 ln x  n1



xn dx n1



x n1 x n1 C ln x  n1 n  12



x n1 n  1ln x  1  C n  12

87. Use integration by parts twice. 1 v  eax a

(1) dv  eax dx ⇒

u  cos bx ⇒ du  b sin bx dx

u  sin bx ⇒ du  b cos bx dx





eax cos bx dx



eax sin bx b eax cos bx b   a a a a



Therefore, 1 



eax sin bx b  a a

eax sin bx dx 

b2 a2

e

ax

sin bx dx 



eax sin bx dx 





eax sin bx dx 

x3 ln x dx 

eax sin bx b2  2 a a



eax sin bx dx

eaxa sin bx  b cos bx a2 eaxa sin bx  b cos bx  C. a2  b2 91. a  2, b  3 (Use formula in Exercise 88.)

89. n  3 (Use formula in Exercise 85.)



1 v  eax a

(2) dv  eax dx ⇒



x4 4 ln x  1  C 16

e2x cos 3x dx 



e2x2 cos 3x  3 sin 3x C 13

1

93. dv  ex dx ⇒



4

A



xex dx  xex

0

1

4



0



4



0

ex dx 

4  ex e4

4



0

5  0.908 e4

exsin x   cos  x 1  2







1   1   1 1  2 e 1  2 e





 0.395 See Exercise 87.

3

−1

ex sin x dx

0

⇒ du  dx

ux

95. A 

v  ex

1

7 −1

0

1.5 0



1 0





Section 7.2



e

97. (a) A 

e





ln x dx  x  x ln x

1

1

 1 See Exercise 4.

y

(b) Rx  ln x, rx  0



Integration by Parts

2

(e, 1)

e

V

ln x2 dx

1

1 e





  xln x2  2x ln x  2x

1

x

Use integration by parts twice, see Exercise 7.

1

2

3

  e  2  2.257 e

(c) px  x, hx  ln x



(d)

e

y

e 2  1  13.177 See Exercise 85. 2

x, y 

x ln x dx  2

1



e



V  2

99. Average value 

1 







x

x2 1  2 ln x 4

1





4 sin 2t  2 cos 2t 1 4t 4 cos 2t  2 sin 2t e  5e4t  20 20



7 1  e4  0.223 10









10

100,000  4000te0.05t dt  4000

0

25  te0.05t dt

0

Let u  25  t, dv  e0.05t dt, du  dt, v  

100 0.05t e 5



e dt

 100 e e  4000 25  t    10,000   $931,265 5 25

25  t 

100 0.05t e 5 0.05t

10 0



10















  cos  n  cos  n n n



2 cos n n

22nn, , ifif nn isis even odd

10

0.05t

0

10 0

x 1 x sin nx dx   cos nx  2 sin nx n n 



100 5

0.05t

0

103.

ln x2dx e  2   0.359 1 2

e

1 e2 ,  2.097, 0.359 4 2

2



e4t cos 2t  5 sin 2t dt

10

P  4000

1 e 2 1

0

101. ct  100,000  4000t, r  5%, t1  10 P

1 x ln x dx e2  1   2.097 1 4





0

From Exercises 87 and 88

63

64

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

105. Let u  x, dv  sin



1

I1 

x sin

0



n2 x dx, du  dx, v   n2 cos n2 x .

n 2x n x dx  cos x 2 n 2





2

x  2 sin

1



2 n



0



2 n cos  n 2



n 2 2 cos  n 2 n

Let u  x  2, dv  sin I2 





1



1

cos

0

n2 x dx

 n2 sin n2 x

1

2

0

sin n2 2

n2 x dx, du  dx, v   n2 cos n2 x .

n 2x  2 n x dx  cos x 2 n 2









2 n cos  n 2



2 n 2 cos  n 2 n

2 1



2 n



2

1

 n2 sin n2 x

cos

n2 x dx

2

2

1

sin n2 2

 n2 sin n2  n2 sin n2  n sin n2 2

hI1  I2  bn  h

8h

2

2

107. Shell Method:



b

V  2

x f x dx

y

a

y = f ( x)

f (a )

dv  x dx ⇒

x2 v 2

f (b )

u  f x ⇒ du  fx dx V  2

 x2 f x  x2 fxdx 2

b

2



x a

a

b



  b2f b  a2f a 

b



x2 fx dx

a

Disk Method: V



f a

b2  a2 dy  

0



f b

f a

b2   f 1 y 2 dy

 b2  a2 f a  b2 f b  f a  



  b2f b  a2f a 



f b

f a



f b

f a

 f 1y2 dy



 f 1 y2 dy

Since x  f 1 y, we have f x  y and fxdx  dy. When y  f a, x  a. When y  f b, x  b. Thus,



f b

f a

 f 1 y 2 dy 



b

x 2fx dx

a

and the volumes are the same.

Section 7.3

Trigonometric Integrals

109. fx  xex (a) f x 



xex dx  xex  ex  C

(b)

1

Parts: u  x, dv  ex dx f 0  0  1  C ⇒ C  1 0

f x  xex  ex  1 (c) You obtain the points n

xn

4 0

(d) You obtain the points

yn

n

xn

yn

0

0

0

0

0

0

1

0.05

0

1

0.1

0

2

0.10

2.378  103

2

0.2

0.0090484

3

0.15

0.0069

3

0.3

0.025423

4

0.20

0.0134

4

0.4

0.047648

 



 



80

0.9064

40

0.9039

4.0

1

4.0

1

0

4

0

0

4 0

(e) f 4  0.9084 The approximations are tangent line approximations. The results in (c) are better because x is smaller.

Section 7.3

Trigonometric Integrals

1. f x  sin4 x  cos4 x (a) sin4 x  cos4 x 

2x 2x 1  cos

 1  cos

2 2 2

2

1  1  2 cos 2x  cos2 2x  1  2 cos 2x  cos2 2x 4 

1 1  cos 4x 22 4 2





1  3  cos 4x 4 (b) sin4 x  cos4 x  sin2 x2  cos4 x  1  cos2 x2  cos4 x  1  2 cos 2 x  2 cos4 x (c) sin4 x  cos4 x  sin4 x  2 sin2 x cos2 x  cos4 x  2 sin2 x cos2 x  sin2 x  cos2 x2  2 sin2 x cos2 x  1  2 sin2 x cos2 x —CONTINUED—

65

66

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1. —CONTINUED— (d) 1  2 sin2 x cos2 x  1  2 sin x cos xsin x cos x  1  sin 2x 1

12 sin 2x

1 2 sin 2x 2

(e) Four ways. There is often more than one way to rewrite a trigonometric expression. 3. Let u  cos x, du  sin x dx.



5. Let u  sin 2x, du  2 cos 2x dx.





cos3 x sin x dx   cos3 xsin x dx

sin5 2x cos 2x dx 

1   cos4 x  C 4



1 2



sin5 2x2 cos 2xdx

1 sin6 2x  C 12

7. Let u  cos x, du  sin x dx.





sin x1  cos2 x2 cos2 x dx

sin5 x cos2 x dx 



  cos2 x  2 cos4 x  cos6 xsin x dx 

9.



cos3  sin  d  

 

cos 1  sin2 sin 1 2 d

sin 1 2  sin 5 2cos  d

2 2  sin 3 2  sin 7 2  C 3 7

13.



sin2

cos2 d    

   

1  cos 2 2



1  cos 2 d 2

1 1  cos2 2  d 4 1 4

1

1  cos 4 d 2



1 1  cos 4  d 8







1 1  sin 4  C 8 4



1 4  sin 4   C 32

11.

1 2 1 cos3 x  cos5 x  cos7 x  C 3 5 7



cos2 3x dx 



1  cos 6x dx 2







1 1 x  sin 6x  C 2 6



1 6x  sin 6x  C 12

Section 7.3

Trigonometric Integrals

15. Integration by parts. 1  cos 2x x sin 2x 1 ⇒ v   2x  sin 2x 2 2 4 4

dv  sin2 x dx  u  x ⇒ du  dx



x sin2 x dx 



1 1 x2x  sin 2x  4 4

2x  sin 2x dx





1 1 1 1  x2x  sin 2x  x2  cos 2x  C  2x2  2x sin 2x  cos 2x  C 4 4 2 8 17. Let u  sin x, du  cos x dx.





2

2

cos3 x dx 

0

1  sin2 x cos x dx

0



 sin x 

2



1 3 sin x 3

0



2 3

19. Let u  sin x, du  cos x dx.





2

2

cos7 x dx 

0

1  sin2 x3 cos x dx 

0



2

1  3 sin2 x  3 sin4 x  sin6 x cos x dx

0



 sin x  sin3 x 

21.



sec3x dx 

1 ln sec 3x  tan 3x  C 3



25. dv  sec2 x dx ⇒

sec3 x dx 



sec3 x dx 

27.



tan5

x dx  4 

sec4 5x dx 

0



16 35



1  tan2 5x sec2 5x dx







tan3 5x 1 tan 5x  C 5 3



tan 5x 3  tan2 5x  C 15

1 tan x

1 sec x tan x 

2 sec3 x dx 





⇒ du  sec x tan x dx

u  sec x



v

23.

2



3 5 1 sin x  sin7 x 5 7



sec x tan2 x dx 

1 sec x tan x 



sec xsec2 x  1 dx

1 sec x tan x  ln sec x  tan x   C1

1 sec x tan x  ln sec x  tan x   C 2

 

sec2

tan3



x x  1 tan3 dx 4 4

x x sec2 dx  4 4



29. u  tan x, du  sec2 x dx



tan3

x dx 4



 tan4

x  4

 tan4

x x x  2 tan2  4 ln cos  C 4 4 4

sec2

x x  1 tan dx 4 4





sec2 x tan x dx 

1 2 tan x  C 2

67

68

31.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



tan2 x sec2 x dx 

tan3 x C 3

33.



sec6 4x tan 4x dx  

35. Let u  sec x, du  sec x tan x dx.



sec3 x tan x dx  

39. r 

  

37.





sec2 xsec x tan x dx



1 4

sec5 4x4 sec 4x tan 4x dx

sec6 4x C 24

sec2 x  1 dx sec x

sec x  cos x dx

 ln sec x  tan x  sin x  C



1  cos2 2 d

41. y 



1 4



1 4



1  1 1   sin2    sin4   C 4 2 8



1 12   8 sin2   sin4   C 32

1  2 cos2   cos22  d 1  2 cos2  

 



1 sec3 x  C 3

sin4  d 



1  cos4  d 2









43. (a)

tan2 x dx  sec x

1 4

(b)

y 4



dy  sin2 x, 0, 0 dx y



sin2 x dx 

  

tan3 3x sec 3x dx

sec2 3x  1sec 3x tan 3x dx



1 1 sec2 3x3 sec 3x tan 3x dx  3 sec 3x tan 3x dx 3 3 1 1 sec3 3x  sec 3x  C 9 3

4



1  cos 2x dx 2

−6

6

x

sin 2x 1 C  x 2 4

4

−4

45.

−4

1 sin 2x 0, 0: 0  C, y  x  2 4

dy 3 sin x  , y0  2 dx y

47.



sin 3x cos 2x dx 

8

−9

9

1 2



sin 5x  sin x dx



1 1 cos 5x  cos x  C 2 5



1 cos 5x  5 cos x  C 10





−4

49.



sin  sin 3 d  

1 2



cos 2  cos 4 d





1 1 1 sin 2  sin 4  C 2 2 4

1  2 sin 2  sin 4  C 8

51.



cot3 2x dx 



csc2 2x  1 cot 2x dx







1 2 cos 2x 1 cot 2x2csc2 2x dx  dx 2 2 sin 2x

1 1   cot2 2x  ln sin 2x  C 4 2



1  ln csc2 2x  cot2 2x  C 4



Section 7.3

53. Let u  cot , du  csc2  d.



csc4  d  

 



1 dx  sec x tan x 



cot2 t dt  csc t

csc2 1  cot2  d

 





csc2  d 

 cot  

57.

55.

 

Trigonometric Integrals

csc2 t  1 dt csc t

csc t  sin tdt



 ln csc t  cot t  cos t  C

csc2  cot2  d

1 3 cot   C 3



cos2 x dx  sin x

1  sin2 x dx sin x

csc x  sin x dx



 ln csc x  cot x  cos x  C

59.



tan4 t  sec4 t dt 



tan2 t  sec2 ttan2 t  sec2 t dt



tan2 t  sec2 t  1



  tan2 t  sec2 t dt   2 sec2 t  1 dt  2 tan t  t  C





61.





sin2 x dx  2



0



 x





1 sin 2x 2

0



4

1  cos 2x dx 2

63.

tan3 x dx 

0

 

4

sec2 x  1 tan x dx

0





4

sec2 x tan x dx 

0



4

0



sin x dx cos x

4

 0

1 2  tan x  ln cos x 2

1  1  ln 2 2 65. Let u  1  sin t, du  cos t dt.



2

0



67. Let u  sin x, du  cos x dx. 2

 0

cos t dt  ln 1  sin t 1  sin t



2

 ln 2

 2



2

cos3 x dx  2

1  sin2 x cos x dx

0



 2 sin x 

69.

2



1 3 sin x 3

0





1 x cos4 dx  6x  8 sin x  sin 2x  C 2 16 6

−9

9

−6

71.



sec5 x dx 





3

1 3 sec3 x tan x  sec x tan x  ln sec x  tan x   C 4 2

−3

3

−3

4 3

69

70

73.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



sec5 x tan x dx 



4

1 sec5 x  C 5

75.

sin 2 sin 3 d 

0



1 1 sin   sin 5 2 5

4



0



3 2 10

5

−2

2

−5



2

77.

sin4 x dx 

0





2



1 3x 1  sin 2x  sin 4x 4 2 8

79. (a) Save one sine factor and convert the remaining sine factors to cosine. Then expand and integrate.

0

3 16

(b) Save one cosine factor and convert the remaining cosine factors to sine. Then expand and integrate. (c) Make repeated use of the power reducing formula to convert the integrand to odd powers of the cosine.

81. (a) Let u  tan 3x, du  3 sec2 3x dx.



(b)

sec4 3x tan3 3x dx 





1 3



1 3



tan6 3x tan4 3x   C1 18 12

sec2 3x tan3 3x sec2 3x dx

0.05

− 0.5

 

tan2 3x  1 tan3 3x3 sec2 3x dx

0.5

− 0.05

tan5 3x  tan3 3x3 sec2 3x dx

Or let u  sec 3x, du  3 sec 3x tan 3x dx.



(c)

sec4 3x tan3 3x dx 





1 3



sec6 3x sec4 3x  C 18 12

sec3 3x tan2 3x sec 3x tan 3x dx



sec3 3xsec2 3x  13 sec 3x tan 3x dx

sec6 3x sec4 3x 1  tan2 3x3 1  tan2 3x2  C  C 18 12 18 12

 



1 1 1 1 1 1 1 tan6 3x  tan4 3x  tan2 3x   tan4 3x  tan2 3x  C 18 6 6 18 12 6 12



tan6 3x tan4 3x 1 1    C 18 12 18 12



tan6 3x tan4 3x   C2 18 12





1

83. A 

sin2 x dx

y

0 1



0



1  cos2 x dx 2



x 1  sin2 x  2 4 1  2

1

1

1 2

0

x 1 2

1

Section 7.3

 



85. (a) V 

2

sin2 x dx 

0

(b) A 









0







sin x dx  cos x

0

1 x  sin 2x 2 2

1  cos 2x dx 

0





0



Trigonometric Integrals

2 2

112

Let u  x, dv  sin x dx, du  dx, v  cos x. x





1 A

x sin x dx 

0

y 

 

0











0



sin2 x dx

0



2

y

1

1  cos 2x dx

0



1 2





( π2 , π8 (

 8 0

π 2

2 , 8

87. dv  sin x dx ⇒





1 x cos x  sin x 2

cos x dx 

0

1 1  x  sin 2x 8 2

x, y 



x cos x



1 2A 1 8

1 2

x

π

v  cos x

u  sinn1 x ⇒ du  n  1sinn2 x cos x dx



  

sinn x dx  sinn1 x cos x  n  1 sinn2 x cos2 x dx  sinn1 x cos x  n  1 sinn2 x1  sin2 x dx



 sinn1 x cos x  n  1 sinn2 x dx  n  1 sinn x dx

 

 

Therefore, n sinn x dx  sinn1 x cos x  n  1 sinn2 x dx sinn x dx 

sinn1 x cos x n  1  n n

sinn2 x dx.

89. Let u  sinn1 x, du  n  1sinn2 x cos x dx, dv  cosm x sin x dx, v 

 mn m1

    

cosm1 x . m1

cosm x sinn x dx 

sinn1 x cosm1 x n1  m1 m1

sinn2 x cosm2 x dx



n1 sinn1 x cosm1 x  m1 m1

sinn2 x cosm x1  sin2 x dx



n1 sinn1 x cosm1 x  m1 m1

sinn2 x cosm x dx 

cosm x sinn x dx 

sinn1 x cosm1 x n1  m1 m1

sinn2 x cosm x dx

cosm x sinn x dx 

cosm1 x sinn1 n1  mn mn

 

cosm x sinn2 x dx

n1 m1



sinn x cosm x dx

71

72

91.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



sin5 x dx   



sin4 x cos x 4  5 5

sin3 x dx



sin2 x cos x 2 sin4 x cos x 4    5 5 3 3





sin x dx

4 8 1 sin2 x cos x  cos x  C   sin4 x cos x  5 15 15 

93.



sec4

cos x 3 sin4 x  4 sin2 x  8  C 15

2 5 x dx  25 sec 2 5 x 25 dx 4

2 2 x 2 x 5 1 sec2 tan  2 3 5 5 3



2 x 2 x 2 x 5 sec2 tan  2 tan 6 5 5 5



2 x 5 tan 6 5

a1 

1 b1  6 a0 

sec2



2 5 x 25 dx

  C

sec 2 5 x  2  C

  

2

t t  b1 sin where: 6 6

12

1 12 1 6





95. (a) f t  a0  a1 cos a0 





f t dt

0

12

f t cos

0

12

f t sin

0

t dt 6 t dt 6

12  0 30.9  432.2  241.1  453.7  264.6  474.0  278.2  477.0  271.0  3122 460.1  247.1  435.7  30.9  55.46

a1 

12  0 2 30.9 cos 0  4 32.2 cos  2 41.1 cos  4 53.7 cos  2 64.6 cos  6312 6 3 2 3



















5 7 4  278.2 cos   4 77.0 cos  2 71.0 cos  6 6 3



3 5 11  2 47.1 cos  4 35.7 cos  30.9 cos 2  23.88 2 3 6

4 74.0 cos 4 60.1 cos b1 























12  0 2 30.9 sin 0  4 32.2 sin  2 41.1 sin  4 53.7 sin  2 64.6 sin  6312 6 3 2 3



















5 7 4  278.2 sin   4 77.0 sin  2 71.0 sin  6 6 3



3 5 11  2 47.1 sin  4 35.7 sin  30.9 sin 2  3.34 2 3 6

4 74.0 sin 4 60.1 sin Ht  55.46  23.88 cos —CONTINUED—









t t  3.34 sin 6 6















Section 7.3

Trigonometric Integrals

95. —CONTINUED— (b) a0 

12  0 18.0  417.7  225.8  436.1  245.4  455.2  259.9  459.4  253.1  3122 443.2  234.3  424.2  18.0  39.34

a1 

12  0 2 18.0 cos 0  4 17.7 cos  2 25.8 cos  4 36.1 cos  2 45.4 cos  6312 6 3 2 3



















5 7 4  259.9 cos   4 59.4 cos  2 53.1 cos  6 6 3



3 5 11  2 34.3 cos  4 24.2 cos  18 cos 2  20.78 2 3 6

4 55.2 cos 4 43.2 cos b1 























12  0 2 18.0 sin 0  4 17.7 sin  2 25.8 sin  4 36.1 sin  2 45.4 sin  6312 6 3 2 3





















5 7 4  259.9 sin   4 59.4 sin  2 53.1 sin  6 6 3



3 5 11  2 34.3 sin  4 24.2 sin  18 sin 2  4.33 2 3 6

4 55.2 sin 4 43.2 sin Lt  39.34  20.78 cos





















t t  4.33 sin 6 6

(c) The difference between the maximum and minimum temperatures is greatest in the summer. 85

H L

0

12 15

 



97.



cosmx cosnx dx 





sinmx sinnx dx  













sinmx cosnx dx 

1 sinm  nx sinm  nx  2 mn mn



1 2



















 0, m n



sinm  nx  sinm  nx dx



1 cosm  nx cosm  nx  2 mn mn



1 2











, m n

cosm  n cosm  n cosm  n  cosm  n     mn mn mn mn



 0, since cos   cos. sinmx cosmx dx 

 0, m n



cosm  nx  cosm  nx dx

1 sinm  nx sinm  nx  2 mn mn 1 2





1 sin2mx m 2







0



73

74

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

Section 7.4 1.

Trigonometric Substitution













    

Indefinite integral:



x2  16

x



dx





2

x x2  16

2



4x



x2  16 x2  16  4

4x2







 xx x 16 164  4x 

4

3.



x2  16  4 d d 4 ln  x2  16  C  4 ln x2  16  4  4 ln x  x2  16  C dx x dx



4 x  x x2  16





xx2  16 x2  16  4

4x2  4x2  16  16x2  16  x2x2  16  4x2 xx2  16 x2  16  4 x2  16x2  16  4x2  16

xx2  16 x2  16  4

x2  16 x2  16 x2  16  4  2 2 x   x x  16 x  16  4

Matches (b)



x x16  x2 14 x1216  x2122x  16  x2 d C 8 8 arcsin   dx 4 2 2 1  x42 

16  x2 8 x2   2 2 2 16  x 216  x



16 x2 16  x2 x2    2 2 2 16  x2 216  x 216  x 216  x

Matches (a) 5. Let x  5 sin , dx  5 cos  d, 25  x2  5 cos .



1 dx  25  x232



5 cos  d 5 cos 3

1  25



5 x

sec  d 2

θ 25 − x 2

1 tan   C  25 

x 2525  x2

7. Same substitution as in Exercise 5



25  x2

x

dx 



C





25 cos2  d 1  sin2  5 d  5 csc   sin  d 5 sin  sin 







 4x2  16 x2  16  4  x2 x2  16  4

 5 ln csc   cot   cos   C  5 ln





5  25  x2  25  x2  C x

Section 7.4

Trigonometric Substitution

9. Let x  2 sec , dx  2 sec  tan  d, x2  4  2 tan .



1 dx  x2  4



2 sec  tan  d  2 tan 



 ln



x  2

x2  4

2







x



x2 − 4

sec  d  ln sec   tan  C1 θ 2

 C1







 ln x  x  4  ln 2  C1  ln x  x2  4  C 2

11. Same substitution as in Exercise 9



x3x2  4 dx 





8 sec3 2 tan 2 sec  tan  d  32 tan2  sec4  d



 32 tan2 1  tan2  sec2  d  32

tan3   tan5   C 3

5



32 x2  432 x2  4 32 3 tan  5  3 tan2   C  53 C 15 15 8 4



1 1 2 x  432 20  3x2  4  C  x2  4323x2  8  C 15 15





13. Let x  tan , dx  sec2  d, 1  x2  sec .



x1  x2 dx 



1 + x2

sec3  1  C  1  x232  C 3 3

tan sec  sec2  d 

x

θ

Note: This integral could have been evaluated with the Power Rule.

1

15. Same substitution as in Exercise 13



1 dx  1  x22  

  

1 1  x2

4

dx 1 + x2 x

 d sec4 

sec2

θ

cos2  d 





sin 2 1  2 2



1

  sin  cos   C 2



x 1 arctan x  2 1  x2



1 x arctan x  C 2 1  x2







1

1 1  cos 2 d 2







1 1  x2

  C



17. Let u  3x, a  2, and du  3 dx.



4  9x2 dx 



1 22  3x2 3 dx 3









1 1  3x4  9x2  4 ln 3x  4  9x2   C 3 2



2 1 x4  9x2  ln 3x  4  9x2  C 2 3





75

76

19.

Chapter 7



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

x 1 dx  9 2

x2





x2  9122x dx

x2

21.



1 16 

x2

dx  arcsin

4  C x

9C

(Power Rule) 23. Let x  2 sin , dx  2 cos  d, 4  x2  2 cos .



   

16  4x2 dx  2 4  x2 dx

2 x

θ

 2 2 cos 2 cos  d

4 − x2

 8 cos2  d  4 1  cos 2 d



4 



1 sin 2  C 2

 4  4 sin  cos   C  4 arcsin

2x  x4  x

2

C

27. Let x  sin , dx  cos  d, 1  x2  cos .

25. Let x  3 sec , dx  3 sec  tan  d, x2  9  3 tan .



1 x2  9

dx  

 



3 sec  tan  d 3 tan 

1  x2

x4

dx  

sec  d









cos cos  d sin4 

cot2  csc2  d

1   cot3   C 3

 ln sec   tan   C1



 





x2  9 x  ln   C1 3 3

 ln x  x2  9  C

1

 1  x232 C 3x3

x

θ

x

x2 − 9

1 − x2

θ 3

29. Same substitutions as in Exercise 28



1 dx  x4x2  9 

 1 3

32 sec2  d 32 tan  3sec 







1 1 4x2  9  3 csc  d   ln csc   cot   C   ln C 3 3 2x





Section 7.4 31. Let x  5 tan , dx  5 sec2  d, x2  5  5 sec2 .



5x dx  x2  532



55 tan  5 sec2  d 5 sec2 32

 

  5

x2 + 5 x

tan  d sec 

θ 5

  5 sin  d  5 cos   C 5

 5 

x2  5

C

5 C 5

x2

33. Let u  1  e2x, du  2e2x dx.



e2x1  e2x dx 

1 2



1 1  e2x122e2x dx  1  e2x32  C 3

35. Let ex  sin , ex dx  cos  d, 1  e2x  cos .



ex1  e2x dx 



cos2  d

1  2 



1

1  cos 2 d

sin 2 1  2 2



ex

θ 1 − e 2x



1 1    sin  cos   C   arcsin ex  ex1  e2x   C 2 2 37. Let x  2 tan , dx  2 sec2  d, x2  2  2 sec2 .



1 dx  4  4x2  x4      

 

1 dx x2  22 2

2

4

sec2 

4 sec4 



cos2 

x2 + 2 x

d

θ 2

d

2 1  cos 2 d

2 1

4 2

8 2

8



  21 sin 2  C   sin  cos   C



1 x 1 x  arctan C 4 x2  2 2 2

Trigonometric Substitution

77

78

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1 39. Since x > , 2 1 dx, dv  dx ⇒ v  x x4x2  1

u  arcsec 2x, ⇒ du 



arcsec 2x dx  x arcsec 2x 

2x  sec , dx 







arcsec 2x dx  x arcsec 2x 

1 4x  x2

dx

1 sec  tan  d, 4x2  1  tan  2

 x arcsec 2x 

41.

1 4x2  1

dx 





1 12 sec  tan  d  x arcsec 2x  tan  2



sec  d





1 1 ln sec   tan   C  x arcsec 2x  ln 2x  4x2  1  C. 2 2



1 4  x  22



dx  arcsin

x 2 2  C

43. Let x  2  2 tan , dx  2 sec2  d, x  22  4  2 sec .



x dx  x  4x  8 2



x dx  x  22  4

 

2 tan   22 sec2  d 2 sec 

 2 tan   1sec  d





 2 sec   ln sec   tan   C1



2

x  22  4

2



 ln

x  4x  8  2 ln

x  22  4

2



x2 2



 C1

x  4x  8  x  2  C

 x2  4x  8  2 ln x2  4x  8  x  2  ln 2  C1 

2



2

45. Let t  sin , dt  cos  d, 1  t 2  cos2 . (a)



t2 dt  1  t232  

  

sin2  cos  d cos3  1

tan2 

d

t

θ 1 − t2

sec2   1 d

 tan     C 



32

Thus,

0

t 1  t2

 arcsin t  C



32



t2 t dt   arcsin t 1  t232 1  t 2

0



32 14

(b) When t  0,   0. When t  32,   3. Thus,



32

0



t2 dt  tan    1  t232

3



0

 3 

  0.685. 3

 arcsin

3

2

 3 

  0.685. 3

Section 7.4

Trigonometric Substitution

47. (a) Let x  3 tan , dx  3 sec2  d, x2  9  3 sec .



x3 x2  9



dx 

27 tan3 3 sec2  d 3 sec 



 27 sec2   1 sec  tan  d

 13 sec

 27

3



9



3

Thus,

0



  sec   C  9 sec3   3 sec   C

 3

x2  9

3

3

  C  31 x  9

x2  9

2

3





13 54

 9x2  9  C

3

x3 1 dx  x2  932  9x2  9 3 x2  9 

32

0

 9  27



2  272

 18  92  9 2  2   5.272. (b) When x  0,   0. When x  3,   4. Thus,



3

0



x3 dx  9 sec3   3 sec  9

x2

4



0

 9 22  32   91  3  9 2  2   5.272.

49. (a) Let x  3 sec , dx  3 sec  tan  d, x2  9  3 tan .



x2 x2  9

dx 

 

9 sec2  3 sec  tan  d 3 tan 

9

sec3

x

 d

θ 3

 12 sec  tan   21sec  d

9

(7.3 Exercise 90)

9  sec  tan   ln sec   tan  2







9 x 2 3



x2  9

3

Hence,



6

4

 



 ln



x2  9 x  3 3



x2  9 x2 9 xx2  9 x dx   ln  x2  9 2 9 3 3



9 2



27 627  ln 2  9 3











6

4

4 9 7  ln 43  37  







 93  27 

6  27 4  7 9 ln  ln 2 3 3

 93  27 

9 6  33 ln 2 4  7

 93  27 

9 4  7 2  3   12.644. ln 2 3

—CONTINUED—







x2 − 9

79

80

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

49. —CONTINUED— (b) When x  4,   arcsec

43 .

When x  6,   arcsec2 



6



x2 9 dx  sec  tan   ln sec   tan  9 2

x2

4

 . 3





9

2 2





x2

53.



x2





9 4 7 4 7  ln  3 3 3 3

 3  ln 2  3  2

 93  27 

51.



3

arcsec43



9 6  33  12.644 ln 2 4  7





1 x2 dx  x2  10x  9 x  15  33 ln x  5  x2  10x  9  C 2  10x  9





x2 1 dx   xx2  1  ln x  x2  1   C 2 1

  a

57. A  4

0

 



55. (a) u  a sin 

b a2  x2 dx a

y

a

4b a

b y= a

(b) u  a tan 

a2 − x2

b

a2  x2 dx

0

 4b 1 a 2

a2 arcsin

x  xa2  x2 a



−a

a

x

a

0

−b

2b 2   a a 2



 ab Note: See Theorem 7.2 for a2  x2 dx. 59. x2  y2  a2 x  ± a2  y2



a

A2



a2  y2 dy  a2 arcsin

h

ay  ya

2

2  a

 a2 

2

arcsin



 y2

a

(Theorem 7.2)

h

ha  ha

2

 h2

h a2  a2 arcsin  ha2  h2 2 a



61. Let x  3  sin , dx  cos  d, 1  x  32  cos .

y

Shell Method:

2

4

1

V  4

 

x1  x  32 dx

x

2

 4

1

2

−1

3  sin cos 2  d

2

−2

 4

32 

 4

 2   2 sin 2  3 cos 

2

1  cos 2 d 

2

3

1

1



2

cos2  sin  d

2

2

3

2

 6 2



3

(c) u  a sec 

Section 7.4

Trigonometric Substitution

1 1 x2  1 63. y  ln x, y  , 1   y 2  1  2  x x x2 Let x  tan , dx  sec2  d, x2  1  sec .

   5

s

1

sec  sec2  d  tan 

b



x2  1 dx  x2

a

 

5

x2  1

x

1

b

a

x2 + 1 x

dx θ

sec  1  tan2  d tan 

1

b



csc   sec  tan  d

a





 ln csc   cot   sec 

b



a

 x  26  1  ln

 26  ln 2  1  2 5 5 2  1 26  1  26  2  4.367 or ln   ln 26  1  5 2  1 x2  1

 ln



1  x2  1 x







1







5









26  2

65. Length of one arch of sine curve: y  sin x, y  cos x L1 





1  cos 2 x dx

0

Length of one arch of cosine curve: y  cos x, y  sin x L2  

   

2

1  sin2 x dx

2

2

1  cos x  2 dx

ux

2

2

 , du  dx 2

0

 





1  cos 2 u du

1  cos 2 u du  L1

0

67. (a)

(b) y  0 for x  200 (range)

60

−25

250 −10

(c) y  x  0.005x 2, y  1  0.01x, 1   y2  1  1  0.01x 2 Let u  1  0.01x, du  0.01 dx, a  1. (See Theorem 7.2.)





200

s

200

1  1  0.01x2 dx  100

0

1  0.01x2  1 0.01 dx

0







 50 1  0.01x1  0.01x2  1  ln 1  0.01x  1  0.01x2  1









 50   2  ln 1  2    2  ln 1  2   1002  50 ln



2  1 2  1

 229.559

200

0

81

82

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

69. Let x  3 tan , dx  3 sec2  d, x2  9  3 sec .

 

4

A2

0



4

3 dx  6 2 x  9

b

0





sec  d  6 ln sec   tan 

6

a

b

dx 6 x2  9

a b

a

3 sec2  d 3 sec 



 6 ln

x  0 (by symmetry) y

  4

1 1 2 A

4

3 9

x2

3



4

 6 ln 3 0 y

dx 2

3 4 1 2

4



9 12 ln 3



3 1 x arctan 4 ln 3 3 3

1 dx 2 4 x  9



2 4 arctan  0.422 4 ln 3 3







x2  9  x

(0, 0.422) 1 4

x



4

−4

−2

2

4

4

1 4 arctan  0, 0.422 2 ln 3 3

x, y  0,

1  y  1  4x 2

y  2x,

71. y  x2,

2x  tan , dx 

1 sec2  d, 1  4x2  sec  2

(For sec5  d and sec3  d, see Exercise 80 in Section 7.3)

 

2

S  2

a

0



 4

 b

x21  4x2 d x  2

b

sec3  tan2  d 

a

 4

tan  2 1 sec  sec2  d 2 2



 sec  d   sec  d b

b

5

3

a

a







3 1  1 sec3  tan   sec  tan   ln sec   tan    sec  tan   ln sec   tan   4 4 2 2



1  1

1  4x 2322x  1  4x 2122x  ln 1  4x2  2x 4 4 8







   51 2 ln 3  2 2   

 32 102 4 4 8 



b a

2

0

 542 62 1   ln 3  22  4 4 6 8 





2  ln 3  22

  13.989

73. (a) Area of representative rectangle: 21  y2 y

y

Pressure: 262.43  y1  y 2 y



2

1

F  124.8

1



x=

3  y1  y d y



1

 124.8 3

1





1

1  y 2 dy 

x −2

y1  y 2 dy

1

 32  arcsin y  y1  y   21 23 1  y  

1

 124.8

2

2 32

1

 62.43 arcsin 1  arcsin1  187.2 lb





1

(b) F  124.8

1

1 − y2

2



1

d  y1  y 2 dy  124.8 d  124.8

1

1

1  y 2 dy  124.8

1

d2 arcsin y  y1  y 

y1  y 2 dy

1

2

1

 124.80  62.4 d lb

2

Section 7.4

75. (a) m 

dy y   y  144  x2   dx x0

y

( 0, y +

Trigonometric Substitution

144 − x 2 (

12



144  x2

x

12

144 − x 2

( x, y ) x

y

x 2

(b) y  



144  x2

x

4

6

8

10 12

dx 12

Let x  12 sin , dx  12 cos  d, 144  x2  12 cos . y



x



θ

12 cos  1  sin2  12 cos  d  12 d 12 sin  sin 





144 − x 2



 12 csc   sin  d  12 ln csc   cot   12 cos   C







C

 12 ln

144  x2 12 144  x2   12 x x 12

 12 ln

12  144  x2  144  x2  C x

0

12 

144  x2

x



144  x2.

12  144  x2 > 0 for 0 < x ≤ 12 x

(c) Vertical asymptote: x  0 (d) y  144  x2  12 ⇒ y  12  144  x2 Thus, 12  144  x2  12 ln

12 

12 

1  ln

144  x2

x

144  x2

x



144  x2

xe1  12  144  x2

xe1  122    144  x2 

2

x2e2  24xe1  144  144  x2 x2e2  1  24xe1  0 x xe2  1  24e1  0 x  0 or x 

24e1  7.77665. e2  1

Therefore,

 

12

s

7.77665 12



7.77665



1 



144  x2

x

2



12

dx 

7.77665

x

2

 144  x2 dx x2

7.77665  12ln 12  ln 7.77665  5.2 meters.

12 dx  12 ln x x

12

12 0

When x  12, y  0 ⇒ C  0. Thus, y  12 ln Note:

30

83

84

Chapter 7

77. True



dx  1  x2

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals



cos  d  cos 

79. False





3

d

0

dx   1  x2 3



3

0

sec2  d  sec3 



3

cos  d

0

81. Let u  a sin , du  a cos  d, a 2  u 2  a cos .



a2  u2 du 





a2 cos2  d  a2







1  cos 2 d 2



1 a2 a2   sin 2  C    sin  cos   C 2 2 2



a2 u u arcsin  2 a a

a2  u2

a

 C  21 a arcsin ua  u



a2  u2  C

2

Let u  a sec , du  a sec  tan  d, u2  a2  a tan .



u 2  a 2 du 



 

a tan a sec  tan  d  a 2 tan2  sec  d



 a 2 sec2   1 sec  d  a2 sec3   sec  d

12 sec  tan   21 sec  d  a sec  d  a 12 sec  tan   21 lnsec   tan  u a a u  ln    2 a a ua u a a   C  a2

2



2

2



2

2

2

2

1



1 uu2  a2  a2 ln u  u2  a2  C 2





Let u  a tan , du  a sec2  d, u2  a2  a sec  d.



u2  a2 du 



a sec a sec2  d



12 sec  tan   21 lnsec   tan   C

 a2 sec3  d  a2 

Section 7.5



a2 u2  a2 2 a

u

1



 a  ln

u2  a2

a



u a



 C1 

1 uu2  a2  a2 ln u  u2  a2  C 2





Partial Fractions

1.

5 A B 5    x 2  10x xx  10 x x  10

3.

2x  3 2x  3 A Bx  C    2 x3  10x xx 2  10 x x  10

5.

16x 16x A C B    2 x3  10x 2 x 2x  10 x x x  10

7.

1 1 A B    x 2  1 x  1x  1 x  1 x  1 1  Ax  1  Bx  1 When x  1, 1  2A, A   12 . When x  1, 1  2B, B  12 .



1 1 dx   x2  1 2



1 1 dx  x1 2



1 dx x1

1 1   ln x  1  ln x  1  C 2 2





 



1 x1 ln C 2 x1





Section 7.5

9.

3 3 A B    x 2  x  2 x  1x  2 x  1 x  2

5  x  Ax  1  B2x  1

When x  1, 3  3A, A  1. When x  2, 3  3B, B  1. 3 dx  x2  x  2



1 9 3 When x  2 , 2  2 A, A  3.

1 dx  x1



1 dx x2









When x  1, 6  3B, B  2.



 ln x  1  ln x  2  C

 

 ln

13.



5x dx  3 2x 2  x  1

x1 C x2





1 1 dx  2 dx 2x  1 x1

3 ln 2x  1  2 ln x  1  C 2







B C x 2  12x  12 A    xx  2x  2 x x2 x2 x 2  12x  12  Ax  2x  2  Bxx  2  Cxx  2 When x  0, 12  4A, A  3. When x  2, 8  8B, B  1. When x  2, 40  8C, C  5.





x 2  12x  12 dx  5 x3  4x

1 dx  x2











1 dx  3 x2



1 dx x



 5 ln x  2  ln x  2  3 ln x  C

15.

2x3  4x 2  15x  5 x5 A B  2x    2x  x 2  2x  8 x  4x  2 x4 x2 x  5  Ax  2  Bx  4 When x  4, 9  6A, A  32 . When x  2, 3  6B, B   12 .



2x3  4x 2  15x  5 dx  x2  2x  8



2x 

 x2 

17.



12 32  dx x4 x2

3 1 ln x  4  ln x  2  C 2 2









B 4x 2  2x  1 A C   2 x 2x  1 x x x1 4x 2  2x  1  Axx  1  Bx  1  Cx 2 When x  0, B  1. When x  1, C  1. When x  1, A  3.



4x 2  2x  1 dx  x3  x 2 





1 3 1 1  2 dx  3 ln x   ln x  1  C x x x1 x







1  ln x 4  x 3  C x





2 2 C B 19. x  3x  4  x  3x  4  A   3 2 x  4x  4x xx  22 x x  2 x  22

x2  3x  4  Ax  22  Bxx  2  Cx When x  0, 4  4A ⇒ A  1. When x  2, 6  2C ⇒ C  3. When x  1, 0  1  B  3 ⇒ B  2.



x2  3x  4 dx  x3  4x2  4x



1 dx  x





85

5x 5x A B    2x 2  x  1 2x  1x  1 2x  1 x  1

11.

3  x  2  Bx  1



Partial Fractions

2 dx  x  2





 ln x  2 ln x  2 



3 dx x  22

3 C x  2



86

21.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

x2  1 A Bx  C   2 xx 2  1 x x 1 x 2  1  Ax 2  1  Bx  Cx When x  0, A  1. When x  1, 0  2  B  C. When x  1, 0  2  B  C. Solving these equations we have A  1, B  2, C  0.



x2  1 dx   x3  x





1 dx  x



2x dx x2  1





 ln x 2  1  ln x  C

 

 ln

23.

x2

1 C x

A B Cx  D x2    2 x 4  2x 2  8 x  2 x  2 x 2 x 2  Ax  2x 2  2  Bx  2x 2  2  Cx  Dx  2x  2 When x  2, 4  24A. When x  2, 4  24B. When x  0, 0  4A  4B  4D, and when x  1, 1  9A  3B  3C  3D. Solving these equations we have A  16 , B   16 , C  0, D  13 .



x4

 x 1 2 dx   x 1 2 dx  2 x 1 x2 x  ln  2 arctan C 6 x  2 2

x2 1 dx   2x 2  8 6



25.

2



1 dx 2



x A B Cx  D    2x  12x  14x 2  1 2x  1 2x  1 4x 2  1 x  A2x  14x 2  1  B2x  14x 2  1  Cx  D2x  12x  1 When x  12 , 12  4A. When x   12 ,  12  4B. When x  0, 0  A  B  D, and when x  1, 1  15A  5B  3C  3D. Solving these equations we have A  18 , B  18 , C   12 , D  0.



x 1 dx  16x 4  1 8 

27.

 2x 1 1 dx   2x 1 1 dx  4 4x x 1 dx 2

 

1 4x 2  1 ln C 16 4x 2  1

x2  5 A Bx  C   x  1x 2  2x  3 x  1 x 2  2x  3 x 2  5  Ax 2  2x  3  Bx  Cx  1  A  Bx 2  2A  B  Cx  3A  C When x  1, A  1. By equating coefficients of like terms, we have A  B  1, 2A  B  C  0, 3A  C  5. Solving these equations we have A  1, B  0, C  2.



x3

x2  5 dx   x2  x  3





1 dx  2 x1





1 dx x  12  2

 ln x  1  2 arctan

x21  C

Section 7.5

29.

Partial Fractions

3 A B   2x  1x  2 2x  1 x  2 3  Ax  2  B2x  1 When x 



1

0

1 2 ,

A  2. When x  2, B  1.

3 dx  2x  5x  2 2



1

0

2 dx  2x  1







1 dx x2



 0

1

0

1

 ln 2x  1  ln x  2  ln 2

31.

x1 A Bx  C   2 xx 2  1 x x 1 x  1  Ax 2  1  x  Cx When x  0, A  1. When x  1, 2  2A  B  C. When x  1, 0  2A  B  C. Solving these equations we have A  1, B  1, C  1.



2

1

x1 dx  xx 2  1



2

1

1 dx  x



 ln x  



2

1

x2

x dx  1



2

1

1 dx x2  1



1 lnx 2  1  arctan x 2

2 1

1 8  ln   arctan 2 2 5 4

 0.557

33.



3x dx 9  3 ln x  3  C x 2  6x  9 x3



4, 0: 3 ln4  3 



35.

9 C0⇒C9 43



2 x2  x  2 x 1 arctan dx   C x 2  22 2 2x 2  2 2

0, 1: 0 

30

1 5 C1⇒C 4 4 3

(0, 1) −6

(4, 0)

−3

10

3 −1

−10

37.



2x 2  2x  3 1 2x  1 dx  ln x  2  ln x 2  x  1  3 arctan C  x2  x  2 2 3



x3

3, 10: 0 

39.











20

(3, 10)

7 1 7 1  C  10 ⇒ C  10  ln 13  3 arctan ln 13  3 arctan 2 2 3 3

 

1 1 x2 dx  ln C x2  4 4 x2

6, 4:



1 4 1 1 1 ln  C  4 ⇒ C  4  ln  4  ln 2 4 8 4 2 4

10

(6, 4) − 10

10 −3

−2

6 −5

87

88

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

41. Let u  cos x du  sin x dx.

43.





3 cos x 1 dx  3 2 du sin2 x  sin x  2 u u2

A B 1   uu  1 u u1

   

1  Au  1  Bu When u  0, A  1. When u  1, B  1, u  cos x, du  sin x dx.







u1 C u2

 ln

1  sin x C 2  sin x

(From Exercise 9 with u  sin x, du  cos x dx)

sin x 1 dx   du cos xcos x  1 uu  1 

 ln

1 du  u



1 du u1







 ln u  ln u  1  C

   

u C  ln u1  ln

cos x C cos x  1

45. Let u  ex, du  ex dx.

47.

1 A B   u  1u  4 u  1 u  4

1 A B   xa  bx x a  bx 1  Aa  bx  Bx When x  0, 1  a A ⇒ A  1a. When x  ab, 1   abB ⇒ B  ba.

1  Au  4  Bu  1



1 1 When u  1, A  5 . When u  4, B   5 , u  ex, x dx. du  e



ex dx  x e  1ex  4



1  5

49.

1

u  1u  4



1 du  u1

   

du





1 u1 ln C 5 u4



1 ex  1 ln C 5 ex  4

1 du u4

x A B   a  bx2 a  bx a  bx2

51.





 

−2

1b ab  dx a  bx a  bx2

1 b

1 a dx  a  bx b



1 dx a  bx2





a 1 1 ln a  bx  2 C b2 b a  bx



1 a  ln a  bx b2 a  bx







1 x ln C a a  bx







  C



 

2 −4

1 b  dx x a  bx

1  ln x  ln a  bx   C a

10

When x  ab, B  ab. When x  0, 0  aA  B ⇒ A  1b.





6 dy  , y0  3 dx 4  x2

x  Aa  bx  B

x dx  a  bx2

1 1 dx  xa  bx a



Section 7.5 53. Dividing x3 by x  5.

Partial Fractions

89

55. (a) Substitution: u  x2  2x  8 (b) Partial fractions (c) Trigonometric substitution (tan) or inverse tangent rule

57. Average Cost 

1 80  75

1  5 

 80

75



80

75

124p dp 10  p100  p

124 1240  dp 10  p11 100  p11

1 124 1240 ln10  p  ln100  p 5 11 11





80 75

1  24.51  4.9 5 Approximately $490,000.



3

59. A 

1

10 dx  3 xx2  1

Matches (c) y 5 4 3 2 1 x 1

2

3



5

A B 1 1  ,AB  x  1n  x x  1 n  x n1

61. 1 n1

4

1 1  dx  kt  C x1 nx

 

x1 1 ln  kt  C n1 nx When t  0, x  0, C 

1 1 ln . n1 n

 

x1 1 1 1 ln  kt  ln n1 nx n1 n

 

x1 1 1 ln  ln  kt n1 nx n



ln



nx  n  n  1k t nx nx  n  en1kt nx x

nen1kt  1 n  en1kt

Note: lim x  n t →

90

63.

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

Cx  D x Ax  B   1  x4 x2  2 x  1 x2  2 x  1 x  Ax  B x2  2 x  1  Cx  D x2  2 x  1  A  Cx3   B  D  2 A  2 Cx2   A  C  2 B  2 Dx  B  D 0  A  C ⇒ C  A 0  B  D  2 A  2 C 1  A  C  2 B  2 D

22 A  0 ⇒ A  0 and C  0 22 B  1 ⇒ B  

2

and D 

4

2

4

0  B  D ⇒ D  B Thus,



1

0

x dx  1  x4 



  

1

0

1

2

4

2

4



2 4  2 4  2 dx  x  2 x  1 x  2 x  1 2

0





1 1  dx 2 2 x   2 2  1 2 x   2 2  1 2

1 x   2 2 x   2 2 arctan  arctan 1 2 1 2 1 2













1 0



1



1 arctan  2 x  1  arctan 2 x  1 2



1

 arctan 2  1  arctan 2  1  arctan 1  arctan1 2



  1 arctan 2  1  arctan 2  1   . 2 4 4

0





Since arctan x  arctan y  arctan x  y 1  xy , we have:



1

0

1 x  2  1   2  1 1 1  2     dx  arctan   arctan      1  x4 2 1   2  1 2  1 2 2 2 2 2 4 2 8



Section 7.6 1. By Formula 6:

3. By Formula 26:



 





Integration by Tables and Other Integration Techniques



x x2 dx   2  x  ln 1  x  C 1x 2





e x1  e 2x dx 



1 x

e e 2x  1  ln e x  e 2x  1  C 2

u  e x, du  e x dx

5. By Formula 44:

 



1  x 2 1 dx   C x x 21  x 2







Section 7.6

7. By Formulas 50 and 48:



sin42x dx 

Integration by Tables and Other Integration Techniques



1 sin42x2 dx 2

  1 sin 2x cos2x 3  2x  sin 2x cos 2x  C   2 4 8 

1 sin32x cos2x 3  sin22x2 dx 2 4 4 3



9. By Formula 57:



1



x 1  cos x

u  x, du 



1 6x  3 sin 2x cos 2x  2 sin3 2x cos 2x  C 16



dx  2



 2 cot x  csc x   C

1 dx 2x

11. By Formula 84:





1 1 dx 1  cos x 2x

13. By Formula 89:



1 1 dx  x  ln1  e 2x  C 1  e 2x 2

x 3 ln x dx 



x4  4 ln x  1  C 16





x 2e x dx  x 2e x  2 xe x dx

15. (a) By Formulas 83 and 82:

 x 2e x  2 x  1e x  C1  x 2e x  2xe x  2e x  C (b) Integration by parts: u  x 2, du  2x dx, dv  e x dx, v  e x



x 2e x dx  x 2ex 



2xe x dx

Parts again: u  2x, du  2 dx, dv  e x dx, v  e x





x 2e x dx  x 2e x  2 xe x 



2e x dx  x 2e x  2xe x  2e x  C

17. (a) By Formula: 12, a  b  1, u  x, and



     

1 1 1 1 x  ln dx  x 2x  1 1 x 1 1x



(b) Partial fractions:

C



1 x C  ln x 1x



1 x1  ln C x x

1 A B C   2 x 2x  1 x x x1 1  Axx  1  Bx  1  Cx 2 x  0: 1  B x  1: 1  C x  1: 1  2A  2  1 ⇒ A  1



1 dx  x 2x  1



1 1 1  2 dx x x x1





 ln x 

1  ln x  1  C x

 



1 x    ln C x x1



91

92

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

19. By Formula 81:



21. By Formula 79:



1 2 2 xex  e x  C 2

x arcsecx 2  1 dx  



1 arcsecx 2  1(2x dx 2 1 2

x  1 arcsecx 2  1  ln x 2  1  x 4  2x 2   C 2

u  x 2  1, du  2x dx

23. By Formula 89:

27. By Formula 4:



x 2 ln x dx 



x3  1  3 ln x   C 9





25. By Formula 35:



31. By Formula 73:



e x arccos e x dx  e x arccos e x  1  e 2x  C

u  e x, du  e x dx



cos x dx  arctansin x  C 1  sin2 x



2 cos  1  sin  d  arctan C 3  2 sin   sin2  2 2





u  sin , du  cos  d





1 dx  3 x 22  9x 2

 

3

3x 2   3x2 2

2

32  9x 2 C 6x 2  9x 2

2x

C

39. By Formulas 54 and 55:



x 2  4

4x

C



x 1 2x dx  dx 1  sec x 2 2 1  sec x 2 1  x 2  cot x 2  csc x 2  C 2

u  sin x, du  cos x dx

37. By Formula 35:

4

dx 





35. By Formula 14:

1 x 2x 2

2x x 2 1 dx  2 dx  ln1  3x  C 1  3x2 1  3x2 9 1  3x

29. By Formula 76:

33. By Formula 23:





t3 cos t dt  t3 sin t  3 t2 sin t dt







 t3 sin t  3 t2 cos t  2 t cos t dt



 t3 sin t  3t2 cos t  6 t sin t 

 sin t dt

 t3 sin t  3t2 cos t  6t sin t  6 cos t  C

dx

Section 7.6



41. By Formula 3:

Integration by Tables and Other Integration Techniques

ln x 1 dx   2 ln x  3 ln 3  2 ln x   C x3  2 ln x 4





 

1 dx x

u  ln x, du 

43. By Formulas 1, 25, and 33:



 

x 1 2x  6  6 dx  dx x 2  6x  102 2 x 2  6x  102 

3 x3 1  arctanx  3  C  2x 2  6x  10 2 x 2  6x  10



 

45. By Formula 31:



x x 4  6x 2  5



3x  10 3  arctanx  3  C 2x 2  6x  10 2



1 2x dx 2 x 2  32  4

dx  



1 1 x 2  6x  1022x  6 dx  3 dx 2

x  32  1 2

1 ln x 2  3  x 4  6x 2  5  C 2





u  x 2  3, du  2x dx

47.



x3 dx  4  x 2

  

8 sin3 2 cos  d 2 cos 

x

 8 1 

cos2

 sin  d

θ 4 − x2

 8 sin  

cos 2

 8 cos  

8 cos3  C 3



2

sin  d

 4  x 2 2 x  8  C 3

x  2 sin , dx  2 cos  d, 4  x 2  2 cos 

49. By Formula 8:



e 3x dx  1  e x3 



e x2 e x dx 1  e x3

2 1   ln 1  e x  C 1  e x 21  e x 2





u  e x, du  e x dx

51.

1 2a bu  a2 b2 1 A B u2  2  2  2  a  bu b a  bu2 b a  bu a  bu2 

2a a2 u  2  Aa  bu  B  aA  B  bAu b b

Equating the coefficients of like terms we have aA  B  a2 b2 and bA  2a b. Solving these equations we have A  2a b2 and B  a2 b2.





 a 1 bub du  ba 1ba 1bu b du  b1 u  2ab lna  bu  ba a 1 bu  C

u2 1 2a 1 du  2 du  2 a  bu2 b b b 



2 2

  C

a2 1 bu   2a ln a  bu b3 a  bu



2

2

2

3

3

93

94

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

53. When we have u2  a2:

When we have u2  a2:

u  a tan  du  a



u2



a2



1 du  u2  a23 2

sec2

a2



u  a sec 

 d

sec2

du  a sec  tan  d





a sec2  d a3 sec3 



 a2  a2 tan2 

1 du  u2  a23 2



a sec  tan  d a3 tan3 

1 cos  d a2





1 sin   C a2





u C a2u2  a2



u

u

θ



1 cos  d a2 sin2 



u2 + a2

1 csc   C a2

u C a2u2  a2

u2 + a2

θ a

a

55.

u2



arctan u du  u arctan u   u arctan u 



1 2u du 2 1  u2 1 ln1  u2  C 2

 u arctan u  ln1  u2  C w  arctan u, dv  du, dw 

57.



du ,vu 1  u2

21  x 1 dx  C x x3 21  x

8

12, 5: 21 21 2  C  5 ⇒ C  7 

( 12, 5) −0.5

1.5

21  x 7 y x 59.



1 1 x3 dx  tan1x  3  2 C x2  6x  102 2 x  6x  10



3, 0: y

61.



−2





2



1 0 0 C0⇒C0 2 10

1 x3 tan1x  3  2 2 x  6x  10



−8



−2

1 d  csc   C sin  tan 

4 , 2:  22  C  2 ⇒ C  2  2 y  csc   2  2

(3, 0)

10

(π4, 2) −

 2

2 −2

8

Section 7.6

63.



1 d  2  3 sin 

  



  

2

2 du 1  u2 2u 23 1  u2





Integration by Tables and Other Integration Techniques





 2

65.

0

1 d  1  sin   cos  

2 du 1  u2 2u 1  u2 1  1  u2 1  u2



1 du 1u





0

1 du u  3u  1



 0

 ln 1  u

1

 ln 2

1 du 3 2 5 u  2 4



     u  23  25  u  23  25

u  tan



1 ln  5

0

1

2 du 1  u2  6u 2



 1

95

 2

C

2u  3  5 C 2u  3  5  2 tan  3  5 2 1 ln C   5 2 tan  3  5 2 

1

5

ln

 

u  tan

67.



 2

1 sin  d  3  2 cos  2 



2 sin  d 3  2 cos 

69.





cos  1 d  2 cos  d   2 





 2 sin   C

1 ln u  C 2



u  , du 

1  ln3  2 cos   C 2

1 d 2

u  3  2 cos , du  2 sin  d



8

71. A 

0





x dx x  1

y

73. Arctangent Formula, Formula 23,



4



22  x x  1 3

8

3

0

2

 

4  12   3

1 x 2



1 du, u  ex u2  1

4

6

8

40  13.333 square units 3

75. Substitution: u  x2, du  2x dx Then Formula 81.

77. Cannot be integrated.

79. Answers will vary. For example,



2xe2x dx

can be integrated by first letting u  2x and then using Formula 82.

96

Chapter 7



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

5

81. W 

2000xex dx

0



5

 2000



xex dx

0

5

 2000

xex1 dx

0





 2000 xex  ex



 2000 

6 1 e5

5 0



 1919.145 ft  lbs



3

83. (a) V  202

2

1  y 2

0





 80 ln y  1  y 2



 80 ln 3  10

W  148 80 ln 3  10 

dy 3

 11,840 ln 3  10 

0

 21,530.4 lb





 145.5 cubic feet (b) By symmetry, x  0.



3

M  2

0

3

Mx  2

0

y

2

1  y 2





dy  4 ln y  1  y 2





2y dy  4 1  y 2

1  y 2

3 0

0  4 ln 3  10  3

 4 10  1

Mx 4 10  1   1.19 M 4 ln 3  10 

Centroid: x, y  0, 1.19



4

85. (a)

0

k



4

0



4

k dx  10 2  3x

(b)

0

15.417 dx 2  3x

8

10 10  1 0.6486 dx 2  3x

 15.417

4

0 −1

 ln307

87. False. You might need to convert your integral using substitution or algebra.

Section 7.7 1. lim

x →0

Indeterminate Forms and L’Hôpital’s Rule



sin 5x 5  2.5 exact: sin 2x 2

x f x



3

0.1

0.01

0.001

0.001

0.01

0.1

2.4132

2.4991

2.500

2.500

2.4991

2.4132

−1

1 −1

Section 7.7

Indeterminate Forms and L’Hôpital’s Rule

3. lim x5ex 100  0

10,000,000

x →

x f x

1

10

102

103

104

105

0.9901

90,484

3.7  109

4.5  1010

0

0 0

100 0

5. (a) lim

x →3

(b) lim

x →3

7. (a) lim

1 2x  3 2x  3 2  lim   lim x →3 x  3x  3 x →3 x  3 x2  9 3 2 1 2x  3 2 d dx 2x  3  lim    lim x →3 d dx x2  9 x →3 2x x2  9 6 3

x  1  2

x3

x →3

(b) lim

x  1  2

x →3

x3

 lim

x  1  2

x3

x →3

 lim

x →3



x  1  2

x  1  2

 lim

x →3

1 x  1  4 1  lim  x  3 x  1  2 x →3 x  1  2 4

1  2 x  1 1 d dx x  1  2  lim  x →3 d dx x  3 1 4

5x2  3x  1 5  3 x  1 x2 5  lim  2 x → x → 3x  5 3  5 x2 3

9. (a) lim

5x2  3x  1 d dx 5x2  3x  1 10x  3 d dx 10x  3 10 5  lim  lim   lim  lim 2 x → x → x → x → x → 6 3x  5 d dx 3x2  5 6x d dx 6x 3

(b) lim

x2  x  2 2x  1  lim 3 x →2 x →2 x2 1

11. lim

15. lim

x →0

13. lim

4  x2  2

x →0

x

x 4  x2 0 x →0 1

 lim

ex  1  x ex  1  lim 2 x →0 x 1

17. Case 1: n  1 lim

x →0

ex  1  x ex  1  lim 0 x →0 x 1

Case 2: n  2 lim

x →0

ex  1  x ex  1 ex 1  lim  lim  2 x →0 x →0 2 x 2x 2

Case 3: n ≥ 3 lim

x →0

ex  1  x ex  1 ex  lim n1  lim  n x →0 nx x →0 nn  1xn2 x

sin 2x 2 cos 2x 2  lim  x→0 sin 3x x→0 3 cos 3x 3

19. lim

arcsin x 1 1  x2  lim 1 x →0 x →0 x 1

3x2  2x  1 6x  2  lim x→  x→  2x2  3 4x

21. lim

23. lim

 lim

x→ 

x2  2x  3 2x  2  lim  x→  x → x1 1

25. lim

6 3  4 2

x3 3x2  lim x 2 x→  e x→  1 2e x 2

27. lim

 lim

x→ 

6x 6  lim 0 1 4e x 2 x→ 1 8e x 2

97

98

Chapter 7 x

29. lim

x→ 

x2  1

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

 lim

1

x→ 

1  1 x2

1

31. lim

x→ 

cosx x ≤ 1x 

Note: L’Hôpital’s Rule does not work on this limit. See Exercise 79. ln x 1 x 1  lim  lim 2  0 x→  x2 x→  2x x→  2x

cos x  0 by Squeeze Theorem x

ex ex ex  lim   lim 2 x→  x x→  2x x→  2

33. lim

35. lim

37. (a) lim x ln x  0   0

39. (a) lim x sin

x →0

ln x (b) lim x ln x  lim x →0 x →0 1 x  lim x →0

x→ 



(b) lim x sin x→ 

1 x 1 x2

1 sin1 x  lim x x→ 1 x

1 x2 cos1 x x→  1 x2

 lim

 lim x  0 x →0

(c)



1  0 x

 lim cos x→ 

2 0

(c)

10

1.5

−1

−12

1x   1

1 − 0.5

41. (a) lim x1 x  0  0, not indeterminant x →0

43. (a) lim x1 x  0 x →

(b) Let y  lim x1 x.

(See Exercise 95)

x→ 

y  x1 x

(b) Let

ln y  ln

x1 x

ln y  lim

1  ln x. x

x→ 

Thus, ln y  0 ⇒ y  e0  1. Therefore,

1 ln x →     . Hence, x

Since x → 0  ,

ln y →   ⇒ y → 0.

 

ln x 1 x  lim 0 x→  x 1

lim x1 x  1.

x →

(c)

2

Therefore, lim x1 x  0. x→0

(c)

−5

2

20 −0.5

− 0.5

2 − 0.5

45. (a) lim 1  x1 x  1

(c)

x →0

6

(b) Let y  lim 1  x1 x. x →0

ln1  x x 1 1  x 1  lim x →0 1

ln y  lim x →0





Thus, ln y  1 ⇒ y  e1  e. Therefore, lim 1  x1 x  e. x →0

−1

4 −1

Section 7.7 47. (a) lim 3xx 2  00

(c)

x→0

Indeterminate Forms and L’Hôpital’s Rule

99

7

(b) Let y  lim 3xx 2. x→0



x ln x 2



ln x 2 x

ln y  lim ln 3  x→0

 lim ln 3  x→0



−6



 lim ln 3  lim

1 x 2 x2

 lim ln 3  lim

x 2

x→0

x→0

x→0

x→0

6 −1

 ln 3 Hence, lim 3xx 2  3. x→0

49. (a) lim ln xx1  00

ln x (b) Let y  lim 

51. (a) lim

x

(b) lim

x

2

x →2

x→1

x1

x1

 lim x  1ln x  0

2

x →2

x→1



x 8   4 x2 8 8  xx  2 x   lim x →2 4 x2 x2  4



Hence, lim ln xx1  1 x→1

(c)

 lim

2  x4  x x  2x  2

 lim

 x  4 3  x2 2

x →2

6

x →2

−4

8

(c)

4

−2 −7

5

−4

53. (a) lim x →1

(b) lim x →1

ln3x  x 2 1     ln3x  x 2 1 

lim

x →1

 lim x →1

55. (a)

3x  3  2 ln x x  1ln x

3

−1

7

3  2 x 

x  1 x  ln x 

−1

(b) lim

(c)

x →3

8

x3 1  lim ln2x  5 x →3 2 2x  5  lim

x →3

−1

2x  5 1  2 2

4

−4

57. (a)

(b) lim  x2  5x  2  x  lim  x2  5x  2  x

10

x→ 

x→ 

 x2  5x  2  x  x2  5x  2  x

x2  5x  2  x2 x→  x2  5x  2  x

 lim −8

10 −2

 lim

x→ 

 lim

x→ 

5x  2

x2  5x  2  x

5  2 x

1  5 x  2 x2  1



5 2

100

59.

Chapter 7 0  , ,0 0 

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

 , 1, 00,   

61. (a) Let f x  x2  25 and gx  x  5. (b) Let f x  x  52 and gx  x2  25. (c) Let f x  x2  25 and gx  x  53.

63. lim

x2 2x 2  lim  lim 0 e5x x → 5e5x x → 25e5x

65. lim

ln x3 3ln x21 x  lim x→  x 1

x →

x→ 

67. lim

x→ 

ln xn nln xn1 x  lim x→  xm mxm1

3ln x2 x

 lim

6ln x1 x x→  1

 lim

 lim

x→ 

x→ 

nn  1ln xn2 x→  m2xm

 lim

 lim

x→ 

69.

x

ln x4 x

6ln x 6  lim  0 x→  x x

 . . .  lim

x→ 

10

102

104

106

108

1010

2.811

4.498

0.720

0.036

0.001

0.000

71. y  x1 x, x > 0

lim

x →

1 ln x x

2x 2  lim x  0 x → e ex

Horizontal asymptote: y  0



 

1 1 dy 1 1   ln x  2 y dx x x x

 

1 dy  x1 x 2 1  ln x  x1 x 21  ln x  0 dx x Critical number:

n! 0 mnxm

73. y  2xex

Horizontal asymptote: y  1 (See Exercise 37) ln y 

nln xn1 mxm

xe

0, e  Sign of dy dx: y  f x: Increasing Relative maximum: e, e1 e  Intervals:

e,   Decreasing

dy  2xex  2ex dx  2ex 1  x  0 Critical number:

x1

Intervals:  , 1 Sign of dy dx:



y  f x: Increasing Relative maximum:

4

1,   Decreasing

1, 2e 

3

(1, 2e ) −2

(e, e1/e) 0

6

−5

0

e2x  1 0  0 x →0 ex 1

75. lim

Limit is not of the form 0 0 or  . L’Hôpital’s Rule does not apply.

10

77. lim x cos x →

1  1   x 

Limit is not of the form 0 0 or  . L’Hôpital’s Rule does not apply.

Section 7.7

79. (a) lim

x→ 

x

x2  1

x x

 lim

x→ 

x→ 

 lim

x→ 

 (c)

(b) lim

x2  1 x

 lim

Indeterminate Forms and L’Hôpital’s Rule

x→ 

x

x2  1

1

x  1 x2

1 x x2  1

x2  1

x

x→ 

1

 lim

1  1 x2

1

x→ 

 lim

2

1  0

 lim

x→ 

 lim

Applying L’Hôpital’s rule twice results in the original limit, so L’Hôpital’s rule fails.

1

−1.5



81. lim

v0kekt 32

k

k→0



321  ekt  lim v0ekt  k→0 k→0 k

 lim  lim

k→0

v0 320  tekt   lim kt  32t  v0 k→0 e 1

 

1 2x1  cos x  x  x cos x 2 Shaded area: Area of rectangle  Area under curve

83. Area of triangle:



x

2x1  cos x  2





1  cos t dt  2x1  cos x  2 t  sin t

0

x 0

 2x1  cos x  2x  sin x  2 sin x  2x cos x Ratio: lim

x →0

x  x cos x 1  x sin x  cos x  lim 2 sin x  2x cos x x →0 2 cos x  2x sin x  2 cos x  lim

1  x sin x  cos x 2x sin x

 lim

x cos x  sin x  sin x 2x cos x  2 sin x

 lim

x cos x  2 sin x 2x cos x  2 sin x

 lim

x  2 tan x 2x  2 tan x

x →0

x →0

x →0

x →0

1 cos x

 1 cos x

1  2 sec2 x 3  x →0 2  2 sec2 x 4

 lim

85. f x  x3, gx  x2  1, 0, 1 f c f b  f a  gb  ga g c f 1  f 0 3c2  g1  g0 2c 1 3c  1 2 c

2 3

x x2  1 1

x

6

32 1  ekt 

x→ 

x2  1

1.5

−6

101

 2 

87. f x  sin x, gx  cos x, 0, f c f  2  f 0  g 2  g0 g c 1 cos c  1 sin c 1  cot c c

4

102

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

89. False. L’Hôpital’s Rule does not apply since

91. True

lim x2  x  1  0.

x →0

x2  x  1 1 1  lim x  1  x →0 x →0 x x



lim



93. (a) sin   BD cos   DO ⇒ AD  1  cos  1 1 1 1 Area  ABD  bh  1  cos  sin   sin   sin  cos  2 2 2 2 (b) Area of sector:

1 1 1 1 1   Area OBD    cos sin     sin  cos  2 2 2 2 2

Shaded area: (c) R 

1  2

12 sin   12 sin  cos  sin   sin  cos   12  12 sin  cos    sin  cos  sin   12 sin 2   12 sin 2

(d) lim R  lim  →0

 →0

cos   cos 2 sin   2 sin 2 cos   4 cos 2 3  lim  lim   →0  →0 1  cos 2 2 sin 2 4 cos 2 4

 lim

 →0

95. lim f xgx x →a

y  f xgx ln y  gx ln f x lim gx ln f x      

x →a

As x → a, ln y ⇒  , and hence y  0. Thus, lim f xgx  0.

x →a



b

97. f ab  a 

f  tt  b dt  f ab  a 

a





f tt  b

b a



b



 

 f ab  a  f aa  b  f t dv  f  tdt ⇒

v  f t

u  t  b ⇒ du  dt

Section 7.8

Improper Integrals

1. Infinite discontinuity at x  0.



4

0

1 x



4

dx  lim b →0

b



1 x



 lim 2 x b →0

dx 4 b

 lim  4  2 b   4 b →0

Converges



f t dt

a b a

 f b  f a

Section 7.8 3. Infinite discontinuity at x  1.



2

0

1 dx  x  12



1

1 dx  x  12

0

 lim



 lim



b

b→1

b→1

0



2

1



b





 lim 

0

103

1 dx x  12

1 dx  lim c→1 x  12

1  x1

Improper Integrals

c→1

2

c

1 dx x  12

1 x1



2

   1  1  

c

Diverges



1

5. Infinite limit of integration.







7.

b

ex dx  lim

b→ 

0

ex dx

because the integrand is not defined at x  0. Diverges

0

e 

 lim

x

b→ 

1 dx  2 x2

1

b 0

011

Converges





9.

1

1 dx  lim b→  x2



b

1

 1x 

b

 lim b→





1 dx x2

11.

3 x

1

dx  lim

b→ 

b→

3x13 dx

1

 9x   2

b

 lim

1

1



b

3

23

1



Diverges





0

13.

0

xe2x dx  lim

b→







0

1 2x  1e2x b→ 4

xe2x dx  lim

b

b

 lim

b→

1

1  2b  1e2b    (Integration by parts) 4

Diverges





15.

b→ 

0



Since lim  b→ 





b

x2ex dx  lim

b→

0

b 0



 lim  b→ 

b2  2b  2 2 2 eb





ex cos x dx  lim

0



x2  2x  2

x

b2  2b  2  0 by L’Hôpital’s Rule. eb



17.

e 

x2ex dx  lim

b→ 





1 x e cos x  sin x 2

b 0

1 1  0  1  2 2





19.

4

1 dx  lim b→  xln x3



1 ln x3 dx x 4





b

21.

2 2 dx   4  x



0

2 2 dx   4  x



0

 2 ln x  

 lim

1 1   ln b2  ln 42 2 2

 lim

1 1 1   2 2 ln 22 8ln 22

 0  2

 lim b→

1

2

b 4

b→

b→



b





0

2 dx 4  x2

2 dx  lim c→  4  x2



c

2 dx 4  x2 0

arctan2  lim arctan2 x

0 b

x

c→

 0 

2

  



c 0

104

Chapter 7





23.

0

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

1 1 dx  lim b →0 x2 x

cos x dx  lim

b→ 

0

 sin x

b

1

0

Diverges since sin x does not approach a limit as x → .

arctane 

0

 

0

25.



  2 4 4



1

0





ex dx 1  e2x x

b→ 



b

b

 lim

27.



1 dx  lim b→  ex  ex

1

 1  

b

Diverges



8

29.

1 dx  lim 3 b→8 0 8  x



1

31.

0

x ln x dx  lim b→0





b

0

tan  d 

0



 x2 lnx  4  2

1

x2

b

2

33.

1 3 dx  lim 8  x 23 b→8 2 8x

3

lnsec 

b

lim

b→  2

 lim b→0



 14 

b 0

6

b2 ln b b2 1 since lim b2 ln b  0 by L’Hôpital’s Rule.   b→0 2 4 4





4



35.

2

0

2 dx  lim b→2 x x2  4



2 dx x x2  4



x 2

4

b

 lim arcsec

Diverges

b→2







4 b

 lim arcsec 2  arcsec b→2





4

37.

2







4

1  lim ln x  x2  4 b→2 x  4 2



0 3 3

b

 ln 4  2 3   ln 2  ln 2  3   1.317



2

39.

0

1 dx  3 x  1



1

0

1 dx  3 x  1

 lim b→1





41.

0

4 dx  xx  6

4 xx  6





Thus,

0

dx  4

xx  6

1

23

0

1

0

1 dx x1

3

b

3





2

 2 x  1 

 lim c→1

4 dx  xx  6

Let u  x, u2  x, 2u du  dx.







 2 x  1 

2

3

23

c



4 xx  6

1





3 3  0 2 2

dx

 

 C

x 42u du du 4 8 8 8 2  arctan C arctan 2 uu  6 u 6 6 6 6 6

dx  lim b→0



8 6

 6

arctan

x





 86 arctan 16 



2 6 8

 . 2 6 3





1

 lim

b

8 6

c→ 



  86 2 

0 



 

c

x 8 arctan 6 6

8 6

1

 16

arctan



b2

Section 7.8





43. If p  1,

1

1 dx  lim b→  x



b

1

Improper Integrals

105



b 1 dx  lim ln x . b→  x 1

Diverges. For p  1,





1



1 x1p lim p dx  b→ x  1p

This converges to

b 1

 b  1  p.  1p 1p

 lim b→

1

1 if 1  p < 0 or p > 1. p1

45. For n  1 we have









b

xex dx  lim

b→ 

0

 lim

b→ 

xex dx

0

e

xx



b

 ex

Parts: u  x, dv  ex dx

0

 lim ebb  eb  1 b→ 

 lim

b→ 



b

e

b





1  1  1 (L’Hôpital’s Rule) eb



Assume that

x nex dx converges. Then for n  1 we have

0





x n1ex dx  x n1ex  n  1 x nex dx

by parts u  xn1, du  n  1xn dx, dv  ex dx, v  ex. Thus,





b→

0



1

47.

0

x 

xn1ex dx  lim



n1ex

b 0



 n  1





0

1 dx diverges. x3

53. Since

x2

49.



1

x3

1



1

x2

1







dx converges by Exercise 43,

1 1 ≥ 3 2 on 2,  and 3 x xx  1

2

1 1  converges. 31 2

dx 

(See Exercise 43, p  3.

1 1 ≤ 2 on 1,  and 5 x

55. Since ex ≤ ex on 1,  and

xnex dx, which converges.

0

(See Exercise 44, p  3 1.

51. Since



xnex dx  0  n  1

1





2

1 dx converges. x2  5





1 dx diverges by Exercise 43, 3 2 x







ex dx converges (see Exercise 5),

0

2

1 3 xx  1

dx diverges.

ex dx converges. 2

0



1

57. Answers will vary. See pages 540, 543.

59.

1 3 dx  x 1



0

1 3 dx  x 1



1

0

1 dx x3

These two integrals diverge by Exercise 44. 61. f t  1 Fs 



63. f t  t2



0

 s e  

est dx  lim b→

1

st

b

1  ,s > 0 s 0

Fs 





 s  s

t 2est dx  lim b→

0



1

3

2 ,s > 0 s3

2 t2



 2st  2est

b 0

106

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

65. f t  cos at Fs 





est cos at dt

0 st

 e s cos at  a sin at  s a

 lim b→

b

2

2

0

s s  ,s > 0 s2  a2 s2  a2

0

67. f t  cosh at Fs 





est cosh at dt 

0





est

0

e

at











etsa  etsa dt

0



1 1 1 et sa  et sa b→  2 s  a s  a

 lim



 eat 1 dt  2 2

b 0

0



1 1 1  2 s  a s  a



1 1 s 1   2 ,s > a 2 s  a s  a s  a2



69. (a) A 









ex dx

(b) Disk:

0

 lim

b→ 





ex

b

V

 0  1  1





ex 2 dx

0

0





1  lim  e2x b→  2 (c) Shell: V  2





xex dx

0

 

  2

 lim 2 exx  1 b→

b 0

x23  y23  4

71.

2 13 2 13 x  y y  0 3 3 y  1  y  2 

y13 x13

1  xy



8

s4

0

y

8

2

(− 8, 0) −8

(0, 8)

−2

−8

(8, 0) x

2

(0, −8)

8

2 13

x

23 23



x

 y23  x 23



2 x 23b  48

23

dx  lim 8 b→0

3

8

x 4

23



2 x1/3

b 0



2

Section 7.8



Improper Integrals



73. n 

xn1ex dx

0





(a) 1 

b→

0

2 

1

e 

x  1



b→

0



x

(b) n  1 

b→





x e 

x 2ex dx  lim

0

b

x

xex dx  lim

0

3 

e  

ex dx  lim

b→

1



x e  

xnex dx  lim

0

0

b

 2xex  2ex

2 x



b

n x

b 0



0

2

b

 lim n b→ 

xn1ex dx  0  n n

u  xn, dv  ex dx

0

(c) n  n  1!





1 t7 e dt   7

75. (a)







0

1 t7 e dt  lim et7 b→  7

b 0



4

1

(b)

0





1 t7 e dt  et7 7

4 0

 et7  1

 0.4353  43.53%





(c)



 17 e  dt  lim te t7

t

0

t7

b→

 7et7



b 0

077



5

77. (a) C  650,000 

25,000 e0.06t dt  650,000 

0

e  25,000 0.06



5

0.06t

0

 $757,992.41

10

(b) C  650,000 

25,000e0.06t dt  $837,995.15

0

(c) C  650,000 



25,000e0.06t dt  650,000  lim

b→ 

0

e  25,000 0.06



0.06t

b 0

 $1,066,666.67

79. Let x  a tan , dx  a sec2  d, a2  x2  a sec .



1 dx  a2  x232





a sec2  d 1  2 cos  d a3 sec3  a



Pk



1



81.



x 1 k dx  2 lim a  x232 a b→ a2  x2 2

x

θ a

1 1 x  2 sin   2 a a a2  x2 Hence,

a2 + x 2



b 1

k 1 k a2  1  1 1   . a2 a2  1 a2 a2  1





10 10 ⇒ x  0, 2.  x2  2x xx  2 You must analyze three improper integrals, and each must converge in order for the original integral to converge.



3

0



1

f x dx 

0



2

f x dx 

1



3

f x dx 

2

f x dx

107

108

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

83. For n  1, I1 







x2

0

x 1 dx  lim b→  2  14



b

0



1 x2  142x dx  lim  1 b→  6 x2  13

For n > 1,





In 

x2n1 x2n2 lim n3 dx  b→ 2 n  2 x  1  2n  2x  1



2

0



  



0

(b)

0



(c)

0



1 x dx  lim  2 b→  x2  14 6x  13



3

1 x dx  x2  15 4

2 x5  x  16 5 2







0



0

0



n1 n2





0

b 0

1  . 6

n1 x2n3 dx  0  I  x  1n2 n  2 n1 2

x 1 dx, v  x2  1n3 2n  2x2  1n2

u  x 2n2, du  2n  2x 2n3 dx, dv  (a)

b





b 0



1 6



1 1 1 x dx   x2  14 4 6 24

 

2 1 1 x3 dx   x  15 5 24 60 2

85. False. f x  1 x  1 is continuous on 0, , lim 1 x  1  0, but x →





0



0  .

1 dx  lim ln x  1 b→  x1

Diverges 87. True

Review Exercises for Chapter 7 1.



x x2  1 dx  



1 x2  11 22x dx 2

3.





x 1 2x dx  dx x2  1 2 x2  1

1 x2  13 2 C 2 3 2



1 ln x2  1  C 2





1  x2  13 2  C 3

5.



ln2x ln 2x2 dx  C x 2



1 2 e2x sin 3x dx   e2x cos 3x  3 3

9.

13 9

7.



16 16  x2

dx  16 arcsin

e2x cos 3x dx



2 1 2x 2 1 e sin 3x    e2x cos 3x  3 3 3 3

 





e2x sin 3x dx



1 2 e2x sin 3x dx   e2x cos 3x  e2x sin 3x 3 9 e2x sin 3x dx 

e2x 2 sin 3x  3 cos 3x  C 13

(1) dv  sin 3x dx ⇒ u  e2x

1 v   cos 3x 3

⇒ du  2e2x dx

(2) dv  cos 3x dx ⇒ u  e2x

v

1 sin 3x 3

⇒ du  2e2x dx

4x   C

b

Review Exercises for Chapter 7 2 11. u  x, du  dx, dv  x  51 2 dx, v  x  53 2 3



2 x x  5 dx  xx  53 2  3





1 x2 sin 2x dx   x2 cos 2x  2

13.

2 x  53 2 dx 3

4

(1) dv  sin 2x dx ⇒

 156 x  34  C

u  x2

 x  53 2

x2 arcsin 2x  2

x arcsin 2x dx 

19.

21.



dx

22x2 dx 1  2x2

1 1 x2 arcsin 2x 

 2x 1  4x2  arcsin 2x  C (by Formula 43 of Integration Tables) 2 8 2



1

8x2  1 arcsin 2x  2x 1  4x2  C 16



v

cos3 x  1 dx 

sec4

⇒ du  dx







1 sin 2x 2

1 x2 arcsin 2x  2 8

u  arcsin 2x ⇒ du 

17.

x2

1  4x2

v





dv  x dx

 

ux

1 v   cos 2x 2

⇒ du  2x dx

(2) dv  cos 2x dx ⇒

2  x  53 2 3x  10  C 15



x2 2 2 dx 1  4x2



1  sin2 x  1 cos x  1 dx







1 1 sin x  1  sin3 x  1  C  3



1 sin x  1 3  sin2 x  1  C 3



1 sin x  1 3  1  cos 2 x  1  C 3



1 sin x  1 2  cos 2 x  1  C 3

2x  dx  tan 2x   1 sec 2x  dx 2

2







x x x 2 3 x 2 tan  2 tan  C  tan3  3 tan 3 2 2 3 2 2

tan2

1 d  1  sin 

2x  sec 2x  dx  sec 2x  dx 2





2



1  sin  d  cos2 

 





sin 2x dx

1 x 1   x2 cos 2x  sin 2x  cos 2x  C 2 2 4

 23x  15 x  5  C

15.

x cos 2x dx

1 1 1   x2 cos 2x  x sin 2x  2 2 2

2 4  xx  53 2  x  55 2  C 3 15  x  53 2



109

   C

sec2   sec  tan  d  tan   sec   C

110

23.

Chapter 7



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

12 dx  x2 4  x2



24 cos  d 4 sin2 2 cos 



x

csc2 

 3

2

d

θ 4 − x2

 3 cot   C 3 4  x2 C x



x  2 sin , dx  2 cos  d, 4  x2  2 cos  x  2 tan 

25.

x2 + 4

dx  2 sec2  d

x

θ

4  x2  4 sec2 



x3 dx  4  x2

  

2

8 tan3  2 sec2  d 2 sec 

 8 tan3  sec  d  8 sec2   1tan  sec  d

 sec3   sec   C 3

8





x2  43 2 x2  4  C 24 2

8

 x2  4

 13 x

2



 4  4  C

1 8  x2 x2  4  x2  4  C 3 3 1  x2  41 2x2  8  C 3

27.



4  x2 dx 

 

2 cos 2 cos  d 2 x

 2 1  cos 2 d



θ 4 − x2



1  2   sin 2  C 2  2  sin  cos   C  2 arcsin



2x   2x







4  x2

2

  C 

1 x 4 arcsin  x 4  x2  C 2 2

x  2 sin , dx  2 cos  d, 4  x2  2 cos 

Review Exercises for Chapter 7

29. (a)



x3 4  x2

 

dx  8

sin3  d cos4 

(b)



x3 4  x2



8 sec sec2   3  C 3 4  x2

3

(c)



x3 dx  x2 4  x2  4  x2



x dx ⇒ 4  x2



2x 4  x2 dx

31.

v  4  x2

⇒ du  2x dx

u  x2

x  28 A B   x2  x  6 x  3 x  2 x  28  Ax  2  Bx  3 x  2 ⇒ 30  B5 ⇒ B  6 ⇒ 25  A5

x3

 33.

x  28 dx  x2  6  6



⇒ A  5

5 6  dx  5 ln x  3  6 ln x  2  C x3 x2











x2  2x A Bx  C  2  x  1x2  1 x  1 x 1 x2  2x  Ax2  1  Bx  Cx  1 Let x  1: 3  2A ⇒ A 

3 2 3 2

Let x  0: 0  A  C ⇒ C 

Let x  2: 8  5A  2B  C ⇒ B  



x2  2x 3 dx  x  x2  x  1 2 3

 

1 2

1 1 dx  x1 2 1 1 dx  x1 4

 

x3 dx x2  1 2x 3 dx  x2  1 2



1 dx x2  1



3 2



1 3 3 ln x  1  ln x2  1  arctan x  C 2 4 2









1  6 ln x  1  lnx2  1  6 arctan x  C 4



4  x2

3

x2  8  C

u2  4  x2, 2u du  2x dx

4  x2 2 2  x2 4  x2  4  x23 2  C  x  8  C 3 3

dv 

u2  4 du

u  u2  12  C 3

x2  8  C

x  2 tan , dx  2 sec2  d



1  u3  4u  C 3

 8 cos4   cos2  sin  d 

dx 



111

112

35.

Chapter 7

x2

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

15  2x x2 1 2  2x  15 x  2x  15

B 15  2x A   x  3x  5 x  3 x  5 15  2x  Ax  5  Bx  3 Let x  3:

9  8A ⇒ A 

9 8

Let x  5: 25  8B ⇒ B  



x2 dx  x2  2x  15



dx 

x

37.



9 8

25 8



25 1 dx  x3 8



1 dx x5

9 25 ln x  3  ln x  5  C 8 8













x 1 2 dx   ln 2  3x  C 2  3x2 9 2  3x

39.





x 1 1 dx  du 1  sin x2 2 1  sin u 1  tan u  sec u  C 2

(Formula 4)

1  tan x2  sec x2  C 2

41.









x 1 1 dx  ln x2  4x  8  4 2 dx x2  4x  8 2 x  4x  8





(Formula 15)



1 2 2x  4  ln x2  4x  8  2 arctan 32  16 32  16 2





43.







  C

(Formula 14)



1 x ln x2  4x  8  arctan 1  C 2 2







1 1 1 dx   dx sin x cos x  sin x cos x 

1 ln tan x  C 





u  x

(Formula 58)

45. dv  dx



vx

1 u  ln xn ⇒ du  nln xn1 dx x





ln xn dx  xln xn  n ln xn1 d x

47.



 sin  cos  d 

1 2



 sin 2 d

1 1    cos 2  4 4 dv  sin 2 d ⇒ u

1 v   cos 2 2

⇒ du  d



1 1 1 cos 2 d    cos 2  sin 2  C  sin 2  2 cos 2  C 4 8 8

u  x2 (Formula 56)

Review Exercises for Chapter 7

49.



 

x1 4 uu3 dx  4 du 1  x1 2 1  u2 4 4

u2  1 

13 u

3

51.



1  cos x dx 



1 du u2  1



 

sin x 1  cos x

113

dx

1  cos x1 2sin x dx

 2 1  cos x  C



 u  arctan u  C

u  1  cos x, du  sin x dx

4  x3 4  3x1 4  3 arctanx1 4  C 3 4 x , x  u4, dx  4u3 du y

53.



cos x lnsin x dx  sin x lnsin x 



3 x3 9 dx  ln C x2  9 2 x3 (by Formula 24 of Integration Tables)

 sin x lnsin x  sin x  C dv  cos x dx ⇒

v  sin x

u  lnsin x ⇒ du 

57. y 





55. y 

cos x dx

cos x dx sin x



















lnx2  xdx  x ln x2  x   x ln x 2  x   x ln x2  x 

  



5

2x2  x dx x2  x

59.

xx2  43 2 dx 

2

 15 x

2

 45 2

5



2



1 5

2x  1 dx x1

2dx 





1 dx x1



 x ln x2  x  2x  ln x  1  C ⇒

dv  dx

vx

u  lnx2  x ⇒ du 



4

61.

1





ln x 1 dx  ln x2 x 2

 

4

65. A 

4 1

2x  1 dx x2  x

1  ln 42  2ln 22  0.961 2



0

x 4  x dx 

0

4  u2u2u du

2





63.



0

2u4  4u2 du

y

2

 u5  4u3 

 2

5

3

0 2



128 15





1 1 x  x3  3

0

1 67. By symmetry, x  0, A  . 2

0







x sin x dx  x cos x  sin x

 

1

2 1  2

1





x, y  0,

4 3

 1  x22 dx





u  4  x, x  4  u2, dx  2u du

69. s 





1  cos2 x dx  3.82

0

e2x 2e2x 4e2x  lim  lim  2 x → x x →  2x x → 2

73. lim

71. lim

x →1

ln x2

 x  1   lim  x →1

21 xln x 0 1



75. y  lim ln x2 x x →

ln y  lim

x →

2 x ln x 2 lnln x 0  lim x → x 1

Since ln y  0, y  1.





1 1



4 3

108

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

83. For n  1, I1 







x2

0

x 1 dx  lim b→  2  14



b

0



1 x2  142x dx  lim  1 b→  6 x2  13

For n > 1,





In 

x2n1 x2n2 lim n3 dx  b→ 2 n  2 x  1  2n  2x  1



2

0



  



0

(b)

0



(c)

0



1 x dx  lim  2 b→  x2  14 6x  13



3

1 x dx  x2  15 4

2 x5  x  16 5 2







0



0

0



n1 n2





0

b 0

1  . 6

n1 x2n3 dx  0  I  x  1n2 n  2 n1 2

x 1 dx, v  x2  1n3 2n  2x2  1n2

u  x 2n2, du  2n  2x 2n3 dx, dv  (a)

b





b 0



1 6



1 1 1 x dx   x2  14 4 6 24

 

2 1 1 x3 dx   x  15 5 24 60 2

85. False. f x  1 x  1 is continuous on 0, , lim 1 x  1  0, but x →





0



0  .

1 dx  lim ln x  1 b→  x1

Diverges 87. True

Review Exercises for Chapter 7 1.



x x2  1 dx  



1 x2  11 22x dx 2

3.





x 1 2x dx  dx x2  1 2 x2  1

1 x2  13 2 C 2 3 2



1 ln x2  1  C 2





1  x2  13 2  C 3

5.



ln2x ln 2x2 dx  C x 2



1 2 e2x sin 3x dx   e2x cos 3x  3 3

9.

13 9

7.



16 16  x2

dx  16 arcsin

e2x cos 3x dx



2 1 2x 2 1 e sin 3x    e2x cos 3x  3 3 3 3

 





e2x sin 3x dx



1 2 e2x sin 3x dx   e2x cos 3x  e2x sin 3x 3 9 e2x sin 3x dx 

e2x 2 sin 3x  3 cos 3x  C 13

(1) dv  sin 3x dx ⇒ u  e2x

1 v   cos 3x 3

⇒ du  2e2x dx

(2) dv  cos 3x dx ⇒ u  e2x

v

1 sin 3x 3

⇒ du  2e2x dx

4x   C

b

Review Exercises for Chapter 7 2 11. u  x, du  dx, dv  x  51 2 dx, v  x  53 2 3



2 x x  5 dx  xx  53 2  3





1 x2 sin 2x dx   x2 cos 2x  2

13.

2 x  53 2 dx 3

4

(1) dv  sin 2x dx ⇒

 156 x  34  C

u  x2

 x  53 2

x2 arcsin 2x  2

x arcsin 2x dx 

19.

21.



dx

22x2 dx 1  2x2

1 1 x2 arcsin 2x 

 2x 1  4x2  arcsin 2x  C (by Formula 43 of Integration Tables) 2 8 2



1

8x2  1 arcsin 2x  2x 1  4x2  C 16



v

cos3 x  1 dx 

sec4

⇒ du  dx







1 sin 2x 2

1 x2 arcsin 2x  2 8

u  arcsin 2x ⇒ du 

17.

x2

1  4x2

v





dv  x dx

 

ux

1 v   cos 2x 2

⇒ du  2x dx

(2) dv  cos 2x dx ⇒

2  x  53 2 3x  10  C 15



x2 2 2 dx 1  4x2



1  sin2 x  1 cos x  1 dx







1 1 sin x  1  sin3 x  1  C  3



1 sin x  1 3  sin2 x  1  C 3



1 sin x  1 3  1  cos 2 x  1  C 3



1 sin x  1 2  cos 2 x  1  C 3

2x  dx  tan 2x   1 sec 2x  dx 2

2







x x x 2 3 x 2 tan  2 tan  C  tan3  3 tan 3 2 2 3 2 2

tan2

1 d  1  sin 

2x  sec 2x  dx  sec 2x  dx 2





2



1  sin  d  cos2 

 





sin 2x dx

1 x 1   x2 cos 2x  sin 2x  cos 2x  C 2 2 4

 23x  15 x  5  C

15.

x cos 2x dx

1 1 1   x2 cos 2x  x sin 2x  2 2 2

2 4  xx  53 2  x  55 2  C 3 15  x  53 2



109

   C

sec2   sec  tan  d  tan   sec   C

110

23.

Chapter 7



Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

12 dx  x2 4  x2



24 cos  d 4 sin2 2 cos 



x

csc2 

 3

2

d

θ 4 − x2

 3 cot   C 3 4  x2 C x



x  2 sin , dx  2 cos  d, 4  x2  2 cos  x  2 tan 

25.

x2 + 4

dx  2 sec2  d

x

θ

4  x2  4 sec2 



x3 dx  4  x2

  

2

8 tan3  2 sec2  d 2 sec 

 8 tan3  sec  d  8 sec2   1tan  sec  d

 sec3   sec   C 3

8





x2  43 2 x2  4  C 24 2

8

 x2  4

 13 x

2



 4  4  C

1 8  x2 x2  4  x2  4  C 3 3 1  x2  41 2x2  8  C 3

27.



4  x2 dx 

 

2 cos 2 cos  d 2 x

 2 1  cos 2 d



θ 4 − x2



1  2   sin 2  C 2  2  sin  cos   C  2 arcsin



2x   2x







4  x2

2

  C 

1 x 4 arcsin  x 4  x2  C 2 2

x  2 sin , dx  2 cos  d, 4  x2  2 cos 

Review Exercises for Chapter 7

29. (a)



x3 4  x2

 

dx  8

sin3  d cos4 

(b)



x3 4  x2



8 sec sec2   3  C 3 4  x2

3

(c)



x3 dx  x2 4  x2  4  x2



x dx ⇒ 4  x2



2x 4  x2 dx

31.

v  4  x2

⇒ du  2x dx

u  x2

x  28 A B   x2  x  6 x  3 x  2 x  28  Ax  2  Bx  3 x  2 ⇒ 30  B5 ⇒ B  6 ⇒ 25  A5

x3

 33.

x  28 dx  x2  6  6



⇒ A  5

5 6  dx  5 ln x  3  6 ln x  2  C x3 x2











x2  2x A Bx  C  2  x  1x2  1 x  1 x 1 x2  2x  Ax2  1  Bx  Cx  1 Let x  1: 3  2A ⇒ A 

3 2 3 2

Let x  0: 0  A  C ⇒ C 

Let x  2: 8  5A  2B  C ⇒ B  



x2  2x 3 dx  x  x2  x  1 2 3

 

1 2

1 1 dx  x1 2 1 1 dx  x1 4

 

x3 dx x2  1 2x 3 dx  x2  1 2



1 dx x2  1



3 2



1 3 3 ln x  1  ln x2  1  arctan x  C 2 4 2









1  6 ln x  1  lnx2  1  6 arctan x  C 4



4  x2

3

x2  8  C

u2  4  x2, 2u du  2x dx

4  x2 2 2  x2 4  x2  4  x23 2  C  x  8  C 3 3

dv 

u2  4 du

u  u2  12  C 3

x2  8  C

x  2 tan , dx  2 sec2  d



1  u3  4u  C 3

 8 cos4   cos2  sin  d 

dx 



111

112

35.

Chapter 7

x2

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

15  2x x2 1 2  2x  15 x  2x  15

B 15  2x A   x  3x  5 x  3 x  5 15  2x  Ax  5  Bx  3 Let x  3:

9  8A ⇒ A 

9 8

Let x  5: 25  8B ⇒ B  



x2 dx  x2  2x  15



dx 

x

37.



9 8

25 8



25 1 dx  x3 8



1 dx x5

9 25 ln x  3  ln x  5  C 8 8













x 1 2 dx   ln 2  3x  C 2  3x2 9 2  3x

39.





x 1 1 dx  du 1  sin x2 2 1  sin u 1  tan u  sec u  C 2

(Formula 4)

1  tan x2  sec x2  C 2

41.









x 1 1 dx  ln x2  4x  8  4 2 dx x2  4x  8 2 x  4x  8





(Formula 15)



1 2 2x  4  ln x2  4x  8  2 arctan 32  16 32  16 2





43.







  C

(Formula 14)



1 x ln x2  4x  8  arctan 1  C 2 2







1 1 1 dx   dx sin x cos x  sin x cos x 

1 ln tan x  C 





u  x

(Formula 58)

45. dv  dx



vx

1 u  ln xn ⇒ du  nln xn1 dx x





ln xn dx  xln xn  n ln xn1 d x

47.



 sin  cos  d 

1 2



 sin 2 d

1 1    cos 2  4 4 dv  sin 2 d ⇒ u

1 v   cos 2 2

⇒ du  d



1 1 1 cos 2 d    cos 2  sin 2  C  sin 2  2 cos 2  C 4 8 8

u  x2 (Formula 56)

Review Exercises for Chapter 7

49.



 

x1 4 uu3 dx  4 du 1  x1 2 1  u2 4 4

u2  1 

13 u

3

51.



1  cos x dx 



1 du u2  1



 

sin x 1  cos x

113

dx

1  cos x1 2sin x dx

 2 1  cos x  C



 u  arctan u  C

u  1  cos x, du  sin x dx

4  x3 4  3x1 4  3 arctanx1 4  C 3 4 x , x  u4, dx  4u3 du y

53.



cos x lnsin x dx  sin x lnsin x 



3 x3 9 dx  ln C x2  9 2 x3 (by Formula 24 of Integration Tables)

 sin x lnsin x  sin x  C dv  cos x dx ⇒

v  sin x

u  lnsin x ⇒ du 

57. y 





55. y 

cos x dx

cos x dx sin x



















lnx2  xdx  x ln x2  x   x ln x 2  x   x ln x2  x 

  



5

2x2  x dx x2  x

59.

xx2  43 2 dx 

2

 15 x

2

 45 2

5



2



1 5

2x  1 dx x1

2dx 





1 dx x1



 x ln x2  x  2x  ln x  1  C ⇒

dv  dx

vx

u  lnx2  x ⇒ du 



4

61.

1





ln x 1 dx  ln x2 x 2

 

4

65. A 

4 1

2x  1 dx x2  x

1  ln 42  2ln 22  0.961 2



0

x 4  x dx 

0

4  u2u2u du

2





63.



0

2u4  4u2 du

y

2

 u5  4u3 

 2

5

3

0 2



128 15





1 1 x  x3  3

0

1 67. By symmetry, x  0, A  . 2

0







x sin x dx  x cos x  sin x

 

1

2 1  2

1





x, y  0,

4 3

 1  x22 dx





u  4  x, x  4  u2, dx  2u du

69. s 





1  cos2 x dx  3.82

0

e2x 2e2x 4e2x  lim  lim  2 x → x x →  2x x → 2

73. lim

71. lim

x →1

ln x2

 x  1   lim  x →1

21 xln x 0 1



75. y  lim ln x2 x x →

ln y  lim

x →

2 x ln x 2 lnln x 0  lim x → x 1

Since ln y  0, y  1.





1 1



4 3

114

Chapter 7



77. lim 1000 1  n →

Let y  lim

n →

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 0.09 n



n

 1000 lim

n →

1  0.09 n 

n

. 1  0.09 n  n





0.09 ln y  lim n ln 1   lim n → n → n



ln 1 

0.09 n



n →



16

0

1

dx  lim

4 x

b→0

3 x 4

16

34

b

 lim

n →

1 n

Thus, ln y  0.09 ⇒ y  e0.09 and lim 1000 1 

79.



0.09 n



n





t0

n →





81.

x2 ln x dx  lim

b→ 

1

0.09  0.09 0.09 1 n

 

9 1  3 ln x

Diverges

Converges

83.



 lim

 1000e0.09  1094.17.

32 3



0.09n2 1  0.09n 1  2 n

500,000e0.05t dt 

0



e

500,000 0.05



0.05t

t0 0

500,000 0.05t0 e  1 0.05

 10,000,0001  e0.05t0 (a) t0  20: $6,321,205.59 (b) t0 → : $10,000,000

 

1 0.95 2

(b) P15 ≤ x < 20 

1 0.95 2

85. (a) P13 ≤ x <

 



ex12.9 20.95 dx  0.4581 2

2

13



ex12.9 20.95 dx  0.0135 2

2

15

Problem Solving for Chapter 7

 

1

1. (a)

1



1

1

x3 3

1  x2 dx  x 





1 1



2 1



1 4  3 3

1

1  x22 dx 

1



1  2x2  x4 dx  x 

2x3 x5  3 5



1 1



2 1

(b) Let x  sin u, dx  cos u du, 1  x2  1  sin2 u  cos2 u.



1

1

1  x2n dx  

 

2

cos2 un cos u du

2

2

cos2n1 u du

2

2n

3  5  7 . . . 2n  1

2

2

4

6

2  3  4  5. . . 2n2n  1

2 

22

42

62 . . . 2n2

22n1n!2 222nn!2  2n  1! 2n  1!



2 1 16   3 5 15

(Wallis’s Formula)

x3

b 1



Problem Solving for Chapter 7

lim

3.

x→ 

xx  cc

lim x ln

x→ 

lim

x→ 

x

9

xx  cc  ln 9

lnx  c  lnx  c  ln 9 1x 1 1  xc xc lim  ln 9 x→  1  2 x

lim

x→ 

2c x2  ln 9 x  cx  c

x 2cx c   ln 9 2

lim

x→ 

2

2

2c  ln 9 2c  2 ln 3 c  ln 3

5. sin  

PB  PB, cos   OB OP

  AQ  AP BR  OR  OB  OR  cos  The triangles AQR and BPR are similar: AR OR  1 OR  cos  BR  ⇒  AQ BP  sin  sin OR  sin   OR   cos  OR  lim OR  lim

 →0

 →0

 cos   sin  sin   

  sin   cos   cos  cos   1

 lim

  sin  cos   1

 lim

sin    cos  sin 

 →0

 →0

 lim

 →0

2

Q

 cos   sin  sin   

 lim  →0

y

cos   cos    sin  cos 

P

θ

R

O

B

A (1, 0)

x

115

116

Chapter 7

7. (a)

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Area  0.2986

0.2

0

4 0

(b) Let x  3 tan , dx  3 sec2  d, x2  9  9 sec2 .



x2 dx    9 x2

  

Area 



9 tan2  3 sec2  d 9 sec2 32

x2 + 9 x

tan2  d sec 

θ 3

sin2  d cos  1  cos2  d cos 





 ln sec   tan   sin   C

4

0

   



x2



x2



dx  ln sec   tan   sin 

 9

32



 ln

tan14 3



0



9 x x   x2  9 3 3

x2





4

0



4 5 4 4  ln    ln 3  3 3 5 5 (c) x  3 sinh u, dx  3 cosh u du, x2  9  9 sinh2 u  9  9 cosh2 u



4

A

0

x2 dx  2 x  932 

  

sin14 3

0

9 sinh2 u 3 cosh u du 9 cosh2 u32

sinh14 3

tanh2 u du

0



sinh14 3

1  sech2 u du

0





sinh14 3



 u  tanh u

0

sinh1





 

4 4  tanh sinh1 3 3

43  169  1   tanh ln43  169  1 

 ln  ln

43  35  tanhln43  35

 ln 3  tanhln 3  ln 3 

3  13 3  13

 ln 3 

4 5

Problem Solving for Chapter 7 9. y  ln1  x2, y 

1  x2 4x2 1  2x2  x4  4x2   1  x22 1  x22 1  x2



1  y 2  1 

   

2x 1  x2



2

12

Arc length 

1  y 2 dx

0 12



2 2

0 12



11  xx  dx 1  1 2 x  dx 2

0 12

1  x 1 1  1 1 x dx  x  ln1  x  ln1  x 

0

12 0



3 1 1    ln  ln 2 2 2



1    ln 3  ln 2  ln 2 2  ln 3 

11. Consider



1 dx. ln x

Let u  ln x, du 



If

1  0.5986 2

1 dx, x  eu. Then dx

1 dx were elementary, then ln x

Hence,







1 dx  ln x



1 u e du  u



eu du. u

eu du would be too, which is false. u

1 dx is not elementary. ln x

13. x4  1  x2  ax  bx2  cx  d  x4  a  cx3  ac  b  dx2  ad  bcx  bd a  c, b  d  1, a  2



1

0

x4  1  x2  2 x  1x2  2x  1 Ax  B dx  x2  2x  1



1 2  x 1 2 4  dx  2 0 x  2 x  1



1 dx  x4  1



1

0



 

2

4 2

4

1

0

Cx  D dx x2  2 x  1

1

0

1 2   x 2 4 dx x2  2 x  1

arctan 2x  1  arctan 2x  1

1



0

arctan 2  1  arctan 2  1 

 0.5554  0.3116  0.8670

2

8

2

8

lnx

2



 2x  1  lnx2  2x  1

ln2  2  ln2  2 

2 

4



1 0

4  4 

2

8

0

117

118

Chapter 7

Integration Techniques, L’Hôpital’s Rule, and Improper Integrals

15. Using a graphing utility,



1  x



1 0 x



1 x

(a) lim cot x  x→0

(b) lim cot x  x→0

(c) lim cot x  x→0





cot x  1x    32.

Analytically,



1  x



1 x cot x  1 x cos x  sin x  lim  lim x→0 x→0 x x x sin x

(a) lim cot x  x→0

(b) lim cot x  x→0





 lim

cos x  x sin x  cos x x sin x  lim x→0 sin x  x cos x sin x  x cos x

 lim

sin x  x cos x  0. cos x  cos x  x sin x

x→0

x→0

(c)

cot x  1x cot x  1x   cot

2

 lim

x→0

x

x2 cot2 x  1 x2

x2 cot2 x  1 2x cot2 x  2x2 cot x csc2 x  lim 2 x→0 x 2x  lim

cot2 x  x cot x csc2 x 1

 lim

cos2 x sin x  x cos x sin3 x

 lim

1  sin2 xsin x  x cos x sin3 x

 lim

sin x  x cos x 1 sin3 x

x→0

x→0

x→0

x→0

Now, lim x→0

sin x  x cos x cos x  cos x  x sin x  lim x→0 sin3 x 3 sin2 x cos x  lim

x 3 sin x  cos x

 lim

sinx x3 cos1 x  31.

x→0

x→0



Thus, lim cot x  x→0

1 x2

1 x

cot x  1x   31  1   32.

The form 0   is indeterminant.

Problem Solving for Chapter 7

17.

P1 P2 P3 P4 x3  3x2  1     ⇒ c1  0, c2  1, c3  4, c4  3 2 x  13x  12x x x1 x4 x3 4

Nx  x3  3x2  1 D x  4x3  26x  12 P1 

N0 1  D 0 12

P2 

N1 1 1   D 1 10 10

P3 

N4 111 111   D 4 140 140

P4 

N3 1  D 3 42

x3  3x2  1 112 110 111140 142     . x  13x2  12x x x1 x4 x3

Thus,

4

19. By parts,





b



f xg x dx  f xg x

a





b



a



b

f xg x dx

a





 f xgx 



b

a

f xg x dx

b



a

f xgx dx.



b

a

gx f x dx

119

C H A P T E R Infinite Series

8

Section 8.1

Sequences . . . . . . . . . . . . . . . . . . . . . 369

Section 8.2

Series and Convergence . . . . . . . . . . . . . . 373

Section 8.3

The Integral Test and p-Series

Section 8.4

Comparisons of Series

Section 8.5

Alternating Series . . . . . . . . . . . . . . . . . 385

Section 8.6

The Ratio and Root Tests . . . . . . . . . . . . . 389

Section 8.7

Taylor Polynomials and Approximations . . . . . 393

Section 8.8

Power Series . . . . . . . . . . . . . . . . . . . . 398

Section 8.9

Representation of Functions by Power Series

. . . . . . . . . . 378

. . . . . . . . . . . . . . 381

Section 8.10 Taylor and Maclaurin Series

. . 403

. . . . . . . . . . . 408

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 414 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . 421

C H A P T E R Infinite Series Section 8.1

8

Sequences

Solutions to Even-Numbered Exercises

 32

2. an 

2n n3

a1 

2 1  4 2

a1  

a2 

4 5

a2 

6 1 6

8 a3   27

a4 

8 7

16 a4  81

a5 

10 5  8 4

a5  

a3 

8. an  1n1 a1 

4. an  

2n

a3 

2 1 a4     4 2 2 a5  5

k 2 1a

k

n 2

 0 2

a2  cos   1

4 9

a3  cos

3 0 2

a4  cos 2  1 a5  cos

5 0 2

32 243 6 2  n n2

12. an 

3n!  3n n  1!

a1  10  2  6  18

a1  31  3

3 25  2 2

a2  32  6

2 2 34 a3  10    3 3 3

2 3

14. a1  4, ak1 

a1  cos

a2  10  1 

2 a2    1 2

6. an  cos

2 3

10. an  10 

2 2 1

n

a4  10 

1 3 87   2 8 8

a5  10 

2 6 266   5 25 25

a3  33  9 a4  34  12 a5  35  15

1 16. a1  6, ak1  ak2 3

a2 

1 2 1a

4

1 1 a2  a12  62  12 3 3

a3 

2 2 1a

6

1 1 a3  a22  122  48 3 3

a4 

3 2 1a

 12

1 1 a4  a32  482  768 3 3

a5 

4 2 1a

 30

1 1 a5  a42  7682  196,608 3 3

1

2

3

4

369

370

Chapter 8

Infinite Series

18. Because the sequence tends to 8 as n tends to infinity, it matches (a). 22.

24.

4

−1

20. This sequence increases for a few terms, then decreases a2  16 2  8. Matches (b). 26.

10

12 −1

−1

12

4 an  2  , n  1, . . . , 10 n 28. an 

n6 2

an  80.75n1, n  1, 2, . . . , 10

5  6 11  2 2

a6 

66 6 2

32.

a5  240  80

36.

 2425  600

2n  2! 2n!2n  12n  2  2n! 2n!

 n  1n  2

n→ 





1 505 n2

 2n  12n  2

40. lim

n→ 

5n 5  lim n→  1  4n2 n2  4 

44.

12

42. lim cos n→ 

2n  1

5 5 1 46.

2

−1

3n2 , n  1, . . . , 10 n2  1

25! 23!2425  23! 23!

a6  280  160

n  2! n!n  1n  2  n! n!

38. lim 5 

an 

30. an1  2an, a1  5

a5 

12 −1

−1

−3

34.

4

4

−1

12 −1

−1

The graph seems to indicate that the sequence converges to 0. Analytically, lim an  lim

n→ 

n→ 

The graph seems to indicate that the sequence converges to 3. Analytically,

1 1  lim  0. n32 x→ x32

48. lim 1  1n n→ 



lim an  lim 3 

n→ 

n→ 

3 n 

50. lim

3 n n→  

1



1  3  0  3. 2n

 1, converges

does not exist, (alternates between 0 and 2), diverges.

52. lim

n→ 

1  1n  0, converges n2

54. lim

n→ 

lnn 12 ln n  lim n→  n n

 lim

n→ 

1  0, converges 2n

(L’Hôpital’s Rule) 56. lim 0.5n  0, converges n→ 

58. lim

n→ 

n  2! 1  lim  0, converges n→  nn  1 n!

Section 8.1

Sequences

2nn 1  2nn 1  lim 4n2n 1   21, converges 2

60. lim

n→ 

2

2

n→ 

2

1 n

62. an  n sin

1 Let f x  x sin . x lim x sin

x→ 

1 sin1x 1x 2 cos1x 1  lim  lim  lim cos  cos 0  1 (L’Hôpital’s Rule) x→  x→  x x→ 1x 1x 2 x

or, lim

x→ 

sin1x sin y 1  lim  1. Therefore lim n sin  1. y→0 n→  1x y n

64. lim 21n  20  1, converges n→ 

70. an 

1n1 n2

76. an  1  

2n  1 2n

66. lim

cos  n  0, converges n2

68. an  4n  1

72. an 

n2 3n  1

74. an  1n

78. an 

1 n!

80. an 

n→ 

3n2 2n1

xn1 n  1!

2n1  1 2n

82. Let f x 

3x 6 . Then fx  . x2 x  22

Thus, f is increasing which implies an is increasing.

an < 3, bounded

n2 84. an  ne

a1  0.6065 a2  0.7358 a3  0.6694



Not monotonic; an ≤ 0.7358, bounded 86. an    23 

88. an   32  <

n

n

Monotonic; lim an  , not bounded

a1   23 a2 

n→ 

4 9

8 a3   27



2 Not monotonic; an ≤ 3 , bounded

90. an 

cos n n

a1  0.5403 a2  0.2081 a3  0.3230 a4  0.1634

 32 n1  an1



Not monotonic; an ≤ 1, bounded

371

372

Chapter 8

Infinite Series

92. (a) an  4 



4

3 n

(b)

3 < 4 ⇒ bounded n −1

3 4 < 3  an1 ⇒ monotonic n n1

an  4 

Therefore, an converges.

94. (a) an  4 



4

8

1 2n

12 0



lim 4 

n→ 

(b)



3 4 n

6

1 ≤ 4.5 ⇒ an bounded 2n −1

1 1 an  4  n > 4  n1 2 2  an1 ⇒ an monotonic

(a) A1  $101.00 A2  $203.01

(b) A60  $8248.64



lim 4 

n→ 

Therefore, an converges. 96. An  1001011.01n  1

12 −1



1 4 2n

98. The first sequence because every other point is below the x-axis.

(c) A240  $99,914.79

A3  $306.04 A4  $410.10 A5  $515.20 A6  $621.35 100. Impossible. The sequence converges by Theorem 8.5.

102. Impossible. An unbounded sequence diverges.

104. Pn  16,0001.045n

106. (a) an  410.9212n  6003.8545

P1  $16,720.00

12,000

P2  $17,472.40 P3 $18,258.66 P4 $19,080.30 P5 $19,938.91



108. an  1 

1 n



lim sn  L > 0,

n→ 

there exists for each  > 0, an integer N such that sn  L <  for every n > N. Let   L > 0 and we have,



a3 2.3704 a5 2.4883

< L, L < sn  L < L, or 0 < sn < 2L

for each n > N.

a6 2.5216 n→ 



sn  L

a4 2.4414

1 n

(b) For 2004, n  14 and an  11,757, or $11,757,000,000. 110. Since

a2  2.2500



10 0

n

a1  2.0000

lim 1 

0



n

e

Section 8.2

Series and Convergence

373

112. If an is bounded, monotonic and nonincreasing, then a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ . . . . Then a1 ≤ a2 ≤ a3 ≤ . . . ≤ an ≤ . . . is a bounded, monotonic, nondecreasing sequence which converges by the first half of the theorem. Since an converges, then so does an. 114. True

116. True 1 1  , n  1, 2, . . . x 2 n1 xn1

118. x0  1, xn  x1  1.5

x6  1.414214

x2  1.41667

x7  1.414214

x3  1.414216

x8  1.414114

x4  1.414214

x9  1.414214

x5  1.414214 x10  1.414214 The limit of the sequence appears to be 2. In fact, this sequence is Newton’s Method applied to f x  x 2  2.

Section 8.2

Series and Convergence

2. S1  16  0.1667 S2 

1 6



1 6

4. S1  1

 0.3333

S2  1  13  1.3333

3 S3  16  16  20  0.4833

S3  1  13  15  1.5333

3 2 S4  16  16  20  15  0.6167

S4  1  13  15  19  1.6444

1 1 3 2 5 S5  6  6  20  15  42  0.7357

1 S5  1  13  15  19  11  1.7354

6. S1  1

8.

S2  1 

 0.5

S3  1 

1 2

 16  0.6667

S5  1 

10.





 21.03

n



1 24



1 120

Geometric series

Diverges by Theorem 8.6

 0.6333

12.

Geometric series



n

 2n  3

n1

n0

r  1.03

n

4 > 1 3

r

1 S4  1  12  16  24  0.6250 1 6

4

n0

1 2

1 2



 3

> 1

lim

n→ 

Diverges by Theorem 8.6

n 1  0 2n  3 2

Diverges by Theorem 8.9

14.



 n

n1

lim

n→ 

n 1

16.

2

n n2  1



n!

2

n1

 lim

n→ 

1 1  1 n2

Diverges by Theorem 8.9

10

lim

n→ 

n

n!  2n 

Diverges by Theorem 8.9

374

18.

Chapter 8 

 3

2

n

Infinite Series

1

n0



 3  9

17

8

n



n0



17 8 64 . . .  1  3 9 81

S0 

Matches graph (b).

Matches (d).

Analytically, the series is geometric:

Analytically, the series is geometric:



2

n



n0





1 1  3 1  2 3 1 3 

17 , S  0.63, S3  5.1, . . . 3 1



17 8  9 n0 3



n



17 3 17 3 3  1  8 9 17 9

 nn  2   2n  2n  2  2  6  4  8  6  10  8  12  10  14  . . . 1

n1

1

1

1

1

1

1

1

1

1

1

1

1

n1



1

 nn  2 

n1

24.

20.

5 S0  1, S1  , S2  2.11, . . . . 3

 3

22.

2 4 . . .   3 9



 2  2

1

lim Sn  lim

n→

n→

12  41  2n 1 1  2n  2  2  41  43 1

1

n

26.

n0

n

n0







 0.6





1 Geometric series with r   2 < 1.

Geometric series with r  0.6 < 1.

Converges by Theorem 8.6

Converges by Theorem 8.6





 nn  4   n  n  4

28. (a)

4

n1



 1 1 (b)

(c)

1

1

n1













1 1 1 1 1 1 1 1 1 1 1           . . . 5 2 6 3 7 4 8 5 9 6 10

1 1 1 25     2.0833 2 3 4 12

n

5

10

20

50

100

Sn

1.5377

1.7607

1.9051

2.0071

2.0443

4

0

11 0

(d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly.

30. (a)



 30.85

n1



n1

(b)

(c)

3  20 1  0.85

(Geometric series)

n

5

10

20

50

100

Sn

11.1259

16.0625

19.2248

19.9941

19.999998

24

0

11 0

Section 8.2 

 5  3

32. (a)

1

n1



n1

(b)

5 15   3.75 1  1 3 4

(c)

n

5

10

20

50

100

Sn

3.7654

3.7499

3.7500

3.7500

3.7500

Series and Convergence

7

0

11 0

(d) The terms of the series decrease in magnitude rapidly. Thus, the sequence of partial sums approaches the sum rapidly.

34.





 nn  2  2  n  n  2  2 1  3  2  4  3  5  . . .  2 1  2  3 4

n1

36.

1

1



1

1

1

1



 6 5

n



n

4





1

3  4



8



 0.7

n

6  30 1  4 5

1

1

1

(Geometric)

1

1

1

1

 0.9n 



44.



81

1

n



n

 4  2

7

n





 10

9

n

2

n0

1

1 1



2 6  1  2 3 5

1



4 8  1  1 2 3

1 1 10 34  10  2   2 1  7 10 1  9 10 3 3

n

50. 0.21515 

n0

81 1 Geometric series with a  100 and r  100

81 81 100 9 a    1  r 1  1 100 99 11

S

2

n0

 10

 100 100



 2  3

n0

n0

48. 0.8181 

40.

8  32 1  3 4

n1

52.

1

n1

n0

46.

1

 2n  12n  3  2  2n  1  2n  3  2 3  5  5  7  7  9  . . .  2 3  6

n0

42.

1

n1

n1

38.

1

 3 1 1  5 n0 200 100





3 1 Geometric series with a  200 and r  100

S

a 1 3 200 71 1     5 1  r 5 99 100 330

n1



 2n  1

n1

n1 1  0 2n  1 2

lim

n→ 

Diverges by Theorem 8.9

54.



1

n1

56.



 nn  3  3  n  n  3

1



1

1

n1

1  41  12  51  13  61  14  71  15  81  16  91  . . .



1 3



1 1 1 11 1   , converges 3 2 3 18





3n

n

n1

3

ln 23n ln 22 3n ln n3 3n 3n  lim  lim  lim  3 2 n→  n n→  n→  n→  3n 6n 6 lim

(by L’Hôpital’s Rule) Diverges by Theorem 8.9

n

1

375

376

58.

Chapter 8 

Infinite Series

1

4

60.

n

n0



2n

 100

62.

n1

Geometric series with r 

1 4

k

n

n1

Geometric series with r  2

Converges by Theorem 8.6



 1  n



lim 1 

n→ 

Diverges by Theorem 8.6

k n



n

 ek  0

Diverges by Theorem 8.9

64. lim an  5 means that the limit of the sequence an is 5. n→ 



a

n

66. If lim an  0, then n→ 



a

n

diverges.

n1

 a1  a2  . . .  5 means that the limit of the

n1

partial sums is 5. 68. (a) x 2 is the common ratio. (c) y1 

(b) 1 

2 2x

 −5

Geometric series:

12

1 1  x 2

2 , x < 2 2x







1 < 0.0001 2n

72.

y = 10

Horizontal asymptote: y  10 4



x x a  1, r   ,  < 1 ⇒ x < 2 2 2

1  0.8x

1  0.8 



n

5

−5

 2 5



5

x y2  1  2

70. f x  2

 x2 x3 x x     2 4 8 2 n0

10,000 < 2n This inequality is true when n  14.

n −2

n0

16

0.01n < 0.0001

−2

2 S  10 1  4 5

10,000 < 10n This inequality is true when n  5. This series converges at a faster rate.

The horizontal asymptote is the sum of the series. f n is the nth partial sum. 74. Vt  225,0001  0.3n  0.7n225,000

n1

76.

 1000.60  i

i0

V5  0.75225,000  $37,815.75

1001  0.6n 1  0.6

 2501  0.6n Sum  250 million dollars

78. The ball in Exercise 77 takes the following times for each fall. s1  16t 2  16

s1  0 if t  1

s2  16t 2  160.81

s2  0 if t  0.9

s3  16t  160.81

s3  0 if t  0.92

2

2





sn  16t  160.81 2

n1

sn  0 if t  0.9n1

Beginning with s2, the ball takes the same amount of time to bounce up as it takes to fall. The total elapsed time before the ball comes to rest is t12



 0.9

n1

 1 

n

 1  2



 0.9

n0

2  19 seconds. 1  0.9

n



80. Pn 

1 2 3 3

P2 

1 2 3 3



 3 3

n0

1 2



n



n

2



4 27

1 3 1 1  2 3

million dollars

Section 8.2

Series and Convergence

377

82. (a) 64  32  16  8  4  2  126 in.2 

 64 2

(b)

1

n



n0

64  128 in.2 1  1 2 16 in.

Note: This is one-half of the area of the original square! 16 in.

13  9 2

84. Surface area  4 12  9 4

 P 1  12

12t1

86.

r

n





12 P  r P



Per 12n 

n0

 4 9

1

2

 . . .  4    . . .  

12r  r 1  1 

12 12t

P 1 1

n0

12t1

2



88. P  75, r  0.05, t  25



 12t

r 1 1 12

12r

1  12r

12t

(a) A  75 (b) A 



1

(b) A 

1250



 1  $75,743.82



75e0.0525  1  $44,732.85 e0.05 12  1

39

 40,0001.04

n

n0

20e0.0650  1  $76,151.45 e0.06 12  1

 40,000

111.04 1.04

40

 $3,801,020 94. x  0.a1a2a3 . . . aka1a2a3 . . . ak

 0.a1a2a3 . . . ak 1  

 101

1 1  10k 10k

 10

1

n0

 0.a1a2a3 . . . ak

2

k

3



. . .

n

k

1  11 10   a rational number k

96. Let Sn be the sequence of partial sums for the convergent series lim Sn  L and since Rn 

n→ 







a

n

 L. Then

n1

ak  L  Sn,

kn1

we have lim Rn  lim L  Sn  lim L  lim Sn  L  L  0.

n→ 



 1  $44,663.23

92. T  40,000  40,0001.04  . . .  40,0001.0439

12 0.06

1  0.06 12

 0.a1a2a3 . . . ak

1225

P1  er 1212t Pert  1  r 12 1  er 12 e 1

90. P  20, r  0.06, t  50 (a) A  20

12 0.05

1  0.05 12

n→ 

n→ 

n→ 

98. If  an  bn converged, then  an  bn   an   bn would converge, which is a contradiction. Thus,  an  bn diverges.

378

Chapter 8

Infinite Series

100. True

104.

102. True;

 1 1 1 1 1  2 3. . . r r r n0 r r

 

n



1r 1  1  1r r  1

This is a geometric series which converges if

Section 8.3 2.





since



1 < 1 r



4.

n2

Let f x  xex2.

2 . 3x  5

f is positive, continuous, and decreasing for x ≥ 3.

f is positive, continuous, and decreasing for x ≥ 1.

1



 ne

n1

n1





The Integral Test and p-Series

2



n 1  0 1000n  1 1000

1 < 1 ⇔ r > 1. r

 3n  5

Let f x 

lim

n→ 







2 2 dx  ln3x  5 3x  5 3

1

Since fx 





2x < 0 for x ≥ 3. 2e x2



Diverges by Theorem 8.10



xex2 dx  2x  2ex2

3





 10e32

3

Converges by Theorem 8.10

6.



1

 2n  1

8.

1 . 2x  1



1

n 3

Let f x 







1 dx  ln 2x  1 2x  1

1

x . x2  3

f x is positive, continuous, and decreasing for x ≥ 2 since

f is positive, continuous, and decreasing for x ≥ 1. 

2

n1

n1

Let f x 



n



3  x2 < 0 for x ≥ 2. x 2  3

fx 

Diverges by Theorem 8.10





1







x dx  ln x2  3 x2  3

1



Diverges by Theorem 8.10

10.



ne

k n

12.



1

n

13

n1

n1

xk Let f x  x . e

Let f x 

f is positive, continuous, and decreasing for x > k since

f is positive, continuous, and decreasing for x ≥ 1.

fx 

1

for x > k. We use integration by parts.







1







xk ex dx  xk ex

1

k





1 x13

dx 

xk1 ex dx

1



2 x 3

23

Diverges by Theorem 8.10

1 k kk  1 . . . k!     e e e e

Converges by Theorem 8.10





xk1k  x < 0 ex

1 . x13

1



Section 8.3

14.



3

n

n1







2



n1

Divergent p-series with p  23 < 1

22.

1

n

20.

23

n1

2

Convergent p-series with p  2 > 1

5 > 1 3

1

n

1

n1

Convergent p-series with p 

18.



n

16.

53

2

2

The Integral Test and p-Series

Convergent p-series with p   > 1

2

 n123. . .



2

n

24.

2

2

2 2  . . . 22 32

n1

n1

S1  2

S1  2

S2  3

S2  2.5

S3 3.67

S3 2.722

Matches (d)

Matches (c)

Diverges—harmonic series

Converges—p-series with p  2 > 1.

26. (a)

8

n

5

10

20

50

100

Sn

3.7488

3.75

3.75

3.75

3.75 0

11 0

The partial sums approach the sum 3.75 very rapidly. (b)

5

n

5

10

20

50

100

Sn

1.4636

1.5498

1.5962

1.6251

1.635 0

11 0

The partial sums approach the sum



28. x 

n

x



n1



2

1.6449 slower than the series in part (a). 6

1

n

x

n1

Converges for x > 1 by Theorem 8.11.

30.



ln n p n2 n



If p  1, then the series diverges by the Integral Test. If p  1,





2

ln x dx  xp





xp ln x dx 

2

xp1

p  1

2





1  p  1 ln x

. (Use Integration by Parts.)

2

Converges for p  1 < 0 or p > 1.

32. A series of the form





n1

1 is a p-series, p > 0. np

The p-series converges if p > 1 and diverges if 0 < p ≤ 1.

34. The harmonic series



1

 n.

n1

379

380

Chapter 8

Infinite Series

38. S4  1 

36. From Exercise 35, we have: 0 ≤ S  SN ≤





f x dx

R4 ≤

N



SN ≤ S ≤ SN  N

≤ S ≤

n

n1

N

a

n

f x dx







n1



1 1 dx   4 x5 4x 

1

n

1.0363 ≤

0.0010

4

≤ 1.0363  0.0010  1.0373

5

n1





f x dx

N

1 1 1 1   . . .

1.9821 2ln 23 3ln 33 4ln 43 11ln 113

40. S10 





R10 ≤

10



1 1 dx   x  1lnx  13 2lnx  12 

1

 n  1lnn  1

1.9821 ≤





10

1 1 1 1  2  3  4 0.5713 e e e e





R4 ≤







ex dx  ex

4



e

0.5713 ≤

n

4



1

0.0870 2ln 113

≤ 1.9821  0.0870  2.0691

3

n1

42. S4 



4

N

a



1 1 1   1.0363 25 35 45

44. 0 ≤ RN ≤





1 x32

N



dx  

2 x12





N



2 N

< 0.001

N12 < 0.0005

0.0183

N > 2000

N ≥ 4,000,000

≤ 0.5713  0.0183  0.5896

n0

46.

RN ≤







ex2 dx  2ex2

N

2 e N2 e N2





N



2 e N2

< 0.001

48. Rn ≤





N





< 0.001



  2  N  arctan < 0.001 5 2 5

2 1 x dx  2 arctan x2  5 5 5

N



 

 N  arctan < 0.001118 2 5

> 2000

N > ln 2000 2

1.56968 < arctan

N > 2 ln 2000 15.2 N

N ≥ 16

5

 N5

> tan 1.56968

N ≥ 2004





50. (a)

10

1 xp1 dx  p x p  1

(b) f x 







10



1 .p > 1 p  110 p1

1 xp

R10p 



1 under the graph of f over the interval 10,  p ≤ Area n n11



(c) The horizontal asymptote is y  0. As n increases, the error decreases.

52.





 ln1  n    ln

n2

1

2

n2

  n2  1 n  1(n  1  ln  lnn  1  lnn  1  2 ln n 2 2 n n n2 n2

 



 ln 3  ln 1  2 ln 2  ln 4  ln 2  2 ln 3  ln 5  ln 3  2 ln 4  ln 6  ln 4  2 ln 5  ln 7  ln 5  2 ln 6  ln 8  ln 6  2 ln 7  ln 9  ln 7  2 ln 8  . . .  ln 2

Section 8.4

54.



1

 nn

2

n2

Let f x 



56. 3

1

1

n

n1

Comparisons of Series

0.95

p-series with p  0.95

1 . xx 2  1

Diverges by Theorem 8.11

f is positive, continuous, and decreasing for x ≥ 2.





2







1 dx  arcsec x xx 2  1

2



   2 3

Converges by Theorem 8.10

58.



 1.075

n

60.

n0

1

n1

Geometric series with r  1.075

2



 1  1 1 3  2  3 n n1 n n1 n





62.

Since these are both convergent p-series, the difference is convergent.

Diverges by Theorem 8.6

64.



 n



 lnn

n2

lim lnn  

n→ 

Diverges by Theorem 8.9



ln n 3 n2 n



Let f x 

ln x . x3 1  3 ln x < 0 for x ≥ 2. x4

f is positive, continuous, and decreasing for x ≥ 2 since fx 





2



ln x ln x dx   2 x3 2x





2



1 2





2



1 ln 2 1 dx    2 x3 8 4x





2



ln 2 1 (Use Integration by Parts.)  8 16

Converges by Theorem 8.10. See Exercise 14.

Section 8.4 2. (a)



2

Comparisons of Series 2

 n  2  2  . . .

S1  2

an

an =

n1

4



2 2 2    . . . S1  4 0.5 2  0.5 n1 n  0.5



3



2

4 4 4    . . . S1 3.3    n  0.5 1.5 2.5 n1



(b) The first series is a p-series. It diverges  p 

2 n − 0.5

1 2

4 n + 0.5

an =

an = 2 n

1

< 1.

n 2

4

6

8

10

Σ

4 n + 0.5

(c) The magnitude of the terms of the other two series are greater than the corresponding terms of the divergent p-series. Hence, the other two series diverge. (d) The larger the magnitude of the terms, the larger the magnitude of the terms of the sequence of partial sums.

Sn

20

Σ

16

2 n − 0.5

12 8 4

Σ

2 n

8

10

n 2

4

6

381

382

Chapter 8

Infinite Series

4.

1 1 < 3n2  2 3n2

6.

Therefore,

1



2

n1



1 2

diverges by comparison with the divergent p-series 





3n 3 < 4 5 4 n

n

10.

1

converges by comparison with the convergent p-series 

3 n . 4

1 1 > 3 n  1 4 n 4 4 Therefore,

14.

3n

4n 4n > n 1 3

Therefore,





1



3

diverges by comparison with the divergent p-series

n1

2 3n  5 2  3n 2  lim n n n→  n→  3  5 1 3

Therefore,



2 5

 3 . n

n1

5n  3 n2  2n  5 5n2  3n 20. lim  lim 2 5 n→  n→  n  2n  5 1 n Therefore,

n

2

n1

1

 n.

n1

n1

3 n2  4 3n 3  lim n→  n→  n2  4 1 n

18. lim



3 4

 n

2

n3

diverges by a limit comparison with the divergent harmonic series 

1

 n.

n3

1 nn2  1 n3 22. lim  lim 3 1 n→  n→  n  n 1 n3 Therefore,

5n  3  2n  5

diverges by a limit comparison with the divergent p-series 

n

4

Therefore,

converges by a limit comparison with the convergent geometric series



4n 1

 3 .



16. lim

3n

diverges by comparison with the divergent geometric series

1 1 . 4 n 4n1 

1

3 2 .

n1

 4 n  1



1

n



n1

1 1

3

n1

converges by comparison with the convergent geometric series

n

 n







1 n3 2

Therefore,

3n n 4 5 n0

3

<

n3  1



n1

1

 n.

n2

Therefore,

12.

1

n2

1  1 . 3 n1 n2

n0

for n ≥ 2.

 n  1

converges by comparison with the convergent p-series



n

Therefore,

 3n

8.

1

>

n  1



 nn

2

n1

1  1

converges by a limit comparison with the convergent p-series 

1

n.

n1

3

Section 8.4

24. lim

n→ 

n n  12n1 n  lim 1 n→  n  1 1 2n1

26. lim

n→ 

Therefore, 

 2 1

5

 n  n

n1

2

n1

4

diverges by a limit comparison with the divergent harmonic series

converges by a limit comparison with the convergent geometric series



n1

1

 n.

.

n1

n1

n→ 

5 n  n2  4 5n 5   lim n→  n  n2  4 2 1 n 

n

n1

28. lim

383

Therefore,

 n  12 

Comparisons of Series

1 n2 sec21 n 1 tan1 n  lim  lim sec2 1 n→  n→  1 n 1 n2 n



Therefore, 

 tan n 1

n1

diverges by a limit comparison with the divergent p-series 

1

 n.

n1

30.



 5  5 1

n

32.

1  2n  15

Converges

Converges Geometric series with r 



2

n4

n0

34.



 3n

 15

Limit comparison with



1

n

n1

2

 n  1  n  2  2  3  3  4  4  5  . . .  2 1

1

1

1

1

1

1

1

1

n1

Converges; telescoping series

36.



3

 nn  3

n1

Converges; telescoping series 

 n  n  3 1

1

n1

38. If j < k  1, then k  j > 1. The p-series with p  k  j converges and since lim

n→ 

Pn Qn  L > 0, 1 nkj

the series



Pn

 Qn converges by the limit comparison test. Similarly, if j ≥ k  1, then k  j ≤ 1 which implies that

n1

Pn Q n n1 



diverges by the limit comparison test.

40.

 1 1 1 1 1 1     . . . , 2 3 8 15 24 35 n 1 n2



which converges since the degree of the numerator is two less than the degree of the denominator.

42.



n

n1

3

n2 1

diverges since the degree of the numerator is only one less than the degree of the denominator.

384

Chapter 8

Infinite Series

n 1  lim  lim n   0 ln n n→ 1 n n→

44. lim

n→ 

Therefore, 

1

 ln n diverges.

n2

48. This is not correct. The beginning terms do not affect the convergence or divergence of a series.

46. See Theorem 8.13, page 585. One example is 

1

 n  1 diverges because lim n→

n2

1 n  1 1 1 n

In fact,  1 1 1  . . . diverges (harmonic) 1000 1001 n1000 n



and 

1



50.

and

diverges (p-series).

n2 n

1

 1 1 1 1   . . . , 200 210 220 n0 200  10n



52.

diverges

54. (a)

 1 1 1 . . .    2 converges (p-series). 4 9 n1 n



 1 1 1 1 1    . . . 3, 201 208 227 264 n1 200  n



converges



1

 2n  1

2

n1





1  4n  1

 4n

2

n1

converges since the degree of the numerator is two less than the degree of the denominator. (See Exercise 38.) (b)

(c)

n

5

10

20

50

100

Sn

1.1839

1.02087

1.2212

1.2287

1.2312



1

 2n  1

2

n3

(d)



2  S2 0.1226 8

1 2   S9 0.0277 2  2n  1  8 n10 



56. True 58. False. Let an  1 n, bn  1 n, cn  1 n2. Then, an ≤ bn  cn, but



c

converges.

n

n1

60. Since



a

n



a

converges, then

n1

n an



n1



a

2

n

1

62.

n

(b)

a

n1

2

converge, and hence so does

 n 1

2

2



1

n . 4

converges by Exercise 59.

64. (a)

a

n



1

n

3

and

b

n



1

 n . Since 2

an 1 n3 1  lim  lim  0 n→  bn n→  1 n2 n→  n lim

converges, so does

1

n . 3

and

1

n

2

lim

n

n→ 



1

 n and  b

n



1

 n. Since

an 1 n  lim n    lim n→  bn n→ 1 n

diverges, so does

1

 n.

and

1

n

Section 8.5

Section 8.5 2.

6.

1n1 6 6 6 6 . . .     n2 1 4 9 n1 

4.

1n1 10 10 10 . . .    n2n 2 8 n1 



S1  6, S2  4.5

S1  5, S2  3.75

Matches (d)

Matches (a)

1n1

385

Alternating Series





Alternating Series

1

 n  1!  e  0.3679

n1

(a)

(b)

n

1

2

3

4

5

Sn

1

0

0.5

0.3333

0.375

6 0.3667

7

8

9

10

0.3681

0.3679

0.3679

0.3679

2

0

11 0

(c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next series.

8.



1n1

 2n  1!  sin1  0.8415

n1

(a)

(b)

n

1

2

3

4

5

6

7

8

9

10

Sn

1

0.8333

0.8417

0.8415

0.8415

0.8415

0.8415

0.8415

0.8415

0.8415

(c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases.

2

0

11 0

10.

1n1 n n1 2n  1 



lim

n→ 

(d) The distance in part (c) is always less than the magnitude of the next series.

12.



1n

 lnn  1

n1

n 1  2n  1 2

an1 

Diverges by the nth Term Test. lim

n→ 

1 1 <  an lnn  2 lnn  1

1 0 lnn  1

Converges by Theorem 8.14

14.

1n1n 2 n1 n  1 



an1  lim

n→ 

n1 n < 2  an n  12  1 n 1

n 0 n2  1

Converges by Theorem 8.14

16.

1n1n2 2 n1 n  5 



lim

n→ 

n2 1 n2  5

Diverges by nth Term Test

386

18.

Chapter 8

Infinite Series

1n1 lnn  1 n1 n1 



lim



 n sin 1

n1

lnn  1 lnn  1  1 < for n ≥ 2 n  1  1 n1

an1 

n→ 

20.

 1n1 2n  1  2 n n1



Converges; (see Exercise 9)

lnn  1 1n  1  lim 0 n→  n1 1

Converges by Theorem 8.14

22.



1n n n1 

1

 n cos n  

n1

24.

1n



 2n  1!

n0

Converges; (see Exercise 9)

1 1  an < 2n  3! 2n  1!

an1  lim

n→ 

1 0 2n  1!

Converges by Theorem 8.14

26.

1n1 n 3 n n1 



28.

n12  lim n16   n→  n13 n→ 

 1n12en 21n1 n  en  e e2n  1 n1 n1 





Let f x 

lim

Diverges by the nth Term Test

fx 

2ex . Then 1

e2x

2e2x 1  e2x < 0 for x > 0. e2x  12

Thus, f x is decreasing for x > 0 which implies an1 < an. lim

n→ 

2en 2en 1  lim 2n  lim n  0 n→  e  1 n→ 2e

e2n

The series converges by Theorem 8.14.

30. S6 

41n1

6

 lnn  1  2.7067

n1

4

R6  S  S6 ≤ a7  ln 8  1.9236; 0.7831 ≤ S ≤ 4.6303 32. S6 

1n1n  0.1875 2n n1 6



7

R6  S  S6 ≤ a7  27  0.05469; 0.1328 ≤ S ≤ 0.2422 34.

1n n n0 2 n! 



36.

(a) By Theorem 8.15,

Rn

≤ aN1 

(a) By Theorem 8.15, 1 < 0.001. 2N1N  1!

This inequality is valid when N  4. (b) We may approximate the series by

1 1 1 1 1 n n!  1  2  8  48  348  0.607. 2 n0 4



1n n0 2n! 



n

(5 terms. Note that the sum begins with n  0.)

RN

≤ aN1 

1 < 0.001. 2N  2!

This inequality is valid when N  3. (b) We may approximate the series by

1n 1 1 1 1    0.540.  2n  ! 2 24 720 n0 3



(4 terms. Note that the sum begins with n  0.)

Section 8.5

38.

387

1n1 4n n n1 



(b) We may approximate the series by

(a) By Theorem 8.15,

RN

≤ aN1 

1n1 1 1 1     0.224. 4n n 4 32 192 n1 3

1 < 0.001. N  1



4N1

This inequality is valid when N  3.

40.

Alternating Series

1n1 n4 n1 



(3 terms)

42.



By Theorem 8.15, RN ≤ aN1 

1 < 0.001. N  14

1n1 n1 n  1 



The given series converges by the Alternating Series Test, but does not converge absolutely since the series 

This inequality is valid when N  5.

1

 n1

n1

diverges by the Integral Test. Therefore, the series converge conditionally.

44.

1n1 n n n1 

 

46. 

1

1

 n n   n

n1

n1

32

1n n2 n0 e 

 

n→ 

50.

1n1 n1.5 n1 

 

1

1

n

n2

n1

converges by a comparison to the convergent geometric series 

2n  3  2 Therefore, the series diverges by the n  10

nth Term Test.

e

n0



lim

which is a convergent p-series.

Therefore, the given series converges absolutely.

48.

1n12n  3 n  10 n1 

1.5

is a convergent p-series.

Therefore, the given series converge absolutely.

 e . n

1

n0

Therefore, the given series converges absolutely.

52.



1n

 n  4

n0

The given series converges by the Alternating Series Test, but 

1 4



n0 n

diverges by a limit comparison to the divergent p-series 

1

 n.

n1

Therefore, the given series converges conditionally.

54.



 1

n1

arctan n

n1

lim arctan n 

n→ 

  0 Therefore, the series diverges by 2

the nth Term Test.

388

56.

Chapter 8

Infinite Series

 1n1 sin2n  12  n n n1 n1 









58. S  Sn  Rn ≤ an1 (Theorem 8.15)

The given series converges by the Alternating Series Test, but







n1



 1 sin2n  12  n n1 n



is a divergent p-series. Therefore, the series converges conditionally.

60.

1 1 1 1n1  1     . . . (Alternating Harmonic Series) n 2 3 4 n1

62.

1n np n1



 



64.

 1 1n1 converges, but diverges n n1 n1 n 





If p  0, then lim

n→ 

1 1 np

and the series diverges. If p > 0, then lim

n→ 

1 1 1  0 and < p. np n  1p n

Therefore, the series converge by the Alternating Series Test.

66. (a)



xn n1 n



(b) When x  1, we have the convergent alternating series

1n . n n1 



converges absolutely (by comparison) for 1 < x < 1,

When x  1, we have the divergent harmonic series

since



xn < xn and n



1 . n

x

n

Therefore,

is a convergent geometric series for 1 < x < 1.



xn n1 n



converges conditionally for x  1.

68. True, equivalent to Theorem 8.16

70.



n

n1

2

3 5

converges by limit comparison to convergent p-series 1

n . 2

3 2

72. Converges by limit comparison to convergent geometric 1 . series 2n

74. Diverges by nth Term Test. lim an 

76. Converges (conditionally) by Alternating Series Test.

78. Diverges by comparison to Divergent Harmonic Series:

n→ 



ln n 1 > for n ≥ 3. n n

Section 8.6

Section 8.6 2.

The Ratio and Root Tests

389

The Ratio and Root Tests

2k  2! 2k  2! 1   2k! 2k2k  12k  2! 2k2k  1

4. Use the Principle of Mathematical Induction. When k  3, the formula is valid since

1 233!35   1. Assume that 1 6!

1 2n n!2n  32n  1  . . . 135 2n  5 2n! and show that 1 2n1n  1!2n  12n  1 .  . . . 135 2n  52n  3 2n  2! To do this, note that:

35.

1

1 . . 2n  52n  3  1

1

1 . . 2n  5

 2n  3



2n n!2n  32n  1 2n!

 2n  3



2n n!2n  1 2n!



2n 2n  1n!2n  12n  1 2n!2n  12n  2



2n1n  1!2n  12n  1 2n  2!

35.

1

2n  12n  2

 2n  12n  2

The formula is valid for all n ≥ 3.

6.



 4 n!  4  16 2  . . . 3

n

3

1

9

1

8.

n1

1n1 4 4 4   . . . (2n! 2 24 n1 



S1  2

3 S1  , S2  1.03 4

Matches (b)

Matches (c)

10.



 4e

n

4

n0

4 . . .  e

S1  4 Matches (e)

12. (a) Ratio Test: lim

n→ 

(b)

(c)

  an1 an

n  12  1 n  1! n2  2n  2  lim  lim 2 n→  n→  n 1 n2  1 n!



n

5

10

15

20

25

Sn

7.0917

7.1548

7.1548

7.1548

7.1548

n 1 1  0 < 1. Converges

(d) The sum is approximately 7.15485

10

(e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of the partial sums approaches the sum of the series. 0

11 0

390

14.

Chapter 8 

Infinite Series

3n

 n!

n0

16.

  

n1

an1 3  lim n→  n  1! an

lim

n→ 

 lim

n→ 

n!

 3n

3 0 n1





lim

n→ 

lim

n→ 

3n  1 3  2n 2



     

1n1n  2 nn  1 n1 



an  1 n  13 2n1  lim n→ an n3 2n  n→ 

2n

 n3n

Therefore, by the Ratio Test, the series diverges.

20.

 lim

  

an1 n  13n1  lim n→  an 2n1 n→ 

n

n1

n

 lim

n3

2

3

n1

Therefore, by the Ratio Test, the series converges.

18.



 n 2 

an1 

n  13 1  2n3 2

lim

n→ 

Therefore, by the Ratio Test, the series converges.

n3 n2 ≤  an n  1n  2 nn  1

n2 0 nn  1

Therefore, by Theorem 8.14, the series converges. Note: The Ratio Test is inconclusive since lim

n→ 

The series converges conditionally.

22.

1n13 2n n2 n1 



lim

n→ 

24.

  

an1 3 2n1  lim 2 n→  n  2n  1 an  lim

n→ 

n2

 3 2n

n1





n→ 

3n2 3  > 1 2n2  2n  1 2

nn

 n!

n1

lim

n→ 

  

an1 n  1  lim n→  an n  1!

n1

n!

 nn

n→ 

 lim

n  1n  1n n! n  1n!nn

 lim

n n 1

n→ 

n



lim

  

an1

n  1! 2  lim n→  3n  3! an  lim

n→ 

lim

n→ 

  

an1 24n4  lim n→  2n  3! an



3n!

 n!2



n  12 0 3n  33n  23n  1

Therefore, by the Ratio Test, the series converges.





2n  22n  1n5  n  15

n!2

n→ 

e > 1

1n 24n n0 2n  1!



 3n!

Therefore, by the Ratio Test, the series diverges.

30.

n5

 2n!

Therefore, by the Ratio Test, the series diverges.

n0



  

an1 2n  2!  lim n→  n  15 an  lim

28.

n→ 

2n! n5

lim

Therefore, by the Ratio Test, the series diverges.

26.





 

an1  1. an



2n  1! 24  lim 0 n→  2n  32n  2 24n

Therefore, by the Ratio Test, the series converges.

Section 8.6

32.



1n 2  4  6 . . . 2n

 2  5  8 . . . 3n  1

n1

lim

n→ 

  

an1 2  4 . . . 2n2n  2  lim n→  2  5 . . . 3n  13n  2 an



2

 5 . . . 3n  1 2  4 . . . 2n

Therefore, by the Ratio Test, the series converges. 2 24 24 Note: The first few terms of this series are    2 25 25 

lim

n→ 



  

an1 1  lim n→  n  14 an







4







p



n4 n  lim n→  n  1 1



np n  lim n→  n  1 1

1

n lim

n→ 

  

an1 1  lim n→  n  1p an

 n  1 2n

6. 8

. .

1

n

38.

 

3n



 2n  1

n 2n 1

n

n

n →

lim

n→ 

n a  n  lim

2n 2 n→  n  1

n→ 

 lim

 lim

n→ 



2n3n  1 n

3n



2n3n 1  32 3

e

n

n0

 

n an  lim lim

n→ 

n→ 

e1  1e n

n

Therefore, by the Root Test, the series converges.

42.

n1 3n n0 



44.

n→ 

 

n 3 1  lim n

n→ 

n

n→ 

n n  1

3

x y  lim x1

Let

n→ 

x ln y  lim  ln x  1 n→ 

 lim

1 lnx  1 x

 lim

lnx  1 1   0. x x1

n→ 

n→ 

Since ln y  0, y  e0  1, so lim

n→ 



n  1

3

1  . 3

Therefore, by the Root Test, the series converges.

5



1

 n  5 n

n1

n lim an  lim

3



27 8

Therefore, by the Root Test, the series diverges.

Therefore, by the Root Test, the series diverges. 

3n

n1

n a lim n  lim

40.

2n  2 2  3n  2 3

1

n1

n→ 

n→ 

p

n1



 lim

4

n1

(b)



1

n

34. (a)

36.

The Ratio and Root Tests

n1

This is the divergent harmonic series.

391

392

46.

Chapter 8 



 4

Infinite Series

n

48.



 2n

2

n1

n1

Since  4 < 1,this is convergent geometric series.

n 1

n 2n2  1 n2 1  lim  > 0 n→  2n2  1 1 n 2

lim

n→ 

This series diverges by limit comparison to the divergent harmonic series 

1

 n.

n1

50.



10

 3 n

52.

3

n1

lim

3 2

1 n



10 3

lim

n→ 

Therefore, the series converges by a limit comparison test with the p-series 

1

n

n1

54.

3 2

.

1n n2 n lnn



lim

n→ 

56.

lnn 2 n1 n 



1 lnn ≤ 3 2 n2 n

1 1 ≤  an n  1 lnn  1 n lnn

Therefore, the series converges by comparison with the p-series

1 0 n lnn



1n 3n n2n n1

1

n

Therefore, by the Alternating Series Test, the series converges.

58.

2n ln 22n ln 222n  lim  lim  n→ n→ 1 8n 8  

4n2

Therefore, the series diverges by the nth Term Test for Divergence.



an1 

2n 1

2

n1

10 3n3 2

n→ 



 4n

n1

3 2

.





lim

n→ 

  

an1 3n1  lim n→  n  12n1 an





n2n 3n 3  lim  n→  2n  1 3n 2

Therefore, by the Ratio Test, the series diverges. 60.





3

n1

lim

n→ 

57. 18n

. . 2n  1 2n  1n!

  

an1 3  5  7 . . . 2n  12n  3  lim n→  an 18n12n  12n  1n!

3



18n 2n  1n! 2n  32n  1 1 2   lim   5  7 . . . 2n  1 n→ 182n  12n  1 18 9

Therefore, by the Ratio Test, the series converge.

64. (a) and (b) are the same.

62. (b) and (c) 

 n  14

n0

3

n





 n 4 3



n1

n1

12

34  334

1n

 n  12

n2 2

4

34

3

. . .

n1



1 1 1   . . . 2 2  22 3  23

1n1 1 1 1    . . . n2n 2 2  22 3  23 n1 



Section 8.7

66. Replace n with n  2. 

68.

3k





3k 2k k!

 1  3  5 . . . 2k  1   2k!2k  1

k0

 2n2 2n  n2 n  2! n0 n!



Taylor Polynomials and Approximations

k0







6k k!

 2k  1!

k0

0.40967 (See Exercise 3 and use 10 terms, k  9.)

70. See Theorem 8.18.

72. One example is



 100  n. 1

n1

74. Assume that









lim an1an  L > 1 or that lim an1an  .

n→ 

n→ 





Then there exists N > 0 such that an1an > 1 for all n > N. Therefore,

an1 > an,

n > N ⇒ lim an  0 ⇒ n→ 

a

n

diverges

76. The differentiation test states that if 

U

n

n1

is an infinite series with real terms and f x is a real function such that f 1n  Un for all positive integers n and d 2 fdx 2 exists at x  0, then 

U

n

n1

converges absolutely if f 0  f0  0 and diverges otherwise. Below are some examples. Convergent Series 1

Divergent Series 1

 n , f x  x

 n, f x  x

1  cos n, f x  1  cos x

 sin n, f x  sin x

3

3

1

Section 8.7

1

Taylor Polynomials and Approximations 4. y  e12 13 x  13  x  1  1

2. y  18 x 4  12 x 2  1

Cubic Matches (b)

y-axis symmetry Three relative extrema Matches (c)

6. f x 

4 3 x

 4x13

4 fx   x43 3

f 8  2 f8  

P1x  f 8  f8x  8





1 2  x  8 12 P1x  

1 8 x 12 3

8

1 12

(8, 2) −4

14

−4

393

394

Chapter 8

Infinite Series

8. f x  tan x

1 4



f

fx  sec2 x

f



 



12 x P1x  2x  1 

− 2

2 4

P1  f  f 4 4



3

4

x 4

−3





2

f

 4   2

fx  sec x tan x

f

 4   2

f x  sec3 x  sec x tan2 x

f

10. f x  sec x

P2x  f

2

4

 4   3 2

−3

 4   f 4 x  4   f  24 x  4  

P2x  2  2 x 

3  2 x  4 2 4







3 0

2

2

0.585

0.685

4

0.885

0.985

1.785

f x

1.8270 1.1995

1.2913

1.4142

1.5791

1.8088

4.7043

P2x

15.5414

1.2936

1.4142

1.5761

1.7810

4.9475

2.15

x

1.2160

12. f x  x 2ex, f 0  0 (a)

fx  x 2  2xex f x  

f0  0 ex

f 0  2

f x  x 2  6x  6ex

f 0  6

x2

 4x  2

f 4x  x 2  8x  12ex

P4x  x 2  x3 

14.

12x 4 x4  x 2  x3  4! 2

f x  ex

f 0  1

fx 

ex

f0  1

f x 

ex

f 0  1

f x 

ex

f 0  1

f 4x

ex



f 5x  ex

P2

f −3

3

P3 −1

(c)

6x3  x 2  x3 3!

2

P4

f 40  12

2x 2 P2x   x2 2! P3x  x 2 

(b)

f 0  2  P2 0 f 0  6  P3 0 f 40  12  P440

(d) f n0  Pnn0

f 40  1 f 50  1

P5x  f 0  f0x 

f0 2 f 0 3 f 40 4 f 50 5 x 2 x3 x4 x5 x  x  x  x 1x    2! 3! 4! 5! 2 6 24 120

Section 8.7 16.

f x  e3x

f 0  1

fx 

3e3x

f0  3

f x 

9e3x

f 0  9

Taylor Polynomials and Approximations

f x  27e3x f 0  27 f 4x  81e3x f 40  81 P4x  1  3x 

18.

9 9 2 27 3 81 4 9 27 4 x  x  x  1  3x  x 2  x3  x 2! 3! 4! 2 2 8

f x  sin x

f 0  0

20.

f x  x 2ex

f 0  0

f0 

fx 

2xex

f x   2 sin x

f 0  0

f x 

2ex

f x   3 cos x

f 0   3

f x  6ex  6xex  x 2ex

fx  cos x

P3x  0  x 





4xex

f x 

x x11   1  x  11 x1 x1

f 0  0 f0  1

f x  2x  13

f 0  2

fx  6x  14

f0  6

 24x  1

f 40  24

5

2 6 24 P4x  0  1x  x2  x3  x4  x  x2  x3  x4 2 6 24 24. f x  tan x

f 0  0

fx  sec2 x

f0  1

f x  2

sec2

x tan x

fx  4

sec2

tan2

x

f 0  0

x2

sec4

f0  2

x

2 1 P3x  0  1x  0  x3  x  x3 6 3

26.

1 2

f x  2x2

f 2 

fx  4x3

f2  

f x  12x4

f 2 

1 2

3 4

3 2 15 f 4x  240x6 f 4x  4 1 1 3 1 5 P4x   x  2  x  22  x  23  x  24 2 2 8 4 32 fx  48x5

fx  

f 0  2 f 0  6 f 40  12

2 2 6 3 12 4 x  x  x 2! 3! 4! 1  x 2  x3  x 4 2

fx  x  12

f 4x



x2ex

f 4x  12ex  8xex  x 2ex

0 2  3 3 3 3 x  x  x x 2! 3! 6

P4x  0  0x 

22.

f0  0

x 2ex

395

396

Chapter 8

Infinite Series

28. f x  x13

f 8  2

1 fx  x23 3

f8 

2 f x   x53 9

f 8  

fx 

10 83 x 27

P3x  2 

32.

f x 

f8 

30. f x  x 2 cos x fx  cos x  x 2 sin x

1 12

x2

P2x   2  2 x   

1

cos x f    2  2

 2  2 x  2 2

5

 28  3456

1 1 5 x  8  x  82  x  83 12 288 20,736

1 x2  1

2

P4

2x fx  2 x  12

f −3

3

Q4 P2

23x 2  1 f x  2 x  13

−2

24x1  x 2 x 2  14

fx  f 4x 

f   2

f x  2 cos x  4x sin x 

1 144

10 27

f     2

245x 4  10x 2  1 x 2  15 (b) n  4, c  0

(a) n  2, c  0 P2x  1  0x 

2 2 x  1  x2 2!

P4x  1  0x 

2 2 0 24 4 x  x3  x  1  x2  x 4 2! 3! 4!

(c) n  4, c  1 Q4x 

34.

1 1 1 1 12 0 3 1 1   x  1  x  12  x  13  x  14   x  1  x  12  x  14 2 2 2! 3! 4! 2 2 4 8

 

f x  ln x P1x  x  1 P4x  x  1  12 x  12  13 x  13  14 x  14 (a)

x

1.00

1.25

1.50

1.75

2.00

ln x

0.0000

0.2231

0.4055

0.5596

0.6931

P1x

0.0000

0.2500

0.5000

0.7500

1.0000

P4x

0.0000

0.2230

0.4010

0.5303

0.5833

(b)

2

P1 f −1

5

P4 −2

(c) As the distance increases, the accuracy decreases. 36. (a)

f x  arctan x P3x  x 

(b)

y

(c) π 2

x3 3

π 4

x

0.75

0.50

0.25

0

0.25

0.50

0.75

f x

0.6435

0.4636

0.2450

0

0.2450

0.4636

0.6435

P3x

0.6094

0.4583

0.2448

0

0.2448

0.4583

0.6094

x

−1

f

P3

−π 4 −π 2

1 2

1

Section 8.7

40. f x  4xex 4

38. f x  arctan x y

P7

Taylor Polynomials and Approximations 2

P5 P1

y

2 y = 4xe(−x /4)

4

2

2

1

f (x) = arctan x x

−3 −2

1

x

−4

3

4

−2

P9 P13

P11 P3

f x  x 2ex x 2  x3 

42. f

1 4 x 2

15 0.0328 f x  x 2 cos x  2  2 x   

44. f



2

2 x  2 2



78  6.7954

46. f x  ex; f 6x  ex ⇒ Max on 0, 1 is e1. R5x ≤

e1 6 1 0.00378  3.78 103 6!

48. f x  arctan x; f 4x 

24xx 2  1 1  x 24

50.

f x  ex f n1x  ex

⇒Max on 0, 0.4 is f 40.4 22.3672.

Max on 0, 0.6 is e0.6 1.8221.

22.3672 0.44 0.0239 R3x ≤ 4!

Rn ≤

1.8221 0.6n1 < 0.001 n  1!

By trial and error, n  5.

52.

f x  cos x2

54.

gx  cos x  1 

x2 x 4 x6 . . .    2! 4! 6!

f x  g x 2

f 0.6  1 

2x 4 4x8 6x12 . . .    2! 4! 6! 2 4 6 0.64  0.68  0.612  . . . 2! 4! 6!

Since this is an alternating series, Rn ≤ an1 

R3x 

 

2n 0.64n < 0.0001. 2n!

By trial and error, n  4. Using 4 terms f 0.6 0.4257.

x

x3 3!

 

x4 sin z 4 x ≤ < 0.001 4! 4!

x 4 < 0.024

 x 22  x 24  x 26 . . .    1 2! 4! 6! 1

f x  sin x x 

< 0.3936

0.3936 < x < 0.3936

397

398

Chapter 8

Infinite Series

56. f c  P2c, fc  P2c, and f  c  P2 c

58. See Theorem 8.19, page 611.

60.

62. (a) P5x  x 

y 10

P2

f P1

8

P5x  1 

6 4 2 −20

10

−2

x2 x 4  2! 4!

This is the Maclaurin polynomial of degree 4 for gx  cos x. x6 x2 x 4 (b) Q6x  1    for cos x 2 4! 6!

x

P3

x5 x3  for f x  sin x 3! 5!

20

−4

x5 x3   P5x 3! 5! x3 x4 x2 (c) Rx  1  x    2! 3! 4! x3 x2 Rx  1  x   2! 3! Q6x  x 

The first four terms are the same! 64. Let f be an odd function and Pn be the nth Maclaurin polynomial for f. Since f is odd, f is even: fx  lim

h→0

f x  h  f x f x  h  f x f x  h  f x  lim  lim  fx. h→0 h→0 h h h

Similarly, f is odd, f is even, etc. Therefore, f, f , f 4, etc. are all odd functions, which implies that f 0  f 0  . . .  0. Hence, in the formula Pnx  f 0  f0x 

f 0x2 . . .  all the coefficients of the even power of x are zero. 2!

f ic . 66. Let Pn x  a0  a1x  c  a2x  c2  . . .  an x  cn where ai  i! Pnc  a0  f c For 1 ≤ k ≤ n, Pnkc  an k! 

Section 8.8

f k!ck!  f k

Power Series 4. Centered at 

2. Centered at 0

6.



 2x

n

n0

L  lim

n→ 



kc.

8.

   

un  1 2xn1  lim 2x n→  un 2xn

2x < 1 ⇒ R

1 2



1n xn 2n n0 



L  lim

n→ 



1 x 2



  

un1 1n1xn1  lim n→  un 2n1

1 x < 1⇒R2 2



2n

1n xn



Section 8.8

10.

2n!x2n n! n0 



L  lim

n→ 

   

un  1 2n  2 n  1!  lim n→  un 2n!x2nn!  lim

n→ 

!x2n2

2n  22n  1 n  1

x2

The series only converges at x  0. R  0.

14.



 1

n0

lim

n→ 

n1



 k

12.





   

un  1 1 n  2x  lim n→  un 1nn  1xn  lim

n→ 



n  2x  x n1

Interval: 1 < x < 1

When x  1, the series



 1

n

Since the series is geometric, it converges only if xk < 1 or k < x < k.

 





3xn

 2n!

16. n1

n0



lim

n→ 

   

un1 3xn1  lim n→  2n  1! un  lim

n→ 

n  1 diverges.



  n  1 diverges.

n0

Therefore, the interval of convergence is 1 < x < 1.

18.

1n xn



 n  1n  2

n0

lim

n→ 

  

un1 1n1xn1  lim n→  n  2n  3 un

Interval: 1 < x < 1 When x  1, the alternating series











n  1n  2 n  1x  lim  x n→  1n xn n3 1n

 n  1n  2 converges.

n0

When x  1, the series





1

1

 n  1n  2 converges by limit comparison to  n .

n0

n1

2

Therefore, the interval of convergence is 1 ≤ x ≤ 1.

20.

1n n!x  4n 3n n0 



lim

n→ 

 

3x 0 2n  22n  1

n0

When x  1, the series

2n!

3xn

Therefore, the interval of convergence is   < x <

n1

  

un1 1n1n  1!x  4n1  lim n→  un 3n1

R0

Center: x  4 Therefore, the series converges only for x  4.

399

n0

n  1xn n2

x

Power Series

3n

1n n!x  4n

   lim

n→ 



n  1x  4  3

.

400

22.

Chapter 8 

Infinite Series

x  2n1

 n  14

n1

n0

lim

n→ 

  

un1 x  2n2  lim n2 n→ un  n  24

n  14n1

x  2n1

R4

   lim

n→ 



1 x  2n  1  x  2 4n  2 4

Center: x  2 Interval: 4 < x  2 < 4 or 2 < x < 6 When x  2, the alternating series



1n1

 n  1 converges.

n0

When x  6, the series



1

 n  1 diverges.

n0

Therefore, the interval of convergence is 2 ≤ x < 6.

24.

1n1x  cn ncn n1 



lim

n→ 

  

un1 1n2x  cn1  lim n→  un n  1cn1

ncn

1n1x  cn

Rc

   lim

n→ 



nx  c 1  xc cn  1 c





Center: x  c Interval: c < x  c < c or 0 < x < 2c When x  0, the p-series

1 diverges. n1 n 



When x  2c, the alternating series

26.

1n1 converges. Therefore, the interval of convergence is 0 < x ≤ 2c. n n1 



1nx2n1 n0 2n  1 



lim

n→ 

  

un1 1n1x2n3  lim n→  un 2n  3

2n  1

1nx2n1

R1

   lim

n→ 



2n  1 2 x  x2 2n  3

Interval: 1 < x < 1

1n



When x  1,

 2n  1 converges.

n0

When x  1,

1n1 converges. n0 2n  1 



Therefore, the interval of convergence is 1 ≤ x ≤ 1.

28.

1n x 2n n! n0 



lim

n→ 

30.

    

un1 1  lim n→  un n  1!

n1x 2n2

 lim

n →

x2 0 n1

n!

1n x 2n

n1



Therefore, the interval of convergence is   < x <



n!xn

 2n! lim

n→ 

   

un1 n  1!xn1  lim n→  un 2n  2!  lim

n→ 

.



2n! n!xn





n  1x 0 2n  22n  1

Therefore, the interval of convergence is   < x <

.

Section 8.8

32.



2

4 6.

. . 2n

 3 5 7 . . . 2n  1 x

n1

lim

n→ 

2n1

Power Series

401



  

un1 2 4 . . . 2n2n  2x 2n3  lim n→ un  3 5 7 . . . 2n  12n  3

3

2

5 . . . 2n  1 4 . . . 2nx 2n1

R1

   lim

n→ 



2n  2x 2  x 2 2n  3

When x  ± 1, the series diverges by comparing it to 

1

 2n  1

n1

which diverges. Therefore, the interval of convergence is 1 < x < 1.

34.

n!x  cn



 1 3 5 . . . 2n  1

n1

lim

n→ 

  

un1  lim n→  1 un

 



n  1!x  cn1 1 3 5 . . . 2n  1 n  1x  c 1  lim  x  c . . 2n  12n  1 n→  n!x  c 2n  1 2

3 5.

R2

Interval: 2 < x  c < 2 or c  2 < x < c  2 The series diverges at the endpoints. Therefore, the interval of convergence is c  2 < x < c  2.

1 3n! c5. .2 .2nc 1  1 3 5 .n!.2. 2n  1  1 23 45 .6. . 2n2n 1 > 1

n

36. (a) f x 

1n1x  5n , 0 < x ≤ 10 n5n n1 





(b) fx 

1n1n  1x  5n2 , 0 < x < 10 5n n2

(c) f  x 



f x dx 

40. g2 



1n1x  2n ,1 < x ≤ 3 n n1 



38. (a) f x 

1n1x  5n1 , 0 < x < 10 5n n1



(c) f x 

. . .





(b) fx 

(d)

2

 3 2

n

1n1x  5n1 , 0 ≤ x ≤ 10 nn  15n n1 



1

n0

2 4 . . .   3 9



 1

x  2n1, 1 < x < 3

n1

n1

(d)



 1

n1



f x dx 

42. g2 

n  1x  2n2, 1 < x < 3

n2



1n1x  2n1 ,1 ≤ x ≤ 3 nn  1 n1 



  3 alternating. Matches (d) 2

n

n0

S1  1, S2  1.67. Matches (a) 44. The set of all values of x for which the power series converges is the interval of convergence. If the power series converges for all x, then the radius of convergence is R  . If the power series converges at only c, then R  0. Otherwise, according to Theorem 8.20, there exists a real number R > 0 (radius of convergence) such that the series converges absolutely for x  c < R and diverges for x  c > R.









46. You differentiate and integrate the power series term by term. The radius of convergence remains the same. However, the interval of convergence might change. 

48. (a) f x 

xn

 n!,   < x < 

(See Exercise 11)

n0

(b) fx 









xn

x2

x3

x4

 n!  1  x  2!  3!  4!  . . .

n1

  xn nx n1 x n1   f x  n!  n  1  ! n1 n1 n0 n!



(c) f x 

f 0  1 (d) f x  ex

402

Chapter 8

Infinite Series 



y1

50.

n1

22n n!

1n 4nx 4n1 7 11 . . . 4n  1



2

y 

2n n!

n1



2

y 

2n

n1

y  x 2y  x 2 

3

 1n 4n4n  1 x 4n2 1n 4nx 4n2  x 2  2n . . . . . . 4n  5 n! 3 7 11 4n  1 n2 2 n! 3 7 11





2

2n n!

n2







n1

52. J1x  x (a) lim

k→ 

22n2

 1n 4nx 4n2 1n x 4n2   x2 2n . . . 4n  5 n1 2 n! 3 7 11 . . . 4n  1 3 7 11



 1n1 4n  1x4n2 1n1 x 4n2 22n  1 0  2n . . . . . . n  1! 3 7 11 4n  1 n1 2 n! 3 7 11 4n  1 22n  1



 1k x 2k 1k x 2k1  k  1! k0 22k1k!k  1!



2

k0

1n x 4n 3 7 11 . . . 4n  1



2k1k!

  

uk1 1k1 x 2k3  lim 2k3 k→  2 uk k  1!k  2!

22k1k!k  1!

1k x 2k1

Therefore, the interval of convergence is   < x < (b) J1x 



1

2

k

k0

k→ 



1x 2 0 22 k  2k  1

x2k1

k  1!

2k1k!

J1x 

1k 2k  1x2k 2k1k!k  1! k0 2

J1x 

1k 2k  12kx 2k1 22k1k!k  1! k1



 



x 2J1  xJ1  x 2  1J1 

 1k2k  1x 2k1 1k 2k  12kx 2k1  2k1 2 k!k  1! 22k1k!k  1! k1 k0 









2

k0



 1k2k  1x 2k1 1k2k  12kx 2k1 x   2k1k!k  1! 2 2 22k1k!k  1! k1 k1



  1kx2k1 1kx2k3 x   2k1k!k  1! 2 k1 22k1k!k  1! 2 k0







 1kx 2k1 2k  12k  2k  1  1 1kx 2k3  2k1 2k1 2 k!k  1! k!k  1! k1 k0 2



 1kx2k14kk  1 1kx2k3  2k1 2k1 2 k!k  1! k!k  1! k1 k0 2



2





















 1kx 2k1 1k x2k3  k  1!k! k0 22k1k!k  1!

2k1



 1k1x 2k3 1kx 2k3  2k1 k!k  1! k0 22k1k!k  1!

2

k0



1kx 2k3 1  1 0 22k1k!k  1! k0 



x 1 3 1 5 1  x  x  x7 2 16 384 18,432

(d)

J0x 

 1k1x 2k1 1k12k  1x 2k1  2k2 k  1!k  1! k0 22k1k!k  1! k0 2 



J1x  

4

6

−4





k1

−6

 1kx 2k3 1k x 2k1  2k1 k  1! k0 2 k!k  1!

2k1k!





(c) P7x 

.

   lim



 1k1x 2k1 1kx 2k1  k!k  1! k0 22k1k!k  1! k0 2 



2k1

Note: J0x  J1x



Section 8.9

54. f x 



 1

n

n0

x 2n1  sin x 2n  1!

Representation of Functions by Power Series 

56. f x 

 1

n

n0

(See Exercise 47.)

 2

−



−2.5

2.5

−2



x 2n1  arctan x, 1 ≤ x ≤ 1 2n  1

(See Exercise 38 in Section 8.7.)

2

58.

403





x 2n1

x 2n1

 2n  1!   2n  1!

n0

 2

60. True; if

n1



a

Replace n with n  1.

n

xn

n0

converges for x  2, then we know that it must converge on 2, 2. 62. True



1

    1

f x dx 

0

0

Section 8.9 2. (a) f x  



an xn dx 

n0



an xn1 n0 n  1



0

n0

n

Representation of Functions by Power Series

4 4 5 a   5  x 1  x 5 1  r 

  n a 1 1

 

4 x n0 5 5

n





4xn n1 n0 5

4. (a)

1 a 1   1  x 1  x 1  r 





 x

n0

This series converges on 5, 5. 4x3 4 4 4 2  x x  . . . 5 25 125 625 (b) 5  x ) 4 4 4 x 5 4 x 5 4 4 x  x2 5 25 4 2 x 25 4 2 4x3 x  25 125 4x3 125 4x3 4x 4  125 625



n





 1

n

xn

n0

This series converges on 1, 1. 1  x  x 2  x3  . . . (b) 1  x ) 1 1x x x  x 2 x2 x 2  x3 x3 x3  x 4



404

Chapter 8

Infinite Series

6. Writing f x in the form

a , we have 1r

8. Writing f x in the form a 1  r, we have 3 3 1 a    2x  1 3  2x  2 1  2 3x  2 1  r

4 4 7 a 4    . 5  x 7  x  2 1  1 7x  2 1  r

which implies that a  1 and r  2 3x  2. Therefore, the power series for f x is given by

Therefore, the power series for f x is given by   4 1 4 ar n  x  2  5  x n0 n0 7 7

 







n

n   2 3  ar n   x  2 , 2x  1 n0 3 n0

4x  2 . 7n1 n0 



x  2 < 7

or 5 < x < 9

x  2

10. Writing f x in the form a 1  r, we have

  5 x 2

n

2nx  2n , 3n n0

<

3 1 7 or < x < . 2 2 2





4 4 1 2 a    3x  2 8  3x  2 1  3 8x  2 1  r

which implies that a  1 5 and r  2 5x. Therefore, the power series for f x is given by









which implies that a  1 2 and r  3 8x  2. Therefore, the power series for f x is given by   1 3 4  arn   x  2 3x  2 n0 2 8 n0

2n xn

5

n0





n1 ,

5 5 5 x < or  < x < . 2 2 2





x  2 14.

<



2 8 14 or  < x < . 3 3 3

Writing f x as a sum of two geometric series, we have

   2 x 1

n





 22x

n



n0





n0

1 31n 1 1  2n1 xn, x < or  < x < . 2n1 2 2 2



16. First finding the power series for 4 4  x, we have  1 1  x  1  1 4x n0 4





n



1n xn 4n n0 



Now replace x with x2.  1n x 2n 4  . 4  x2 n0 4n





The interval of convergence is x 2 < 4 or 2 < x < 2 since lim

n→ 

18. hx 



un1 1 x  lim n→  un 4n1

n1 2n2

4n

 1n x 2n

 



x2 x2  . 4 4

x 1 1 1 1 n    1nxn  x x  1 21  x 21  x 2n0 2n0



2





1 1

1n  1xn  0  2x  0x2  2x3  0x4  2x5  . . . 2n0 2



 1 2x2n1   x2n1, 1 < x < 1 2n0 n0

 





n

1  3n x  2n , 2 n0 8n

4x  7 3 2 3 2 3 2 2       2x2  3x  2 x  2 2x  1 2  x 1  2x 1  1 2x 1  2x  3 4x  7  2x 2  3x  2 n0 2



12. Writing f x in the form a 1  r, we have

1 1 1 5 a    2x  5 5  2x 1  2 5x 1  r

  1 1  ar n   2x  5 n0 5 n0





n

Section 8.9







 1 x

n n

n0





 1 nx   1 nn  1x

d dx

n

n1

n1

n

n2



n2

22. By integrating, we have





d2 1 2  . Therefore, dx 2 x  1 x  13

20. By taking the second derivative, we have d2 2  2 3 x  1 dx

Representation of Functions by Power Series

1 dx  ln1  x  C1 and 1x





 1 n  2n  1 x , 1 < x < 1. n

n

n0

1 dx  ln1  x  C2. 1x

f x  ln1  x 2  ln1  x  ln1  x. Therefore, ln1  x 2  

  

1 dx  1x 



1 dx 1x



1n x n dx 

n0

  





x n dx  C1 

n0

 x n1 1n x n1  C2  n1 n0 n0 n  1 









 2x 2n2  1x 2n2

1n  1 xn1 C C n1 n1 n0 n0 2n  2 n0 



C





To solve for C, let x  0 and conclude that C  0. Therefore, ln1  x2  



x2n2

 n  1, 1 < x < 1

n0

24.

x2

 2x  2x 1n x 2n (See Exercise 23.) 1 n0







 1 2x n

2n1

n0

Since

2x d lnx 2  1  2 , we have dx x 1

lnx 2  1 

  



1n 2x 2n1 dx  C 

n0

1n x 2n2 , 1 ≤ x ≤ 1. n1 n0 



To solve for C, let x  0 and conclude that C  0. Therefore, lnx 2  1 

26. Since



1n x 2n2 , 1 ≤ x ≤ 1. n1 n0 



1 1 dx  arctan2x, we can use the result of Exercise 25 to obtain 4x 2  1 2



arctan2x  2

 

1 dx  2 4x 2  1





n0

To solve for C, let x  0 and conclude that C  0. Therefore,

1n 4nx 2n1 1 1 , < x ≤ . 2n  1 2 2 n0

arctan2x  2





1n 4n x 2n1 1 1 , < x ≤ . 2n  1 2 2 n0

1n 4n x 2n dx  C  2





405

406

Chapter 8

28. x 

Infinite Series

x 2 x3 x 4   ≤ lnx  1 2 3 4

5

S5 f

x 2 x3 x 4 x5 ≤ x    2 3 4 5

−4

8

S4 −3

x x

2

x3

x4

x   2 3 4

lnx  1 x

x 2 x3 x 4 x5    2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.18227

0.33493

0.45960

0.54827

0.58333

0.0

0.18232

0.33647

0.47000

0.58779

0.69315

0.0

0.18233

0.33698

0.47515

0.61380

0.78333



 1

In Exercise 35–38, arctan x 

n

n0

30. gx  x 

x 2n1 . 2n  1

x3 , cubic with 3 zeros. 3

32. gx  x 

Matches (d) 

 1

n0

arctan x 2 





34. The approximations of degree 3, 7, 11, . . . 4n  1, n  1, 2, . . . have relative extrema.

Matches (b)

In Exercises 36 and 38, arctan x 

36.

x3 x5 x7   , 3 5 7



n

x 4n2 2n  1



n

x 4n3  C, C  0 4n  32n  1

 1

n0

3 4

arctan x 2 dx 

0

 1

3 44n3 4n  32n  1



34n3 4n  32n  144n3



n

n0





1n

n0



x2n1 . 2n  1

 1

n0

arctan x 2 dx 

n

27 2187 177,147   192 344,064 230,686,720

Since 177,147 230,686,720 < 0.001, we can approximate the series by its first two terms: 0.13427

x 2 arctan x 

38.







 1

n

x 2n3 2n  1

 1



n

x 2n4 2n  42n  1



1 1 1   . . . 2n  42n  122n4 64 1152

n0

x 2 arctan x dx 

n0

1 2

x 2 arctan x dx 

0

Since

 1

n0

n

1 < 0.001, we can approximate the series by its first term: 1152



1 2

0

x 2 arctan x dx  0.015625.

Section 8.9

In Exercises 40 and 42,



n1





n1

42. (a)





407

 1 x n, x 1.  1  x n0

40. Replace n with n  1.

 nx

Representation of Functions by Power Series

 n  1x

n

(b)

n0

1  2 n 3 n1 3

 

n



9 1  n 10 n1 10

  

n

2  2 n 9 n1 3

 

n1





9 9  n 100 n1 10



9 100

  

2 1 2 9 1  2 32

n1

1

 1  9 102  9

46. Integrate the series and multiply by 1.

44. Replace x with x2. 48. (a) From Exercise 47, we have



1 120 1 120  arctan  arctan  arctan  119 239 119 239

arctan

 arctan



  1 239 28,561   arctan   arctan 1  1120 119  120 1191 239

28,561  4





10 1 1 21 5 5 1  arctan  arctan  arctan  arctan  arctan 5 5 5 24 12 1  1 52

(b) 2 arctan





4 arctan

120 1 1 5 5 25 12 1  2 arctan  2 arctan  arctan  arctan  arctan  arctan 5 5 5 12 12 119 1  5 122

4 arctan

1 1 120 1   arctan  arctan  arctan  (see part (a).) 5 239 119 239 4

1 1 1 2  1 3 5 6   arctan  arctan  arctan  2 3 1  1 21 3 5 6 4



50. (a) arctan



(b)   4 arctan

1 1  arctan 2 3

12  1 23 

3

4





 



1 25 1 27 1 1 33 1 35 1 37  4    5 7 3 3 5 7







 40.4635  40.3217  3.14

54. From Example 5, we have arctan x 

52. From Exercise 51, we have 

 1

n1

n1





13  1  ln 34  0.2877.

56. From Exercise 54, we have 

 1

n1

n1

 1 1  1n 2n1 32n12n  1 n0 3 2n  1







 1

n0

 arctan

n

n0

 1n11 3n 1  3n n n1 n

 ln



 1

n

1 32n1 2n  1

1  0.3218. 3

 1

n0

n

1 1 1n  2n  1 n0 2n  1 



 arctan 1 

2n1

  0.7854 4

x 2n1 . 2n  1

408

Chapter 8

Infinite Series

58. From Example 5, we have arctan x 





1n

n0

1n



x 2n1 . 2n  1

3 1n  2n 2n  1 3



 3 2n  1    3 

n0

n

n0

1n 13 2n1 2n  1 n0 



 3

 3 arctan

6   2 3

 3

Section 8.10

1 3

Taylor and Maclaurin Series

2. For c  0, we have f x  e3x f nx  3ne 3x ⇒ f n0  3n e 3x  1  3x 

 3xn 9x2 27x3 . . .    2! 3! n0 n!



4. For c  4, we have: f x  sin x

f

4  

2

fx  cos x

f

4  

2

f x  sin x

f

4    22

f x  cos x

f

4    22

f 4

4  

f 4x  sin x

2 2 



2

2

and so on. Therefore we have: sin x   

f n4 x  4 n n! n0 



2

2 2

2



1  x  4  

 1 

n0

x  4 2 x  4 3 x  4 4 . . .    2! 3! 4!





x  4 n1 1 n  1!

nn12

6. For c  1, we have: f x  ex f nx  ex ⇒ f n1  e ex 

 x  1n f n1x  1n x  12 x  13 x  14 . . .  e 1  x  1     e n! 2! 3! 4! n! n0 n0 







Section 8.10 8. For c  0, we have: f x  lnx 2  1

f 0  0

fx 

2x x2  1

f0  0

f x 

2  2x 2 x2  12

f 0  2

f x 

4xx 2  3 x2  13

f 0  0

f 4x 

12x 4  6x 2  1 x 2  14

f 40  12

f 5x 

48xx 4  10x 2  5 x 2  15

f 50  0

f 6x 

2405x6  15x 4  15x 2  1 x 2  16

f 60  240

and so on. Therefore, we have: lnx 2  1 

f n0xn 2x 2 0x3 12x 4 0x5 240x6 . . .       0  0x  n! 2! 3! 4! 5! 6! n0 



 x2 

 1n x 2n2 x 4 x6 . . .    2 3 n1 n0



10. For c  0, we have; f x  tanx

f 0  0

fx  sec2x

f0  1

f x  2 sec2xtanx

f 0  0

f x  2 sec4x  2 sec2xtan2x

f 0  2

f 4x  8 sec4xtanx  sec2xtan3x

f 40  0

f 5x  8 2 sec6x  11 sec4xtan2x  2 sec2xtan4x

f 50  16

tanx 

f n0xn 2x3 16x5 . . . x3 2 x    x   x5  . . . n! 3! 5! 3 15 n0 



12. The Maclaurin Series for f x  e2x is

2xn . n! n0 



f n1x  2n1e2x. Hence, by Taylor’s Theorem,





0 ≤ Rnx  Since lim

n→ 





    



f n1z n1 2n1e2z n1 x  x . n  1! n  1!

2n1xn1 2xn1  lim  0, it follows that Rnx → 0 as n → . n→ n  1!  n  1!

Hence, the Maclaurin Series for e2x converges to e2x for all x.

Taylor and Maclaurin Series

409

410

Chapter 8

Infinite Series kk  1x2 kk  1k  2x3 . . .   , we have 2! 3! 1 1232x 2 123252x3 . . .   1 x 2 2! 3!

14. Since 1  xk  1  kx  12

1  x



1

13x 2 135x3 . . . x    2 222! 233!

1





35.

1

n1

kk  1x2 kk  1k  2x3 . . .   , we have 2! 3!

16. Since 1  xk  1  kx 

1  x13  1 

x 13x  1323 2!

2

x 2x2 2  5x3 2  5  8x4 . . .  2  3   3 3 2! 3 3! 344!

1

 1n12 x  3 n2





58.

 1n1 1 x  2 n2



we have 1  x312  1 

ex 

132353x3 . . .  3!



1

18. Since 1  x12  1 

20.

. . 2n  1xn 2n n!

xn

35.



x3

x4

.

. . 2n  3xn

2n n!

 1n1 1 x3  2 n2

x2

. . 3n  4

3nn!

35.

(Exercise 14)

. . 2n  3x3n

2n n!

.

x5

 n!  1  x  2!  3!  4!  5!  . . .

n0

e3x 

22.

 1n 3n xn 3xn 9x 2 27x3 81x 4 243x5 . . .   1  3x      n! n! 2! 3! 4! 5! n0 n0 



cos x  cos 4x 



1nx2n x2 x4 x6 1   . . .  2n  ! 2! 4! 6! n0 



 1n42nx2n 1n4x2n  2n! 2n! n0 n0 



1

26.



16x2 256x4 . . .   2! 4!

ex  1  x 

x2 x3  . . . 2! 3!

ex  1  x 

x2 x3  . . . 2! 3!

ex  ex  2 

2x2 2x4 . . .   2! 4!

2 cos hx  ex  ex 



x2n

 2 2n!

n0

24.

sin x 

1nx2n1 n0 2n  1! 



1nx32n1 n0 2n  1!

2 sin x3  2





x9 x15 . . .   3! 5!

 2x3 

2x9 2x15 . . .   3! 5!

 2 x3 



Section 8.10

28. The formula for the binomial series gives 1  x12  1 

1  x 212  1  ln x  x 2  1  



x



x 

411

1n 1  3  5 . . . 2n  1xn , which implies that 2n n! n1 



1n 1  3  5 . . . 2n  1x 2n 2n n! n1 



1 dx 1

x 2

x

1n1  3  5 . . . 2n  12n1 2n2n  1n! n1 



x3 2

3

x2 x4  . . . 2! 4!

30. x cos x  x 1 

Taylor and Maclaurin Series



1  3x5 1  3  5x7  . . .. 245 2467



32.

 arcsin x 2n!x2n1  nn!22n  1 x  2 n0



x3 x5  . . . 2! 4!



1

x

2n!x2n



 2 n! 2n  1, x 0

n0

n

2

1nx2n1 2n! n0 



2x 2 2x 4 2x6 . . . (See Exercise 33.)    2! 4! 6!

34. eix  eix  2 

 1n x 2n eix  eix x2 x 4 x6 1   . . .  cosx 2 2! 4! 6! 2n! n0



36. gx  ex cos x

8



x2

 1x

2





4

4

x x  . . . 6 24

 

1  2  24x  . . . x2

−6

4

 

6

g P4



x2 x2 x3 x3 x4 x4 x4 x3 x 4 . . . 1x       . . .1x   2 2 6 2 24 4 24 3 6

−40

38. f x  ex ln1  x



 1x

x 2 x3 x4   . . . 2 6 24



 x  x2  x

 

3

−3

P5 3

−3

2

 

3

4

5

 



x2 x3 x3 x3 x4 x4 x4 x4 x5 x5 x5 x5 x5              . . . 2 3 2 2 4 3 4 6 5 4 6 12 24

x 2 x3 3x5 . . .    2 3 40 f

x  x2  x3  x4  x5  . . .

412

Chapter 8

40. f x 

Infinite Series

ex . Divide the series for ex by 1  x. 1x

x2 x3  2 3 x2 1x 1x  2 1x x2 0 2 x2 2 1



f x  1 

3x 4 . . .  8 x3 x4 x5    . . . 6 24 120

x 2 x 3 3x 4 . . .    2 3 8 6



P4

−6

f

6 −6

x3 6 x3  2 x3 x4   3 24 x3 x4   3 3 3x 4 x5  8 120 3x4 3x5  8 8 



42. y  x 





x5 x2 x 4 x3  x 1   x cos x. 2! 4! 2! 4!

44. y  x 2  x3  x 4  x 21  x  x 2  x 2 Matches (d)

Matches (b)



x

46.

 x

1  t3 dt 

0

1

0

 1n11 t3  2 n2

35.

. . 2n  3t3n

2n n!

 1n11  3  5 . . . 2n  3t3n1 t4  8 3n  12n n! n2

x

 1n11  3  5 . . . 2n  3x3n1 x4  8 3n  12n n! n2



 dt



x

0



1n x 2n1 x3 x5 x7  x     . . . , we have 3! 5! 7! n0 2n  1! 



48. Since sinx 

1n





 t

sin1 

1 1 x.

1

1

1

x2

x3

x4

 2n  1!  1  3!  5!  7!  . . .  0.8415.

(4 terms)

n0

50. Since ex 



xn

x5

 n!  1  x  2!  3!  4!  5!  . . . , we have e

1

n0

and

11

1 1 1 1    . . . 2! 3! 4! 5!

 1n1 1 1 1 1 1 e1  1  e1  1       . . .   0.6321. (6 terms) e 2! 3! 4! 5! 7! n! n1



52. Since sin x 

1n x 2n1 x3 x5 x7 x   . . .  2n  1  ! 3! 5! 7! n0 



 1n x 2n x2 x 4 x6 sin x 1   . . . x 3! 5! 7! n0 2n  1!



we have lim

x→0

 1n x 2n sin x  lim  1. x→0 n0 2n  1! x



Section 8.10



12

54.

0

arctan x dx  x

Since 1



12



0

3





x5 x7 . . . 2  2  5 7

12 0

 < 0.0001, we have



x→0

1



1

cos x dx 

0.5





1 

arctan x  1. x

1  2!x  4!x  6!x  8!x  . . . dx  x  2x2!  3x4!  4x6!  5x8!  . . . 2

0.5

1 210, 600

Since

3

4

2

3

4

5

1

 < 0.0001, we have

cos x dx  1  0.5 

0.5

1 4



14

x lnx  1 dx 

0



x

2

0





1 1 1 1 1  0.52  1  0.53  1  0.54  1  0.55  0.3243. 4 72 2880 201,600



x3 x4 x5 . . . dx    2 3 4

x3  4 x 2  5 x 3  6 x 4  . . . 3

4

5

14

6

0

14 < 0.0001, 15 5

Since



143 144   0.00472. 3 8

14

x lnx  1 dx 

0

60. From Exercise 19, we have 1 2



2

ex 2dx  2

1

1 2

 2

1

1n x 2n 1 dx  nn! 2  2 n0 



1n x 2n1

 2 n!2n  1 n0

2

n

1

1  1n 2n1  1  2 n0 2nn!2n  1





1 2

1  2  17  3  2

31

2



62. f x  sin

8191

26

 6!  13



 2!  5



127

23

 3!  7



511

24

 4!  9

25

 5!  11



x ln1  x 2

4

f −4

8

P5

The polynomial is a reasonable approximation on the interval 0.60, 0.73.

−4

3 x f x    arctan x, c  1

3

P5x  0.7854  0.7618x  1  0.3412

x 2! 1   0.0424 x 3! 1 

x  14 x  15  1.3025  5.5913 4! 5!

2047



32,767 131,071 524,287    0.1359. 27  7!  15 28  8!  17 29  9!  19

x 2 x3 7x 4 11x5 P5x     2 4 48 96

64.

0.5

0.55

1



6

2

Note: We are using lim

58.

4

1 arctan x 1 1 1 1 dx       0.4872. x 2 3223 5225 7227 9229

0



2

9229

12

56.

1  x3  x5  x7  . . . dx  x  3x

Taylor and Maclaurin Series



2



The polynomial is a reasonable approximation on the interval 0.48, 1.75.

3

f P5 −2

4 −1

413

414

Chapter 8

Infinite Series

66. a2n1  0 (odd coefficients are zero)

70.   60, v0  64, k  y  3x 

1 , g  32 16

32x 2 11632x3 116232x 4 . . .    2642122 3643123 4644124

 2264x  2 2

 3x  32

2



 3x  32





24x 4 23x3  . . . 3 364 16 4644162

2n xn

 n64 16 n

n2

72. (a) f x 

68. Answers will vary.



 3x  32

n2

xn

 n32 16

n2

n

n2

lnx 2  1 . x2 1.5

From Exercise 8, you obtain P

(b)

 1n x 2n 1  1n x 2n2  2 x n0 n1 n0 n  1





0

x2 x4 x6 x8 P8  1     2 3 4 5



−0.5

lnt2  1 dt t2

x

(c) Fx 

2

0

x

Gx 

P8t d t

0

x

0.25

0.50

0.75

1.00

1.50

2.00

Fx

0.2475

0.4810

0.6920

0.8776

1.1798

1.4096

Gx

0.2475

0.4810

0.6920

0.8805

5.3064

652.21

(d) The curves are nearly identical for 0 < x < 1. Hence, the integrals nearly agree on that interval. 74. Assume e  pq is rational. Let N > q and form the following.



e 11







1 1 1 1 . . .   . . . 2! N! N  1! N  2!

Set a  N! e  1  1  . . . 

1 N!

, a positive integer. But,

 N 1 1!  N 1 2!  . . .  N 1 1  N  11 N  2  . . . < N 1 1  N 1 1

a  N!



2





1 1 1 1 1  . . .  N1 N  1 N  12 N1



1



1 1 N1







. . .

1 , a contradiction. N

Review Exercises for Chapter 8 2. an 

n2

n 1

n 4. an  4  : 3.5, 3, . . . 2 Matches (c)

32

6. an  6 

Matches (b)

n1

: 6, 4, . . .

Review Exercises for Chapter 8 n 2

8. an  sin

10. lim

n→ 

1 n

0

Converges

2

0

12

−2

The sequence seems to diverge (oscillates). n : 1, 0, 1, 0, 1, 0, . . . 2

sin

n 1  lim  n→  lnn n→  1n

n→ 

1 2n



n

1 1   

k

 lim k→

k 12

 e12

Converges; k  2n

Diverges 16. Let



14. lim 1 

12. lim

y  bn  cn1n ln y 

18. (a) Vn  120,0000.70n, n  1, 2, 3, 4, 5 (b) V5  120,0000.705  $20,168.40

lnbn  cn n

lim ln y  lim

n→ 

n→ 

1 bn ln b  cn ln c bn  cn

Assume b ≥ c and note that the terms bn ln b  cn ln c bn ln b cn ln c  n  n n n n b c b c b  cn converge as n → . Hence an converges. 20. (a)

(b)

k

5

10

15

20

25

Sk

0.3917

0.3228

0.3627

0.3344

0.3564

(c) The series converges by the Alternating Series Test.

1

0

12 0

22. (a)

(b)

k

5

10

15

20

25

Sk

0.8333

0.9091

0.9375

0.9524

0.9615

(c) The series converges, by the limit comparison test with

1

n .



 2 2n2 n  4 3 n0 n0 3





n

0

2

12 0

2 26. Diverges. nth Term Test, lim an  . n→  3

24. Diverges. Geometric series, r  1.82 > 1.

28.

1

 43  12

See Exercise 27.

30.



  3

n0

2

n



 2 1  n  1n  2 n0 3

  

n





 n  1  n  2 1

1

n0

1  1  23

 1  2  2  3  3  4  . . .  3  1  2 1

1

1

1

1

415

416

Chapter 8

Infinite Series

32. 0.923076  0.9230761  0.000001  0.0000012  . . . 

 0.9230760.000001



n



n0

39

 32,0001.055

34. S 

n

0.923076 923,076 1276,923 12    1  0.000001 999,999 1376,923 13

32,0001  1.05540 1  1.055



n0

36. See Exercise 86 in Section 8.2. AP

$4,371,379.65

12r  1  12r

 100

12t



1

12

0.065  1  0.065 12

120



1

$16,840.32

38.



1

 n 4

n1

3







n1

1 n34

40.



1 2

n1

Divergent p-series, p 

42.



 n

3 4

< 1



 1  1 1  2  n 2n n n1 n1 2





The first series is a convergent p-series and the second series is a convergent geometric series. Therefore, their difference converges.

n1

 nn  2

44. Since



n1

n1

1

3

n

converges,



3

n1

n

1 converges by the 5

Limit Comparison Test.

n  1nn  2 n1  lim 1 n→  n→  n  2 1n lim



1

 n, the series diverges.

By a limit comparison test with

n1

46.

1nn n1 n  1 



an1  lim

n→

48. Converges by the Alternating Series Test.

n  1

n2



n

n1

an1 

 an

3 lnn  1 3 ln n 3 ln n <  an, lim 0 n→  n1 n n

n 0 n1

By the Alternating Series Test, the series converges.

50.



n!

e

n

n1

lim

n→ 



an1 n  1!  lim n→  an en1  lim

n→ 

en

n!

n1  e

By the Ratio Test, the series diverges. 52.



1 3

5.

. . 2n  1

 2 5 8 . . . 3n  1

n1

lim

n→ 



an1 1  lim n→  2 an

3. 5.

. . 2n  12n  1 . . 3n  13n  2

By the Ratio Test, the series converges.

2

1

5. 3.

. . 3n  1 2n  1 2 lim  . . 2n  1  n→  3n  2 3

Review Exercises for Chapter 8

417

54. (a) The series converges by the Alternating Series Test. (b)

(c)

x

5

10

15

20

25

Sn

0.0871

0.0669

0.0734

0.0702

0.0721

(d) The sum is approximately 0.0714.

0.3

0

12 0

56. No. Let an 

 3937.5 3937.5 is a convergent p-series. , then a75  0.7. The series 2 2 n n1 n



4  1

58. f x  tan x

f 

f x  2 sec2 x tan x

f 

f

x  4 sec2 x tan2 x  2 sec4 x

f



4  4



62. e0.25 1  0.25 

P6x  1  P10x  1 

68.

4  16

  2 x 4 4







2



8  x 3 4



66.

x2 x4  2! 4!

−10

x2 x4 x6   2! 4! 6!

lim

n



Geometric series which converges only if 2x < 1 or 1 1 2 < x < 2 .

10

f P6



 2x

n0

P4

P10

−10

x2 x4 x6 x8 x10     2! 4! 6! 8! 10!

3nx  2n n n1 n→ 

3

10







0.252 0.253 0.254   0.779 2! 3! 4!

f x  cos x P4x  1 

0.752 0.754 0.756   0.7317 2! 4! 6!

4  2

f x  sec2 x

P3x  1  2 x 

64.

60. cos0.75 1 

f 

70.



un1 3n1x  2n1  lim n→ un n1 



3x2

n

3nx  2n

1 3 Center: 2 R

5

Since the series converges at 3 and diverges at 73 , the interval of convergence is 53 ≤ x < 73 .

 x2 x  2n  n 2 2 n0 n0 







n

Geometric series which converges only if



x2 < 1 or 2

0 < x < 4.

418

Chapter 8

Infinite Series

y

72.

y 

 3n12n  2x2n1 3n2nx2n1  n 2 n! 2n1n  1! n1 n0

y 

3n12n  22n  1x2n 2n1n  1! n0

y  3xy  3y 

74.

3nx 2n 2nn! n0 

 









 1n13n22n  2x2n2  1n3n1x2n 3n12n  22n  1x2n   n1 n1 2 n  1! 2 n  1! 2nn! n0 n0 n0 









 1n13n2x2n2  1n3n1x2n 1n13n12n  2x 2n   n n 2 n! 2 n! 2nn! n0 n0 n0



 1n13n2x 2n2 1n3n1x2n  2n  1  1  n 2 n! 2nn! n0 n0



 1n13n2x 2n2 1n3n1x2n 2n  n 2 n! 2nn! n0 n0



 1n3n1x 2n 2n 1n13n1x2n 2n  n n1n  1! 2n 2 n! n1 n1 2



1n3n1x2n 2n  2n  0 2nn! n1































3 32 a 32    2  x 1  x2 1  x2 1  r 

 2  2 x

3

n



n0

76. Integral:

n1

n0

1n3xn n1 n0 2 



 1 1  x  3 78. 8  2x  3  x  32  x  33  . . .  8 2 8 4 n0

 



80.

1n3xn1



 n  12



n



8 1   x  34

32 32 , 1 < x < 7  4  x  3 1  x

f x  cos x f x  sin x f x  cos x f x  sin x cos x  

82.

2 f n 4x  4 n 2 2     x  x n! 2 2 4 2 2! 4 n0 











1nn12x  4 n1 n  1! n1 

1  x    2  4

2





f x  cscx f x  cscx cotx f x  csc3x  cscx cot2x f x  5 csc3x cotx  cscx cot3x f 4x  5 csc5x  15 csc3x cot2x  cscx cot4x cscx 

1 f n2x  2 n  1 x n! 2! 2 n0 







2



5  x 4! 2





4

. . .

2



2

2

3!

x  4

3



2

2

4!

x  4

4

. . .

Review Exercises for Chapter 8 f x  x12

84.

1 f x  x12 2 f x  

32

12 12 32 x

f x 

52

f 4x   x 

12 12 x

12 12 32 52 x

72,

. . .

f n4x  4n n! n0 



2

x  4 x  42 1 3x  43 1 3 5x  44 . . .     22 252! 283! 2114!

2

 1n11 3 5 . . . 2n  3x  4n x  4  2 2 23n1n! n2



hx  1  x3

86.

h x  31  x4 h x  121  x5 h x  601  x6 h4x  3601  x7 h5x  25201  x8  1nn  2!x n  1nn  2n  1x 12x2 60x3 360x4 2520x5 . . . 1  1  3x        3 1  x 2! 3! 4! 5! 2n! 2 n0 n0





 1

ln x 

88.

n1

n1

ln

x  1n , n

0 < x ≤ 2 n

e23 

n1

n1





 1

n1

n1

92.

sin x 



sin

n

x2n1 , 2n  1!



n

1 0.3272 32n12n  1!

13   1 n0



1 0.1823 5nn

 1

n0

xn

 < x <



x2

 n!  1  x  2!  . . .

94. ex 

n0



x n1 x3  x  x2   . . . 2! n0 n!



xex 

 1





xex dx  xex  ex

0

0

0

 e  e  0  1  1

 x n1 x n2 dx  n0 n! n0 n  2n!

1



1



ex 





1 0





1

 n  2n!  1

n0

xn

 n!,

n0

65   1 65n  1 

90.



 < x <



 2n 23n  1.9477 n n! n0 n0 3 n! 





419

420

Chapter 8

Infinite Series

f x  sin 2x

f 0  0

f x  2 cos 2x

f 0  2

f x  4 sin 2x

f 0  0

f x  8 cos 2x

f 0  8

96. (a)

f 4x  16 sin 2x

f 40  0

f 5x  32 cos 2x

f 50  32

f 6x  64 sin 2x

f 60  0

f 7x  128 cos 2x

f 70  128

4 0x2 8x3 0x4 32x5 0x6 128x7 . . . 4 8 7 . . .  2x  x3  x5        x  2! 3! 4! 5! 6! 7! 3 15 315

sin 2x  0  2x  (b) sin x  sin 2x 

1nx2n1 n0 2n  1! 



1n2x2n1 2x3 2x5 2x7 . . .  2x      2n  1  ! 3! 5! 7! n0 



 2x 

8x3 32x5 128x7 . . . 4 4 8 7 . . .     2x  x3  x5  x  6 120 5040 3 15 315

(c) sin 2x  2 sin x cos x



x5 x7 x3   . . . 6 120 5040







4 x7 2x3 2x5 4 4 8 7 . . .    . . .  2x  x3  x5  x  3 15 315 3 15 315

2 x

2 x  2 x

cos t 

98.

cos



x

cos

0

t

t

2

2



dt 



4



1n t 2n 2n! n0 

et 

100.



2 

et  1 

1 2n!n  1

2n



2

et

x



0



x

1nx n1 2n!n  1

2n

x3 2

3



tn



tn

 n!

n1 n t n1

 2



 n!

n0

n n

0

1 3x5 1 3 5x7  . . . 2 4 5 2 4 6 7

x2 1 3x4 1 3 5x6 arcsin x 1   . . . 2 3 2 4 5 2 4 6 7 x lim



1 t 2n 2n! n0 

arcsin x  x 

x→0

6

x5 x5 x5 x7 x7 x7 x3 x3 x7          . . . 2 6 24 12 120 720 144 240 5040



n0

102.

2



n0



x  . . . 1  x2  24x  720

arcsin x 1 x





1 arcsin x 1  x2  lim  1. By L’Hôpital’s Rule, lim x→0 x→0 x 1

 tn1 1  t n1 n!

et  1 dt  t





tn

x

  n n! n1

0





xn

 n n!

n1

414

Chapter 8

Infinite Series

66. a2n1  0 (odd coefficients are zero)

70.   60, v0  64, k  y  3x 

1 , g  32 16

32x 2 11632x3 116232x 4 . . .    2642122 3643123 4644124

 2264x  2 2

 3x  32

2



 3x  32





24x 4 23x3  . . . 3 364 16 4644162

2n xn

 n64 16 n

n2

72. (a) f x 

68. Answers will vary.



 3x  32

n2

xn

 n32 16

n2

n

n2

lnx 2  1 . x2 1.5

From Exercise 8, you obtain P

(b)

 1n x 2n 1  1n x 2n2  2 x n0 n1 n0 n  1





0

x2 x4 x6 x8 P8  1     2 3 4 5



−0.5

lnt2  1 dt t2

x

(c) Fx 

2

0

x

Gx 

P8t d t

0

x

0.25

0.50

0.75

1.00

1.50

2.00

Fx

0.2475

0.4810

0.6920

0.8776

1.1798

1.4096

Gx

0.2475

0.4810

0.6920

0.8805

5.3064

652.21

(d) The curves are nearly identical for 0 < x < 1. Hence, the integrals nearly agree on that interval. 74. Assume e  pq is rational. Let N > q and form the following.



e 11







1 1 1 1 . . .   . . . 2! N! N  1! N  2!

Set a  N! e  1  1  . . . 

1 N!

, a positive integer. But,

 N 1 1!  N 1 2!  . . .  N 1 1  N  11 N  2  . . . < N 1 1  N 1 1

a  N!



2





1 1 1 1 1  . . .  N1 N  1 N  12 N1



1



1 1 N1







. . .

1 , a contradiction. N

Review Exercises for Chapter 8 2. an 

n2

n 1

n 4. an  4  : 3.5, 3, . . . 2 Matches (c)

32

6. an  6 

Matches (b)

n1

: 6, 4, . . .

Review Exercises for Chapter 8 n 2

8. an  sin

10. lim

n→ 

1 n

0

Converges

2

0

12

−2

The sequence seems to diverge (oscillates). n : 1, 0, 1, 0, 1, 0, . . . 2

sin

n 1  lim  n→  lnn n→  1n

n→ 

1 2n



n

1 1   

k

 lim k→

k 12

 e12

Converges; k  2n

Diverges 16. Let



14. lim 1 

12. lim

y  bn  cn1n ln y 

18. (a) Vn  120,0000.70n, n  1, 2, 3, 4, 5 (b) V5  120,0000.705  $20,168.40

lnbn  cn n

lim ln y  lim

n→ 

n→ 

1 bn ln b  cn ln c bn  cn

Assume b ≥ c and note that the terms bn ln b  cn ln c bn ln b cn ln c  n  n n n n b c b c b  cn converge as n → . Hence an converges. 20. (a)

(b)

k

5

10

15

20

25

Sk

0.3917

0.3228

0.3627

0.3344

0.3564

(c) The series converges by the Alternating Series Test.

1

0

12 0

22. (a)

(b)

k

5

10

15

20

25

Sk

0.8333

0.9091

0.9375

0.9524

0.9615

(c) The series converges, by the limit comparison test with

1

n .



 2 2n2 n  4 3 n0 n0 3





n

0

2

12 0

2 26. Diverges. nth Term Test, lim an  . n→  3

24. Diverges. Geometric series, r  1.82 > 1.

28.

1

 43  12

See Exercise 27.

30.



  3

n0

2

n



 2 1  n  1n  2 n0 3

  

n





 n  1  n  2 1

1

n0

1  1  23

 1  2  2  3  3  4  . . .  3  1  2 1

1

1

1

1

415

416

Chapter 8

Infinite Series

32. 0.923076  0.9230761  0.000001  0.0000012  . . . 

 0.9230760.000001



n



n0

39

 32,0001.055

34. S 

n

0.923076 923,076 1276,923 12    1  0.000001 999,999 1376,923 13

32,0001  1.05540 1  1.055



n0

36. See Exercise 86 in Section 8.2. AP

$4,371,379.65

12r  1  12r

 100

12t



1

12

0.065  1  0.065 12

120



1

$16,840.32

38.



1

 n 4

n1

3







n1

1 n34

40.



1 2

n1

Divergent p-series, p 

42.



 n

3 4

< 1



 1  1 1  2  n 2n n n1 n1 2





The first series is a convergent p-series and the second series is a convergent geometric series. Therefore, their difference converges.

n1

 nn  2

44. Since



n1

n1

1

3

n

converges,



3

n1

n

1 converges by the 5

Limit Comparison Test.

n  1nn  2 n1  lim 1 n→  n→  n  2 1n lim



1

 n, the series diverges.

By a limit comparison test with

n1

46.

1nn n1 n  1 



an1  lim

n→

48. Converges by the Alternating Series Test.

n  1

n2



n

n1

an1 

 an

3 lnn  1 3 ln n 3 ln n <  an, lim 0 n→  n1 n n

n 0 n1

By the Alternating Series Test, the series converges.

50.



n!

e

n

n1

lim

n→ 



an1 n  1!  lim n→  an en1  lim

n→ 

en

n!

n1  e

By the Ratio Test, the series diverges. 52.



1 3

5.

. . 2n  1

 2 5 8 . . . 3n  1

n1

lim

n→ 



an1 1  lim n→  2 an

3. 5.

. . 2n  12n  1 . . 3n  13n  2

By the Ratio Test, the series converges.

2

1

5. 3.

. . 3n  1 2n  1 2 lim  . . 2n  1  n→  3n  2 3

Review Exercises for Chapter 8

417

54. (a) The series converges by the Alternating Series Test. (b)

(c)

x

5

10

15

20

25

Sn

0.0871

0.0669

0.0734

0.0702

0.0721

(d) The sum is approximately 0.0714.

0.3

0

12 0

56. No. Let an 

 3937.5 3937.5 is a convergent p-series. , then a75  0.7. The series 2 2 n n1 n



4  1

58. f x  tan x

f 

f x  2 sec2 x tan x

f 

f

x  4 sec2 x tan2 x  2 sec4 x

f



4  4



62. e0.25 1  0.25 

P6x  1  P10x  1 

68.

4  16

  2 x 4 4







2



8  x 3 4



66.

x2 x4  2! 4!

−10

x2 x4 x6   2! 4! 6!

lim

n



Geometric series which converges only if 2x < 1 or 1 1 2 < x < 2 .

10

f P6



 2x

n0

P4

P10

−10

x2 x4 x6 x8 x10     2! 4! 6! 8! 10!

3nx  2n n n1 n→ 

3

10







0.252 0.253 0.254   0.779 2! 3! 4!

f x  cos x P4x  1 

0.752 0.754 0.756   0.7317 2! 4! 6!

4  2

f x  sec2 x

P3x  1  2 x 

64.

60. cos0.75 1 

f 

70.



un1 3n1x  2n1  lim n→ un n1 



3x2

n

3nx  2n

1 3 Center: 2 R

5

Since the series converges at 3 and diverges at 73 , the interval of convergence is 53 ≤ x < 73 .

 x2 x  2n  n 2 2 n0 n0 







n

Geometric series which converges only if



x2 < 1 or 2

0 < x < 4.

418

Chapter 8

Infinite Series

y

72.

y 

 3n12n  2x2n1 3n2nx2n1  n 2 n! 2n1n  1! n1 n0

y 

3n12n  22n  1x2n 2n1n  1! n0

y  3xy  3y 

74.

3nx 2n 2nn! n0 

 









 1n13n22n  2x2n2  1n3n1x2n 3n12n  22n  1x2n   n1 n1 2 n  1! 2 n  1! 2nn! n0 n0 n0 









 1n13n2x2n2  1n3n1x2n 1n13n12n  2x 2n   n n 2 n! 2 n! 2nn! n0 n0 n0



 1n13n2x 2n2 1n3n1x2n  2n  1  1  n 2 n! 2nn! n0 n0



 1n13n2x 2n2 1n3n1x2n 2n  n 2 n! 2nn! n0 n0



 1n3n1x 2n 2n 1n13n1x2n 2n  n n1n  1! 2n 2 n! n1 n1 2



1n3n1x2n 2n  2n  0 2nn! n1































3 32 a 32    2  x 1  x2 1  x2 1  r 

 2  2 x

3

n



n0

76. Integral:

n1

n0

1n3xn n1 n0 2 



 1 1  x  3 78. 8  2x  3  x  32  x  33  . . .  8 2 8 4 n0

 



80.

1n3xn1



 n  12



n



8 1   x  34

32 32 , 1 < x < 7  4  x  3 1  x

f x  cos x f x  sin x f x  cos x f x  sin x cos x  

82.

2 f n 4x  4 n 2 2     x  x n! 2 2 4 2 2! 4 n0 











1nn12x  4 n1 n  1! n1 

1  x    2  4

2





f x  cscx f x  cscx cotx f x  csc3x  cscx cot2x f x  5 csc3x cotx  cscx cot3x f 4x  5 csc5x  15 csc3x cot2x  cscx cot4x cscx 

1 f n2x  2 n  1 x n! 2! 2 n0 







2



5  x 4! 2





4

. . .

2



2

2

3!

x  4

3



2

2

4!

x  4

4

. . .

Review Exercises for Chapter 8 f x  x12

84.

1 f x  x12 2 f x  

32

12 12 32 x

f x 

52

f 4x   x 

12 12 x

12 12 32 52 x

72,

. . .

f n4x  4n n! n0 



2

x  4 x  42 1 3x  43 1 3 5x  44 . . .     22 252! 283! 2114!

2

 1n11 3 5 . . . 2n  3x  4n x  4  2 2 23n1n! n2



hx  1  x3

86.

h x  31  x4 h x  121  x5 h x  601  x6 h4x  3601  x7 h5x  25201  x8  1nn  2!x n  1nn  2n  1x 12x2 60x3 360x4 2520x5 . . . 1  1  3x        3 1  x 2! 3! 4! 5! 2n! 2 n0 n0





 1

ln x 

88.

n1

n1

ln

x  1n , n

0 < x ≤ 2 n

e23 

n1

n1





 1

n1

n1

92.

sin x 



sin

n

x2n1 , 2n  1!



n

1 0.3272 32n12n  1!

13   1 n0



1 0.1823 5nn

 1

n0

xn

 < x <



x2

 n!  1  x  2!  . . .

94. ex 

n0



x n1 x3  x  x2   . . . 2! n0 n!



xex 

 1





xex dx  xex  ex

0

0

0

 e  e  0  1  1

 x n1 x n2 dx  n0 n! n0 n  2n!

1



1



ex 





1 0





1

 n  2n!  1

n0

xn

 n!,

n0

65   1 65n  1 

90.



 < x <



 2n 23n  1.9477 n n! n0 n0 3 n! 





419

420

Chapter 8

Infinite Series

f x  sin 2x

f 0  0

f x  2 cos 2x

f 0  2

f x  4 sin 2x

f 0  0

f x  8 cos 2x

f 0  8

96. (a)

f 4x  16 sin 2x

f 40  0

f 5x  32 cos 2x

f 50  32

f 6x  64 sin 2x

f 60  0

f 7x  128 cos 2x

f 70  128

4 0x2 8x3 0x4 32x5 0x6 128x7 . . . 4 8 7 . . .  2x  x3  x5        x  2! 3! 4! 5! 6! 7! 3 15 315

sin 2x  0  2x  (b) sin x  sin 2x 

1nx2n1 n0 2n  1! 



1n2x2n1 2x3 2x5 2x7 . . .  2x      2n  1  ! 3! 5! 7! n0 



 2x 

8x3 32x5 128x7 . . . 4 4 8 7 . . .     2x  x3  x5  x  6 120 5040 3 15 315

(c) sin 2x  2 sin x cos x



x5 x7 x3   . . . 6 120 5040







4 x7 2x3 2x5 4 4 8 7 . . .    . . .  2x  x3  x5  x  3 15 315 3 15 315

2 x

2 x  2 x

cos t 

98.

cos



x

cos

0

t

t

2

2



dt 



4



1n t 2n 2n! n0 

et 

100.



2 

et  1 

1 2n!n  1

2n



2

et

x



0



x

1nx n1 2n!n  1

2n

x3 2

3



tn



tn

 n!

n1 n t n1

 2



 n!

n0

n n

0

1 3x5 1 3 5x7  . . . 2 4 5 2 4 6 7

x2 1 3x4 1 3 5x6 arcsin x 1   . . . 2 3 2 4 5 2 4 6 7 x lim



1 t 2n 2n! n0 

arcsin x  x 

x→0

6

x5 x5 x5 x7 x7 x7 x3 x3 x7          . . . 2 6 24 12 120 720 144 240 5040



n0

102.

2



n0



x  . . . 1  x2  24x  720

arcsin x 1 x





1 arcsin x 1  x2  lim  1. By L’Hôpital’s Rule, lim x→0 x→0 x 1

 tn1 1  t n1 n!

et  1 dt  t





tn

x

  n n! n1

0





xn

 n n!

n1

Problem Solving for Chapter 8

Problem Solving for Chapter 8 2. Let S 



1

 2n  1

2

n1

Then



1 1 1  2 2. . . 2 1 3 5

1 1 1 1 2  2 2 2 2. . . 6 1 2 3 4 S

1 1  . . . 22 42

S

1 1 1 1 2 2. . . 22 2 3

S

1 2 . 22 6

Thus, S 





 

2 1 2 2 3 2  .   6 4 6 6 4 8



4. (a) Position the three blocks as indicated in the figure. The bottom block extends 1 6 over the edge of the table, the middle block extends 1 4 over the edge of the bottom block, and the top block extends 1 2 over the edge of the middle block. 1 6

The centers of gravity are located at bottom block:

1 1 1   6 2 3

middle block:

1 1 1 1    6 4 2 12

top block:

0 1 5 6 12

5 1 1 1 1     . 6 4 2 2 12

The center of gravity of the top 2 blocks is

 121  125  2  61, which lies over the bottom block. The center of gravity of the 3 blocks is

 31  121  125  3  0 which lies over the table. Hence, the far edge of the top block lies 1 1 1 11    6 4 2 12 beyond the edge of the table. n

(b) Yes. If there are n blocks, then the edge of the top block lies

1

 2i from the

c1

edge of the table. Using 4 blocks, 4

1

1

1

1

1

25

 2i  2  4  6  8  24

c1

which shows that the top block extends beyond the table. (c) The blocks can extend any distance beyond the table because the series diverges: 

1

1



 2i  2 

c1

c1

1  . i

1 2 1 4

11 12

421

422

Chapter 8

6. a 

Infinite Series

 1n1a  b  a  b b a b . . .     2 3 4 2n n1



If a  b,

 1n1 1n12a converges conditionally. a 2n n n1 n1

If a  b,

 ab 1n1a  b diverges.  2n n1 n1 2n













No values of a and b give absolute convergence. a  b implies conditional convergence. ex  1  x 

8.

x2 . . .  2!

ex  1  x2  2

x4 . . . x12 . . .    2! 6!

f 120 12! 1 ⇒ f 120    665,280 12! 6! 6!





10. (a) If p  1,

2



If p > 1,

2





1 dx  ln ln x x ln x

diverges.

2

1 ln b1p ln 21p converges. dx  lim  p b→  xln x 1p 1p





If p < 1, diverges. (b)





n4

1 1 1 diverges by part (a).  n lnn2 2n4 n ln n



12. Let bn  an r n.

bn

1 n

14. (a)

 an 

r n 1 n

 r → Lr as n → .

 an

1 n

 1 1   0.01n 0.99 1  0.01 n0



 1  0.01  0.012  . . .

1 Lr < r  1. r

 1.010101 . . .

By the Root Test,

b

n

converges ⇒

a

n

rn

converges.

(b)

 1 1   0.02n 0.98 1  0.02 n0



 1  0.02  0.022  . . .  1  0.02  0.0004  . . .  1.0204081632 . . .



1

16. (a) Height  2 1  2



1

n

n1



2

(b) S  4 1 

1 2



1 3





. . .

p-series, p  21 < 1

 1 1 1 . . .   4  2 3 n1 n



 



4 1 1 (c) W   1  3 2  3 2  . . . 3 2 3 4  1   converges. 3 n1 n3 2



C H A P T E R Infinite Series

8

Section 8.1

Sequences . . . . . . . . . . . . . . . . . . . . . 121

Section 8.2

Series and Convergence . . . . . . . . . . . . . . 126

Section 8.3

The Integral Test and p-Series

Section 8.4

Comparisons of Series

Section 8.5

Alternating Series . . . . . . . . . . . . . . . . . 138

Section 8.6

The Ratio and Root Tests . . . . . . . . . . . . . 142

Section 8.7

Taylor Polynomials and Approximations . . . . . 147

Section 8.8

Power Series . . . . . . . . . . . . . . . . . . . . 152

Section 8.9

Representation of Functions by Power Series

. . . . . . . . . . 131

. . . . . . . . . . . . . . 135

Section 8.10 Taylor and Maclaurin Series

. . 157

. . . . . . . . . . . 160

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 167 Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . 172

C H A P T E R Infinite Series Section 8.1

8

Sequences

Solutions to Odd-Numbered Exercises 1. an  2n a1  21  2 a2  22  4 a3  23  8 a4  2  16 4

a5  2  32 5

 21

3. an  

1

 21

2

 

3

1  8

 

4

1  16

 21

5

a2  

1 a3   2

a5  

1nn12 n2

a1 

11  1 12

1 13  a2  22 4

16 1  a3  32 9 1 110  a4  42 16 1 115  a5  52 25

13. a1  3, ak1  2ak  1 a2  2a1  1  23  1  4 a3  2a2  1  24  1  6 a4  2a3  1  26  1  10 a5  2a4  1

5. an  sin

 21

a1  

1 a4   2

7. an 

n

9. an  5 

 

1 2

a1  sin

a3  sin

a3  5  a4  5  a5  5 

3  1 2

a4  sin 2  0 a5  sin

5 1 2

1 32

1 1  n n2

11. an 

a1  5  1  1  5 a2  5 

 1 2

a2  sin   0

1 4



n 2

1 1 19   2 4 4 1 1 43   3 9 9 1 1 77   4 16 16 1 1 121   5 25 25

3n n!

a1 

3 3 1!

a2 

32 9  2! 2

a3 

33 27  3! 6

a4 

34 81  4! 24

a5 

35 243  5! 120

1 15. a1  32, ak1  ak 2 1 1 a2  a1  32  16 2 2 1 1 a3  a2  16  8 2 2 1 1 a4  a3  8  4 2 2 1 1 a5  a4  4  2 2 2

 210  1  18

121

122

Chapter 8

Infinite Series 19. This sequence decreases and a1  4, a2  40.5  2. Matches (c).

17. Because a1  81  1  4 and a2  82  1  83 , the sequence matches graph (d). 21.

23.

8

25.

18

−1 −1

12

3

−1

12

12 −1

− 10

2 an  n, n  1, . . . , 10 3

an  160.5

29. an 

27. an  3n  1 a5  35  1  14 a6  36  1  17 Add 3 to preceeding term.

−1

n1,

n  1, . . . , 10

an 

3 2n1

31.

2n , n  1, 2, . . . , 10 n1

10! 8!910  8! 8!  910  90

an 

3 3  24 16

a6 

3 3  25 32

Multiply the preceeding term by  12.

33.

n  1! n!n  1  n! n! n1

35.

2n  1! 2n  1!  2n  1! 2n  1!2n2n  1 

5n2 5 2

37. lim

39. lim

n→ 

n2

n→ 

2n n2  1

 lim

n→ 

 43.

2

41. lim sin

1  1n2

n→ 

2

−1 −1

1n  0

2 2 1 45.

3

1 2n2n  1

12

12 −1

−2

The graph seems to indicate that the sequence converges to 1. Analytically, lim an  lim

n→ 

n→ 

n1 x1  lim  lim 1  1. x→  x→  n x

The graph seems to indicate that the sequence diverges. Analytically, the sequence is

an  0, 1, 0, 1, 0, 1, . . . . Hence, lim an does not exist. n→ 

47. lim 1n n→ 

n n 1

does not exist (oscillates between 1 and 1), diverges.

51. lim

n→ 

1  1n  0, converges n

49. lim

n→ 

3n2  n  4 3  , converges 2n2  1 2

lnn3 3 lnn  lim n→  2n n→  2 n

53. lim

 lim

n→ 

(L’Hôpital’s Rule)



3 1  0, converges 2 n

Section 8.1

34

55. lim

n→ 



59. lim

n→ 

n

 0, converges

57. lim

n→ 

n n1 n  12  n2   lim n→  n n1 nn  1 n→ 



k n

63. an  1 





61. lim

1  2n  0, converges n2  n

n

lim 1 

n→ 

65. lim

n→ 

k n



n

n  1!  lim n  1  , diverges n→  n!

np  0, converges n→  en  p > 0, n ≥ 2



 lim

Sequences

sin n 1  lim sin n  0, converges n→  n n

 lim 1  u1u k  ek u→0

k where u  , converges n 69. an  n2  2

67. an  3n  2

73. an 

1n1 2n2

79. an 

1

83.

75. an  1 

1n1 1n1 2nn! . . 2n  1  2n!

35.

n ? n1 ≥ n1 2 2n2 2 ? n2 n3 2 n ≥ 2 n  1 ? 2n ≥ n  1 n ≥ 1 n ≥ 1

Hence,

2n ≥ n  1

1 n1  n n

71. an 

n1 n2

77. an 

n n  1n  2

1 1 < 4  an1, n n1 monotonic; an < 4 bounded.

81. an  4 



85. an  1n

1n

a1  1 a2 

1 2

a3  

1 3



Not monotonic; an ≤ 1, bounded

2n3n ≥ 2n2n  1 n n1 ≥ n1 2 2n2 2 an ≥ an1



True; monotonic; an ≤ 18 , bounded 87. an   23  > n

 23 n1  an1



Monotonic; an ≤ 23 , bounded

89. an  sin

n6

a1  0.500 a2  0.8660 a3  1.000 a4  0.8660



Not monotonic; an ≤ 1, bounded

123

124

Chapter 8

Infinite Series

91. (a) an  5 

5

1 n

 

1 ≤ 6 ⇒ an bounded n

an  5 

1 1 1 n 3 3

1 1 > 5 n n1

n1

0.4

−1

12 −1

12 −0.1



lim 5 

n→ 

 < 131  3 1 

Therefore, an converges. (b)

−1

1 ⇒ an bounded 3

 an1 ⇒ an monotonic

Therefore, an converges. 7





<

1 1 1 n 3 3

an 

 an1 ⇒ an monotonic

(b)



1 1 1 n 3 3

93. (a) an 

95. An  P 1 



1 5 n

r 12

lim

n→ 



1

n

n

97. (a) A sequence is a function whose domain is the set of positive integers.

(a) lim An  , divergent. The amount will grow n→  arbitrarily large over time.

(b) An  9000 1 

0.115 12



n

A1  $9086.25

A6  $9530.06

A2  $9173.33

A7  $9621.39

A3  $9261.24

A8  $9713.59

A4  $9349.99

A9  $9806.68

A5  $9439.60

A10  $9900.66

99. an  10 

31  31   31

1 n

103. (a) An  0.8n 2.5 billion

(b) A sequence converges if it has a limit. (c) A bounded monotonic sequence is a sequence that has nondecreasing or nonincreasing terms, and an upper and lower bound.

101. an 

3n 4n  1

105. (a) an  3.7262n2  75.9167n  684.25

(b) A1  $2 billion

1500

A2  $1.6 billion A3  $1.28 billion A4  $1.024 billion (c) lim 0.8n 2.5  0 n→ 

−1

8 0

(b) For 2004, n  14 and a14  1017, or $1017.

Section 8.1

107. an 

Sequences

n n  n1n 109. an  

10n n!

a1  111  1

109 (a) a9  a10  9!

a2  2  1.4142



1,000,000,000 362,880



1,562,500 567

3 a3   3  1.4422 4 a4   4  1.4142 5 a5   5  1.3797 6 a6   6  1.3480

(b) Decreasing (c) Factorials increase more rapidly than exponentials.

Let y  lim n1n. n→ 

ln y  lim

n→ 

 lim

n→ 

1n ln n ln n 1n  lim 0 n→  1 n

Since ln y  0, we have y  e0  1. Therefore, n lim  n  1. n→ 

111. an2  an  an1 (a) a1  1

a7  8  5  13

a2  1

a8  13  8  21

a3  1  1  2

a9  21  13  34

a4  2  1  3

a10  34  21  55

a5  3  2  5

a11  55  34  89

a6  5  3  8

a12  89  55  144

(b) bn  b1  b2  b3  b4  b5 

an1 ,n ≥ 1 an 1 b6 1 1 2 b7 2 1 3 b8 2 5 b9 3 8 b10 5

(c) 1 

1 1 1 bn1 anan1 1 

an1 an

an  an1 an1   bn an an



(d) If lim bn  , then lim 1  n→ 

n→ 



1  . bn1

Since lim bn  lim bn1 we have, n→ 

    

13 8 21 13 34 21 55 34 89 55

113. True

1  1  .

n→ 

  1  2 0  2    1



1 ± 1  4 1 ± 5  2 2

Since an, and thus bn, is positive,

  1  52  1.6180. 115. True

117. a1  2  1.4142 a2  2  2  1.8478 a3  2  2  2  1.9616 a4 

2  2  2  2  1.9904

a5 

2  2  2  2  2  1.9976

an is increasing and bounded by 2, and hence converges to L. Letting lim an  L implies that 2  L  L ⇒ L  2. n→  Hence, lim an  2. n→ 

125

126

Chapter 8

Infinite Series

Section 8.2

Series and Convergence

1. S1  1

3. S1  3

S2  1  14  1.2500

S2  3  92  1.5

S3  1  14  19  1.3611

S3  3  92  27 4  5.25

1 S4  1  14  19  16  1.4236

81 S4  3  92  27 4  8  4.875

1 1 1 1 S5  1  4  9  16  25  1.4636

9 27 81 243 S5  3  2  4  8  16  10.3125

5. S1  3 S2  3  32  4.5 S3  3  32  34  5.250 S4  3  32  34  38  5.625 3 S5  3  32  34  38  16  5.8125

7.



 3 2  3

n

9.

Geometric series

n

11.

Geometric series

r  1.055 > 1

3 > 1 2

lim

n→ 

Diverges by Theorem 8.6



n

2

n1

lim

n→ 

n2 1

n2

15.



 4 4 9 1

n

n0



Diverges by Theorem 8.9





5

9

15

1

n



n0

21

 4  16, S2  4  16  2.95, .

S0 

. .





15 1 1 . . . 1  4 4 16

15 45 , S  , S  3.05, . . . 4 1 16 2

Matches graph (a).

Analytically, the series is geometric:

Analytically, the series is geometric:

 44 9

1

n



n0





  

94 94  3 1  14 34



15 1  4 n0 4

n



154 154  3 1  14

54

 n n  1   n  n  1  1  2  2  3  3  4  4  5  . . . 1

n1



1

n1



1

1

1

1

1

1

1

1

1

n1

 n n  1 

23.

45



 4  4 

19.

Matches graph (c). 

21.

2n  1 n1 n0 2 



lim

1 9 1 . . . 1  4 4 16

9 9 S 0  , S1  4 4

n 10 n1

2n  1 1  2n 1  0  lim n1 n→  2 n→  2 2

n2 10 1

Diverges by Theorem 8.9

17.

n

Diverges by Theorem 8.9

Diverges by Theorem 8.6

13.



 n1

n1

n0

n0

r



 1000 1.055

 2 4  3



lim Sn  lim 1 

n→ 

n→ 



1 1 n1

n

25.

 0.9

n

n0

n0

Geometric series with r  34 < 1.

Geometric series with r  0.9 < 1.

Converges by Theorem 8.6

Converges by Theorem 8.6

Section 8.2

27. (a)





Series and Convergence

 n n  3  2  n  n  3 6

n1

1

1

n1

 1  4  2  5  3  6  4  7  . . . 1

2



2 1 (b)

(c)

1

1

1

1

1

1



1 1 11   3.667  2 3 3

n

5

10

20

50

100

Sn

2.7976

3.1643

3.3936

3.5513

3.6078

5

0

11 0

(d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly.

29. (a)



 2 0.9

n1



n1

(b)



 2 0.9

n

n0



2  20 1  0.9

(c)

n

5

10

20

50

100

Sn

8.1902

13.0264

17.5685

19.8969

19.9995

22

0

11 0

(d) The terms of the series decrease in magnitude slowly. Thus, the sequence of partial sums approaches the sum slowly.

31. (a)



 10 0.25

n1



n1

(b)

10 40   13.3333 1  0.25 3

(c)

n

5

10

20

50

100

Sn

13.3203

13.3333

13.3333

13.3333

13.3333

15

11

0 0

(d) The terms of the series decrease in magnitude rapidly. Thus, the sequence of partial sums approaches the sum rapidly.

33.



n

n2

35.

2

 12 12 1 1 1 1       1 n2 n  1 n  1 2 n2 n  1 n  1







1 2



1 3 1 1  2 2 4







 n  1 n  2  8  n  1  n  2  8 2  3  3  4  4  5  . . .  82  4 8



 2 

1

n

 10

n0

1

1

1

1

1

1

1

39.

  2 

1

1

n1



n0

41.



 1  31  12  41  13  51  14  61  . . . 



n1

37.



1

n

1 2 1  12



1 10  1  110

9



1

n



n0

43.



 3 3 

n0

1

n

1 2  1  12 3



3 9  1  13 4

127

128

45.

Chapter 8

Infinite Series





1 1 1  2  3    2 n

n0

n

n



n0



1  3

n

47. 0.4 

n0

S

3 1 2  2 2 

 40100 3

1

n

51.

53.



3 40

and r 

1 100

n  10



lim

1

1

n  10 1  0 10n  1 10

Diverges by Theorem 8.9

  n  n  2   1  3    2  4    3  5    4  6   . . . 1

1

1

1

1

1

1

1

n1

55.

3n  1



a 410 4   1  r 1  110 9

 10n  1

n→ 

340 5 a   1  r 99100 66

S

n

n1

n0

Geometric series with a 

  

4 1 10 10 n0

4 1 Geometric series with a  10 and r  10

1 1   1  12 1  13

49. 0.07575 



 2n  1

57.



4

2

n

4



 2 1

1 3  , converges 2 2

n

59.



 1.075

n

n1

n0

3n  1 3  0 n→  2n  1 2

Geometric series with r  12

Geometric series with r  1.075

Converges by Theorem 8.6

Diverges by Theorem 8.6

lim

n0

n0

Diverges by Theorem 8.9

61.



n

 ln n

63. See definition, page 567.

n2

lim

n→ 

n 1  lim  ln n n→ 1n 

(by L’Hôpital’s Rule) Diverges by Theorem 8.9 65. The series given by 



67. (a) x is the common ratio. (b) 1  x  x2  . . . 

ar n  a  ar  ar 2  . . .  ar n  . . . , a  0

n0

n0





x

n



1 , x < 1 1x





Geometric series: a  1, r  x, x < 1

is a geometric series with ratio r. When 0 < r < 1, the a series converges to . The series diverges if r ≥ 1. 1r



(c) y1 

3

1 1x

y2  1  x

−1.5

1.5 −1

 11  0.5 0.5  x

69. f x  3

7

y=6

Horizontal asymptote: y  6 

 3 2  1

n

n0

S

3 6 1  12

−2

10 −1

The horizontal asymptote is the sum of the series. f n is the nth partial sum.

Section 8.2

71.

Series and Convergence

1 < 0.001 n n  1

10,000 < n2  n 0 < n2  n  10,000 n

1 ± 12  4 1 10,000

2

Choosing the positive value for n we have n  99.5012. The first term that is less than 0.001 is n  100.

18

n

< 0.001

10,000 < 8n This inequality is true when n  5. This series converges at a faster rate. n1

73.

 8000 0.9  i

i0

8000 1  0.9 n1 1 1  0.9

 80,000 1 

n1

75.

 100 0.75  i

i0

, n > 0

0.9n

100 1  0.75 n1 1 1  0.75

 400 1  0.75n million dollars. Sum  400 million dollars

77. D1  16 D2  0.81 16  0.81 16  32 0.81

  down

up

D3  16 0.81 2  16 0.81 2  32 0.81 2

 D  16  32 0.81  32 0.81 2  . . .  16 



 32 0.81

n

 16 

n0

79. P n  P 2  



1 1 2 2

 

1 1 n0 2 2



1 1 2 2 n



 2

n

2

32  152.42 ft 1  0.81

81. (a)

1

n



n1



n0

1 1

n



1 1 1 2 1  12

(b) No, the series is not geometric.

1 8

(c)

12  1 1  12

83. Present Value 



 2 2

19



50,000

n1

1 1.06 

50,000 1  1.06 n0 1.06



1

n

2

n1

n

 

18



 n 2  n1

 0.01 2  i

i0 n

50,000 1  1.0619  1.06 1  1.061



85. w  1 , r 1.06



 $557,905.82 The present value is less than $1,000,000. After accruing interest over 20 years, it attains its full value.

0.01 1  2n

 0.01 2n  1

12

(a) When n  29: w  $5,368,709.11 (b) When n  30: w  $10,737,418.23 (c) When n  31: w  $21,474,836.47

129

130

Chapter 8

Infinite Series

87. P  50, r  0.03, t  20 (a) A  50 (b) A 

89. P  100, r  0.04, t  40

12 0.03  1  0.03 12 

12 20



 1  $16,415.10

(a) A  100

50  e0.03 20  1

 $16,421.83 e0.0312  1

(b) A 

91. (a) an  6110.1832 1.0544 x  6110.1832e0.05297n

12 0.04  1  0.04 12 

12 40



 1  $118,196.13

100 e0.04 40  1

 $118,393.43 e0.0412  1

93. x  0.749999 . . .  0.74 



 0.009 0.1

n

n0 10,000

 0.74 

0.009 1  0.1

 0.74  0.01  0.75 0 6,000

10

(b) 78,530 or $78,530,000,000 9

a

(c) Total 

n

 78,449 or $78,449,000,000

n0

95. By letting S0  0, we have an 

n

a

k



k1



a

n



n1

97. Let

a

n



 S

n

 Sn1 

n1



n

a

k

 Sn  Sn1. Thus,

k1

 Sn1  c  c 

n1



 1 and  b

n

n0



 S

n1





 1 .



 c  S

 c  Sn .

n1

n1

99. False. lim

n0

n→

 1 1  0, but diverges. n n1 n



Both are divergent series.

 a

n

 bn 





n0

n0

 1  1    1  1  0

101. False 

 ar

n

n1



1 a r  a

The formula requires that the geometric series begins with n  0. 103. Let H represent the half-life of the drug. If a patient receives n equal doses of P units each of this drug, administered at equal time interval of length t, the total amount of the drug in the patient’s system at the time the last dose is administered is given by Tn  P  Pekt  Pe2kt  . . .  Pe n1 kt where k   ln 2 H. One time interval after the last dose is administered is given by Tn1  Pekt  Pe2kt  Pe3kt  . . .  Penkt. Two time intervals after the last dose is administered is given by Tn2  Pe2kt  Pe3kt  Pe4kt  . . .  Pe n1 kt and so on. Since k < 0, Tns→0 as s → , where s is an integer.

Section 8.3

Section 8.3 1.



1

3.

n1



e



1

n

n1

Let f x  ex.

1 . x1

f is positive, continuous, and decreasing for x ≥ 1.



f is positive, continuous and decreasing for x ≥ 1. 

131

The Integral Test and p-Series

 n1

Let f x 

The Integral Test and p-Series







1 dx  lnx  1 x1

1











ex dx  ex

1

1

1 e



Converges by Theorem 8.10

Diverges by Theorem 8.10

5.



n

2

n1

1 1

7.

n1

1 . x2  1 f is positive, continuous, and decreasing for x ≥ 1. Let f x 





1











1 dx  arctan x x2  1

1

lnn  1 n1

Let f x 

lnx  1 x1

f is positive, continuous, and decreasing for x ≥ 2 since

  4

fx 



Converges by Theorem 8.10



1

1  lnx  1 < 0 for x ≥ 2. x  12

lnx  1 ln2x  1 dx  x1 2







1



Diverges by Theorem 8.10

9.



nk1 k  c

n

n1

Let f x 

11.

1 3

n1

x k1 . xk  c

Let f x 

ck  1  x k  c2

x k2



xk

1 . x3

f is positive, continuous, and decreasing for x ≥ 1.

f is positive, continuous, and decreasing for k ck  1 since x > fx 



n





1

< 0



1 1 dx   2 x3 2x





1



1 2

Converges by Theorem 8.10

k for x >  ck  1.





1







x k1 1 dx  lnx k  c xk  c k

1



Diverges by Theorem 8.10

13.



1



1

 n   n

n1

5

n1

Divergent p-series with p 

17.





1

n

1 2

n1

1 5

1 Divergent p-series with p  2 < 1

< 1

1

n

n1

15.

1 5

3 2

3 Convergent p-series with p  2 > 1

19.



1

n

n1

1.04

Convergent p-series with p  1.04 > 1

132 21.

Chapter 8 

2

 n

n1

4

2 2 2   . . . 1 23 4 33 4



3

Infinite Series 23.



2

 nn  2  2 2

3 2

 2 33 2  . . .

n1

S1  2

S1  2

S2 3.189

S2 2.707

S3 4.067

S3 3.092 Matches (b)

Matches (a) 3 4

Diverges—p-series with p 

Converges—p-series with p  3 2 > 1

< 1

25. No. Theorem 8.9 says that if the series converges, then the terms an tend to zero. Some of the series in Exercises 21-24 converge because the terms tend to 0 very rapidly. N

27.

1

1

1

1

1

 n1234. . .N

> M

n1

(a)

29.



M

2

4

6

8

N

4

31

227

1674

(b) No. Since the terms are decreasing (approaching zero), more and more terms are required to increase the partial sum by 2.

1

 nln n

p

n2

If p  1, then the series diverges by the Integral Test. If p  1,





1 dx  xln xp

2





ln xp

2

1 ln xp1 dx  x p  1







.

2

Converges for p  1 < 0 or p > 1. 31. Let f be positive, continuous, and decreasing for x ≥ 1 and an  f n. Then,



33. Your friend is not correct. The series 







a

n

and

n1

f x dx

n10,000

1

is the harmonic series, starting with the 10,000th term, and hence diverges.

either both converge or both diverge (Theorem 8.10). See Example 1, page 578.

35. Since f is positive, continuous, and decreasing for x ≥ 1 and an  f n, we have, RN  S  SN 



a



n

0 ≤ RN ≤



n



n1

n1

Also, RN  S  SN 

N

a





an > 0.

nN1

an ≤ aN1 

nN1











N1

f x dx.

N

37. S6  1  R6 ≤





6

1.0811 ≤

1 1 1 1 1     1.0811 24 34 44 54 64



1 1 dx   3 x4 3x 

1

n

n1

4





6

0.0015

≤ 1.0811  0.0015  1.0826

f x dx ≤

1 1 1   . . . n 10,000 10,001





N

f x dx. Thus,

Section 8.3 1 1 1 1 1 1 1 1 1 1          0.9818 2 5 10 17 26 37 50 65 82 101

39. S10 





R10  ≤





1

n

0.9818 ≤

10



  arctan 10 0.0997 2

≤ 0.9818  0.0997  1.0815

5

n1





1 dx  arctan x x 1 2

10

1 2 3 4  4  9  16 0.4049 e e e e

41. S4 





R4 ≤

The Integral Test and p-Series

x2

xe

4





 ne

0.4049 ≤





1 2 dx   ex 2 n2

4





43. 0 ≤ RN ≤

N



1 1 dx   3 x4 3x





N



1 < 0.001 3N 3

1 < 0.003 N3

 5.6 108

N3 > 333.33

≤ 0.4049  5.6 108

n1

N > 6.93 N ≥ 7





45. RN ≤

e5x

N







1 dx   e5x 5

N

e5N  < 0.001 5

47. RN ≤





N

x2



1 < 0.005 e5N





N

  arctan N < 0.001 2

arctan N < 1.5698

e5N > 200

arctan N > 1.5698

5N > ln 200

N > tan 1.5698

ln 200 5

N >



1 dx  arctan x 1

N ≥ 1004

N > 1.0597 N ≥ 2

49. (a)



1

n

1.1 .

n2



This is a convergent p-series with p  1.1 > 1.

1

 n ln n is a divergent series. Use the Integral Test.

n2





 1  dx  ln ln x 2 2 x ln x 6 1 1 1 1 1 1 (b) 1.1  21.1  31.1  41.1  51.1  61.1 0.4665  0.2987  0.2176  0.1703  0.1393 n n2

 

 6

1

1

1

1

1

1

 n ln n  2 ln 2  3 ln 3  4 ln 4  5 ln 5  6 ln 6 0.7213  0.3034  0.1803  0.1243  0.0930

n2

The terms of the convergent series seem to be larger than those of the divergent series! (c)

1 1 < n1.1 n ln n n ln n < n1.1 ln n < n0.1 This inequality holds when n ≥ 3.5 1015. Or, n > e40. Then ln e40  40 < e400.1  e4 55.

133

134

Chapter 8

Infinite Series

51. (a) Let f x  1 x. f is positive, continuous, and decreasing on 1, .



n

Sn  1 ≤

1

y

1 dx x

1

Sn  1 ≤ ln n

1 2

Hence, Sn ≤ 1  ln n. Similarly,



n1

Sn ≥

1

1 dx  lnn  1. x

1

2

3 ... n −1

x n

n+1

Thus, lnn  1 ≤ Sn ≤ 1  ln n. (b) Since lnn  1 ≤ Sn ≤ 1  ln n, we have lnn  1  ln n ≤ Sn  ln n ≤ 1. Also, since ln x is an increasing function, lnn  1  ln n > 0 for n ≥ 1. Thus, 0 ≤ Sn  ln n ≤ 1 and the sequence an is bounded.



n1

(c) an  an1  Sn  ln n  Sn1  lnn  1 

n

1 1 dx  ≥ 0 x n1

Thus, an ≥ an1 and the sequence is decreasing. (d) Since the sequence is bounded and monotonic, it converges to a limit, . (e) a100  S100  ln 100 0.5822 (Actually 0.577216.)

53.



1

 2n  1

n1

1 . 2x  1

Let f x 

f is positive, continuous, and decreasing for x ≥ 1.







1





1 dx  ln 2x  1 2x  1

1



Diverges by Theorem 8.10

55.





 nn   n

1

p-series with p 

5 4

1 4

n1

n1

2

n

n0

Geometric series with r  23 Converges by Theorem 8.6

Converges by Theorem 8.11

59.



 3

57.

5 4



n 2  1  n n1





1  1  n 

61.

n

n1





n 1  lim 10 lim n→  n2  1 n→  1  1 n2

n→ 

Diverges by Theorem 8.9

Fails nth Term Test

lim 1 

1 n

n

e0

Diverges by Theorem 8.9

63.



1

 nln n

3

n2

Let f x 

1 . xln x3

f is positive, continuous and decreasing for x ≥ 2.





2

1 dx  xln x3





2

ln x3

1 ln x2 dx  x 2



Converges by Theorem 8.10. See Exercise 13.





2



 

1 2ln x2





2



1 2ln 22

Section 8.4

Section 8.4 1. (a)



6

n

n1

32

Comparisons of Series

Comparisons of Series



6 6   . . . S1  6 1 232

an

6 an = 3/2 n

6



6 6 6 3    . . . S1   3 4 232  3 2

n

5

32

n1

an =

4 3



6 6 6 6    . . . S1   4.9 2  0.5 1.5 11.5 24.5

 nn

n1

135

6 n n 2 + 0.5

an = 3/26 n +3

2 1

n

(b) The first series is a p-series. It converges  p  32 > 1. (c) The magnitude of the terms of the other two series are less than the corresponding terms at the convergent p-series. Hence, the other two series converge. (d) The smaller the magnitude of the terms, the smaller the magnitude of the terms of the sequence of partial sums.

Sn

n

Σ

k=1

12

6

4

2

8

10

6 k 3/2 n

Σ

10

k=1

6 k k 2+ 0.5

8 6 4

n

Σ

2

k=1

6 k 3/2 + 3 n

2

3.

1 1 < 2 n2  1 n

5.

Therefore, 

n

2

n1



diverges by comparison with the divergent p-series 

Therefore, 

1 1

n1

diverges by comparison with the divergent series 

1

 n  1.



n0

ln n

 n1

converges by comparison with the convergent geometric series 

1 ln n > . n1 n1

9. For n ≥ 3,

Therefore,

n0

1

 n.

n2

1 1 < n 3n  1 3

n

1

n2

2



10

 n1

1

3

8

1 1 > for n ≥ 2 n1 n 

1 1

n.

7.

6

Therefore,

converges by comparison with the convergent p-series

n1

4

1 n . 3

n1

Note:



1

 n  1 diverges by the integral test.

n1

11. For n > 3,

1 1 > . n2 n!

Therefore, 

1

 n!

n0

converges by comparison with the convergent p-series 

1

n.

n1

2

13.

1 1 2 ≤ en en Therefore, 

1

e

n0

n2

converges by comparison with the convergent geometric series 

 e .

n0

1

n

136

Chapter 8

15. lim

n→ 

Infinite Series

nn2  1 n2  lim 2 1 n→  n  1 1n

17. lim

n→ 

Therefore,

Therefore,





n 1

n

2

n1

 n

diverges by a limit comparison with the divergent p-series 

1

 n.

n1

n3 nn  2 n2  3n  lim 2 1 21. lim n→  n→  n  2n 1n

2n2  1 2  2n  1 2n5  n3   lim 3 5 n→  3n  2n  1 1n 3

3n5

n→ 

Therefore,

Therefore, 

 3n

 nn  2

n1

diverges by a limit comparison with the divergent p-series

converges by a limit comparison with the convergent p-series



1 3. n1 n



n1

1nn2  1 n2  lim 1 n→  n→  nn2  1 1n2

nk1nk  1 nk  lim k 1 n→  n→  n  1 1n

25. lim

23. lim

Therefore,

Therefore,



2

nk1 k 1

n

1

 nn

n1

1

 n.





n3



2n2  1  2n  1

5

n1

1

 n.

n1

19. lim

1 1

2

n0

diverges by a limit comparison with the divergent p-series 

1n2  1 n 1  lim n→  n2  1 1n

1

n1

diverges by a limit comparison with the divergent p-series

converges by a limit comparison with the convergent p-series



1

 n.



1 . 2 n n1



n1

sin1n 1n2 cos1n  lim n→  n→  1n 1n2

27. lim

29.

 n



n1



n





1

 n

n1

Diverges

1  lim cos 1 n→  n

1

p-series with p  2

Therefore, 

 sinn 1

n1

diverges by a limit comparison with the divergent p-series 

1

 n.

n1

31.



3

n1

n

1 2

33.

Converges Direct comparison with





n1

1 3



n

 2n  3

35.



 n

2

n  12

n1

n1

Diverges; nth Term Test

Converges; integral test

n

lim

n→ 

n 1  0 2n  3 2

Section 8.4 an  lim nan by given conditions lim nan is finite n→  1n n→  n→  and nonzero.

39.

37. lim

Comparisons of Series

 1 2 3 4 5 n     . . . , 2 2 5 10 17 26 n1 n  1



which diverges since the degree of the numerator is only one less than the degree of the denominator.

Therefore, 

a

n

n1

diverges by a limit comparison with the p-series 

1

 n.

n1

41.



n

3

n1

1 1

5n n 3  lim 5n n 3  51  0 3

43. lim n n→ 

converges since the degree of the numerator is three less than the degree of the denominator.



 1 45. See Theorem 8.12, page 583. One example is 2  1 n n1 converges because

47.



1 1 < and  1 n2

1.0

4

n3 diverges. 3

4

Terms of ∞ Σ an

0.8

n=1

0.6

1

n

n1

n→ 

Therefore,

n1

n2

4

4

 5n



Terms of ∞ 2 Σ an

0.4

2

n=1

0.2

converges ( p-series).

n 4

8

12

16

20

For 0 < an < 1, 0 < an2 < an < 1. Hence, the lower terms are those of  an2.

49.

 1 1 1 1   . . . , diverges 200 400 600 n1 200n



51.

 1 1 1 1 1     , converges 201 204 209 216 n1 200  n2



55. False. Let an  1n3 and bn  1n2. 0 < an ≤ bn and both

53. Some series diverge or converge very slowly. You cannot decide convergence or divergence of a series by comparing the first few terms.



1

n

n1

3

and



n1

57. True 

b

n

converges, lim bn  0. There exists N such that bn < 1 for n > N. Thus, n→ 

n1

anbn < an for n > N and



a

n bn

n1

converges by comparison to the convergent series



a

n.

i1

61.

1

n

2

and

1

n

3

both converge, and hence so does

n n   n . 1

1

1

2

3

5

1

n

converge.

59. Since

137

2

138

Chapter 8

Infinite Series

63. (a) Suppose bn converges and  an diverges. Then there exists N such that 0 < bn < an for n ≥ N. This means that 1 < an bn for n ≥ N. Therefore, lim an bn  0. Thus,  an must also converge. n→ 

(b) Suppose  bn diverges and  an converges. Then there exists N such that 0 < an < bn for n ≥ N. This means that 0 < an bn < 1 for n ≥ N. Therefore, lim an bn  . Thus,  an must also diverge. n→ 

65. Start with one triangle whose sides have length 9. At the nth step, each side is replaced by four smaller line segments each having 13 the length of the original side.

3 3

#Sides

Length of sides

3

3

9

3

42

9

 9 

3  4n

9 13 

34 3

1 3

1 2 3



n

At the nth step there are 3  4n sides, each of length 9 13  . At the next step, there are 3  4n new triangles of side 9 13  area of an equilateral triangle of side x is 14 3 x 2. Thus, the new triangles each have area n

1 4 3 

3

9

n1

The area of the 3

2



3 1

4 32n

. The

.

 4n new triangles is

4 

3  4n 

n1

3 1

32n



33 4 4 9



n .

The total area is the infinite sum  33 4 93  4 4 9 n0





n









93 33 1 93 33 9 183   .   4 4 1  49 4 4 5 5

The perimeter is infinite, since at step n there are 3  4n sides of length 9 13  . Thus, the perimeter at step n is 27 43  → . n

n

Section 8.5 1.



6

n

2

n1

5.



Alternating Series

6 6 6 . . .    1 4 9

3.



10

 n2

n1

n



10 10 . . .   2 8

S1  6, S2  7.5

S1  5, S2  6.25

Matches (b)

Matches (c)

1n1   0.7854 4 n1 2n  1 



(a)

(b)

n

1

2

3

4

5

6

7

8

9

10

Sn

1

0.6667

0.8667

0.7238

0.8349

0.7440

0.8209

0.7543

0.8131

0.7605

1.1

0

11 0.6

(c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next term of the series.

Section 8.5

7.

Alternating Series

1n1  2  0.8225 n2 12 n1 



(a)

(b)

n

1

2

3

4

5

6

7

8

9

10

Sn

1

0.75

0.8611

0.7986

0.8386

0.8108

0.8312

0.8156

0.8280

0.8180

1.1

0

11 0.6

(c) The points alternate sides of the horizontal line that represents the sum of the series. The distance between successive points and the line decreases. (d) The distance in part (c) is always less than the magnitude of the next term in the series.

9.

1n1 n n1 



an1  lim

n→ 

11.

1 1 <  an n1 n

an1 

1 0 n

lim

n→ 

Converges by Theorem 8.14.

13.

1n n2 2 n1 n  1 



lim

n→ 

n2

1n1 n1 2n  1 



1 1 <  an 2n  1  1 2n  1

1 0 2n  1

Converges by Theorem 8.14

15.

n2 1 1

1n n1 n 



an1 

Diverges by the nth Term Test

lim

n→ 

1 n  1

1 n

<

1 n

 an

0

Converges by Theorem 8.14

17.

1n1n  1 lnn  1 n1 



lim

n→ 

19.



 sin

n1

n1 1  lim  lim n  1   lnn  1 n→ 1n  1 n→

 2n  1  1n1 2 n1



Diverges by the nth Term Test

Diverges by the nth Term Test

21.





n1

n1

 cos n   1

n

Diverges by the nth Term Test

23.

1n n! n0 



an1  lim

n→ 

1 1 <  an n  1! n!

1 0 n!

Converges by Theorem 8.14

139

140

25.

Chapter 8

Infinite Series

1n1n n2 n1 



n  1 n < for n ≥ 2 n  1  2 n2

an1 

n

lim

n→ 

27.

n2

 1n12en 1n12  n n e  e e2n  1 n1 n1 





Let f x 

0

2ex . Then e 1

f x 

2x

2ex e2x  1 < 0. e2x  12

Thus, f x is decreasing. Therefore, an1 < an , and

Converges by Theorem 8.14

lim

n→ 

2en 2en 1  lim  0.  lim e2n  1 n→ 2e2n n→ en

The series converges by Theorem 8.14.

29. S6 

31n1  2.4325 n2 n1 6



3

R6  S  S6 ≤ a7  49 0.0612; 2.3713 ≤ S ≤ 2.4937 31. S6 

21n 0.7333 n! n0 5



2

R6  S  S6 ≤ a7  6!  0.002778; 0.7305 ≤ S ≤ 0.7361 33.

1n n! n0 



35.

1n

n0

(a) By Theorem 8.15,

RN



 2n  1!

≤ aN1 

(a) By Theorem 8.15, 1 < 0.001. N  1!

RN

This inequality is valid when N  6.

≤ aN1 

1 < 0.001.

2N  1  1!

This inequality is valid when N  2.

(b) We may approximate the series by

(b) We may approximate the series by

1n 1 1 1 1 1 11     n! 2 6 24 120 720 n0 6

2



1n

1

1

 2n  1!  1  6  120 0.842.

n0

0.368.

(3 terms. Note that the sum begins with n  0.)

(7 terms. Note that the sum begins with n  0.)

37.

1n1 n n1 



39.

(a) By Theorem 8.15,

RN

1 ≤ aN1  < 0.001. N1

This inequality is valid when N  1000. (b) We may approximate the series by

1n1 1 1 1 1 1    . . . n 2 3 4 1000 n1 1000



0.693. (1000 terms)

1n1 3 n1 2n  1 



By Theorem 8.15,

RN

≤ aN1 

1 < 0.001. 2N  13  1

This inequality is valid when N  7.

Section 8.5

41.

1n1 2 n1 n  1 

 

1

 n  1

2

n1



43.

1n1 n n1



The given series converges by the Alternating Series Test, but does not converge absolutely since

converges by comparison to the p-series



1

 n

1

2

n1

is a divergent p-series. Therefore, the series converges conditionally.

Therefore, the given series converge absolutely.

45.

141



n.

n1

Alternating Series

1n1 n2 2 n1 n  1 



47.

n2 1 n→  n  12

1n n2 lnn 



The given series converges by the Alternating Series Test, but does not converge absolutely since the series

lim





Therefore, the series diverges by the nth Term Test.

n 2

1 ln n

diverges by comparison to the harmonic series 

1

 n.

n1

Therefore, the series converges conditionally.

49.

1n n 3 n2 n  1 

 

n

3

n2

51.

n0



n 1

n0

is convergent by comparison to the convergent geometric series 

 2

1

n. 2

n2

1

 2n  1!

converges by a limit comparison to the convergent p-series 

1n



 2n  1!

1

n

n0

Therefore, the given series converges absolutely.

since 1 1 < n for n > 0. 2n  1! 2 Therefore, the given series converges absolutely.

53.

 1n cos n  n0 n  1 n0 n  1 





55.

The given series converges by the Alternating Series Test, but

 n  1   n  1 

cos n

n0



1

n0

diverges by a limit comparison to the divergent harmonic series, 

1

 n.

n1

lim

n→ 

cos n n  1  1, therefore the series 1n

converges conditionally.

 1n cos n  2 n n2 n1 n1 

 



1

n

n1

2

is a convergent p-series. Therefore, the given

series converges absolutely.

142

Chapter 8

Infinite Series

57. An alternating series is a series whose terms alternate in sign. See Theorem 8.14.

59.

a  converges. is conditionally convergent if a  diverges, but a converges.

a a

n

is absolutely convergent if

n

n

n

n

61. (b). The partial sums alternate above and below the horizontal line representing the sum. 

63. Since

 a  converges we have

65.

n



n1

n1

1

n

2

converges, hence so does



1

n.

n1

4

 

lim an  0.

n→ 

 

Thus, there must exist an N > 0 such that aN < 1 for all n > N and it follows that an2 ≤ an for all n > N. Hence, by the Comparison Test,

 



a

2

n

n1

converges. Let an  1n to see that the converse is false.

67. False Let an 

69.



n1

1n . n

71. Diverges by nth Term Test. lim an   n→ 



75. Convergent Geometric Series r 

1 e

or Integral Test

10

n

32

 10



1

n

n1

32

convergent p-series

73. Convergent Geometric Series r  78 < 1

77. Converges (absolutely) by Alternating Series Test

79. The first term of the series is zero, not one. You cannot regroup series terms arbitrarily.

Section 8.6 1.

The Ratio and Root Tests

n  1! n  1nn  1n  2!  n  2! n  2!  n  1nn  1

3. Use the Principle of Mathematical Induction. When k  1, the formula is valid since 1  13

5.

. . 2n  1  2n! 2n n!

and show that 13

5.

. . 2n  12n  1 

—CONTINUED—

2n  2! . 2n1n  1!

21! . Assume that 21  1!

Section 8.6

The Ratio and Root Tests

143

3. —CONTINUED— To do this, note that:

35.

1

. . 2n  12n  1  1

35.

. . 2n  1 2n  1



2n!  2n  1 2n n!



2n!2n  1 2n  2  2n  1 2n n!



2n!2n  12n  2 2n1n!n  1



2n  2! 2n1n  1

The formula is valid for all n ≥ 1.

5.



 n 4 3

n

1

n1

34  2169  . . .

7.

3 S1  , S2 1.875 4

33 3n1 9 . . . n! 2 n1 





 5n  3

9.

4n

n



n1

S1  9

S1  2

Matches (f)

Matches (a)



4 8  2 7

2

. . .

Matches (d)

11. (a) Ratio Test: lim

n→ 

(b)

(c)

 

an1 n  1258n1 n1  lim  lim n→  n→  an n258n n



n

5

10

15

20

25

Sn

9.2104

16.7598

18.8016

19.1878

19.2491



2

5 5  < 1. Converges 8 8

20

0

12 0

(d) The sum is approximately 19.26. (e) The more rapidly the terms of the series approach 0, the more rapidly the sequence of the partial sums approaches the sum of the series.

13.



n!

3

n0

lim

n→ 

15.

n

  

an1 n  1!  lim n→  an 3n1  lim

n→ 

3n

 n!

n1  3





n

2

lim

n→ 

n1

lim

n→ 

  

an1 n1  lim n→  2n1 an  lim

n→ 



2n n

n1 1  2n 2



Therefore, by the Ratio Test, the series converges.

n

   

an  1 n  134n1  lim n→  an n34n  lim

n→ 



3n  1 3  4n 4



Therefore, by the Ratio Test, the series converges.

19.

n

3

n1

Therefore, by the Ratio Test, the series diverges.

17.



 n 4



2n

n

n1

lim

n→ 

2

  

an1 2n1  lim n→  n  12 an  lim

n→ 

2n2

n  12

n2

 2n



2

Therefore, by the Ratio Test, the series diverges.

144

21.

Chapter 8

Infinite Series

1n 2n n! n0 



  

an1 2n1  lim n→  n  1! an

lim

n→ 



n!

 2n

2 0 n→  n  1

n!

 n3

23.

n

n1



lim

n→ 

  

an1 n  1!  lim n→  n  13n1 an n→ 



4n

 n!

n0

lim

n→ 

  

an1 4n1  lim n→  n  1! an

n!

 4n

4 0 n1

 lim

n→ 



Therefore, by the Ratio Test, the series converges.

27.



3n

 n  1

n

n0

lim

n→ 

  

an1 3n1  lim n→  n  2n1 an





n  1n 3n  1n 3 n1  lim  lim n n→  n  2n1 n→  n  2 n  2 3

n→ 





n

 0

1e  0

nn  12 , let y  lim nn  12 . Then, n

To find lim

n→ 

ln y  lim

n→ 

n

n→ 

ln y  lim n ln

1n  2 0  nn  12  lim ln n  1n 0 n→ 

1n  1  1n  2  1 by L’Hôpital’s Rule  1n2

1 y  e1  . e Therefore, by the Ratio Test, the series converges.

29.



3

4n 1

lim

an1 4n1  lim n1 n→ an 1  3

n0

n→ 

n

  





3n  1 43n  1 41  13n 4  lim n1   lim n n→ n→ 4 1 3  3  3  13n

Therefore, by the Ratio Test, the series diverges.

31.



1n1n!

 1  3  5 . . . 2n  1

n0

lim

n→ 

  

an1  lim n→  1 an

3

n  1!  5 . . . 2n  12n  3



1

35.

. . 2n  1 n!

Therefore, by the Ratio Test, the series converges. Note: The first few terms of this series are 1 

n3n n!



Therefore, by the Ratio Test, the series diverges.

Therefore, by the Ratio Test, the series converges.

25.

n  3 

 lim

 lim



1 1

3



2!

1

35





3!

1

 lim

n→ 

357

n1 1  2n  3 2

. . .

Section 8.6 

32

n1

lim

n→ 









32







12



n32 n  lim n→  n  1 1



n12 n  lim n→  n  1 1

1

1

12

n1

lim

n→ 

35.

  

an1 1  lim n→  n  132 an

n

(b)



  

an1 1  lim n→  n  112 an

 2n  1 n

1

n

37.

 

2n n 1

n lim  an  lim

n

n

 

n→ 

n 1  2n  1 2

n→ 

n→ 

 lim

n→ 

Therefore, by the Root Test, the series converges. 

1n

n an  lim lim 

n

n→ 

 lim

39.



 ln n

n2

n1

n→ 

145

1

n

33. (a)

The Ratio and Root Tests

 

 ln1n

n

n

1

ln n

n

0

Therefore, by the Root Test, the series converges.

 2n  1

n

n

n1

 

n 2 n n  1  lim 2   n n  1n  n→

n a lim  n  lim

n→ 

n→ 



n n, let y  lim  x x. Then To find lim  n→ 

n→ 

ln y  lim

n→ 



x x ln 

1 ln x 1x lim ln x  lim  lim  0.   n→ n→  x n→  1 x

n n  1  21  1  3. Therefore, by the Root Test, the series diverges. Thus, ln y  0, so y  e0  1 and lim 2  n→ 

41.



1

 ln n

43.

n

n3

 

ln1n

n a lim  n  lim

n→ 

n

n→ 

n

 lim

n→ 

1 0 ln n

1n1 5 n n1 



an1 

Therefore, by the Root Test, the series converges.

5 5 <  an n1 n

lim

n→ 

5 0 n

Therefore, by the Alternating Series Test, the series converges (conditional convergence).

45.



3



1

 nn  3  n

n1

n1

47.

32



2n

 n1

n1

This is convergent p-series.

lim

n→ 

2n 20 n1

This diverges by the nth Term Test for Divergence.

49.

 1n 3n 32  1 1n 3n2 3    n n 2 2 9 2 n1 n1 n1 







 

n

3 Since r  2 > 1, this is a divergent geometric series.

51.

10n  3 n2n n1 



lim

n→ 

10n  3n2n 10n  3  10  lim n→  12n n

Therefore, the series converges by a limit comparison test with the geometric series 

 2 .

n0

1

n

146

53.

Chapter 8

Infinite Series

cosn 2n n1 



55.

 

cosn 1 ≤ n 2n 2



n1

n7n n1 n! lim

n→ 

Therefore, the series







  

an1 n  17n1  lim n→  an n  1!

n!

 n7n



 lim

n→ 

7 0 n

Therefore, by the Ratio Test, the series converges.

  cosn 2n

converges by comparison with the geometric series 

 2 . 1

n

n0

57.

1n 3n1 n! n1 



lim

n→ 

  

an1 3n  lim n→ an  n  1!

n!

 3n1



 lim

n→ 

3 0 n1

Therefore, by the Ratio Test, the series converges.

59.

3n



 3  5  7 . . . 2n  1

n1

lim

n→ 

  

an1  lim n→  3 an

3n1 . .  5  7 . 2n  12n  3



3

57.



. . 2n  1 3 0  lim n→  2n  3 3n

Therefore, by the Ratio Test, the series converges.

63. (a) and (b) are the same.

61. (a) and (c)  n  15n1 n5n  n  1! n1 n! n0 





5

252 353 454 . . .    2! 3! 4!

65. Replace n with n  1. 

n

4

n1

n





n1 n1 n0 4



67. Since

69. See Theorem 8.17, page 597.

310  1.59  105, 210 10! use 9 terms.

3k 0.7769 k k1 2 k! 9



71. No. Let an  The series

1 . n  10,000



1

 n  10,000 diverges.

n1

73. The series converges absolutely. See Theorem 8.17.

Section 8.7 75. First, let

147

Second, let



n a lim  n  r < 1

n→ 







n a lim  n  r > R > 1.

n→ 

and choose R such that 0 ≤ r < R < 1. There must exist n a some N > 0 such that  n < R for all n > N. Thus, for n > N, we an < Rn and since the geometric series 

Taylor Polynomials and Approximations



n a Then there must exist some M > 0 such that  n > R for all n > M. Thus, for n > M, we have an > Rn > 1 which implies that lim an  0 which in turn implies that



n→ 



R

a

n

n

n0

diverges.

n1

converges, we can apply the Comparison Test to conclude that 

a n

n1

converges which in turn implies that



a

n

converges.

n1

Section 8.7

Taylor Polynomials and Approximations 3. y  e12x  1  1

1

1. y   2 x 2  1 Parabola

Linear

Matches (d)

Matches (a)

5. f x 

4 x

fx  2x32

f 1  2

fx  sec x tan x

P1x  f 1  f1x  1 P1x  f

 4  2x  1 P1x  2x  6

4  2

f

4  2

4  f 4 x  4 

P1x  2  2 x 

10

P1

f

7. f x  sec x

f 1  4

 4x12

 4



5

(1, 4)

f

f −2

( π4 , 2)

6 −2



P1

 4

 2 −1

9. f x 

4 x

f 1  4

 4x12

x

0

0.8

0.9

1.0

1.1

1.2

2

fx  2x

f1  2

f x

Error

4.4721

4.2164

4.0

3.8139

3.6515

2.8284

f x  3x

f 1  3

P2x

7.5

4.46

4.215

4.0

3.815

3.66

3.5

32

52

f 1 P2  f 1  f1x  1  x  12 2 3  4  2x  1  x  12 2 10

P2 (1, 4) f −2

6 −2

148 11.

Chapter 8

Infinite Series

f x  cos x

(b)

P2x  1 

1 2 2x

P4x  1 

1 2 2x

P6x  1 

1 2 2x

(a)



1 4 24 x



1 4 24 x

P2x  x

f x  cos x

P2 x  1

f 0  P2 0  1 1 6 720 x



f x  sin x

P4 x  x

f 4x  cos x

2

P6

−3

fx  sin x

f 40  1  P440 f 5x  sin x P65x  x

P4 3

f

P44x  1

P2

f 6x  cos x

−2

P6x  1

f 60  1  P660 (c) In general, f n0  Pnn0 for all n. 13.

f x  ex

f 0  1

fx  ex

f x  e2x

f 0  1

f0  1

fx  2e2x

f0  2

f x  ex

f 0  1

f x  4e2x

f 0  4

fx  ex

f0  1

fx  8e2x

f0  8

f 4x  162x

f 40  16

P3x  f 0  f0x  1x

17.

2



f 0 2 f0 3 x  x 2! 3!

6

 1  2x  2x 2 

f 0  0

fx  cos x

f0  1

f x  sin x fx  cos x

f 0  0

f x 

xex

f0  1

fx 

xex xex

0

f 50  1

P5x  0  1x 

0 2 1 3 0 1 x  x  x 4  x5 2! 3! 4! 5!

f x 

f 4x



f 0  1

1 x  12

f 0  0 

f0  1



2ex

f 0  2



3ex

f0  3



4ex

f 40  4

P4x  0  x 

2 2 3 4 x  x3  x 4 2! 3! 4!

 x  x2 

fx  sec x tan x

P2x  1  0x 

f 0  2

fx 

6 x  14

f0  6

f 4x 

24 x  15

P4x  1  x 

f 0  1

f x 

2 x  12

f 40  24 2 2 6 3 24 4 x  x  x 2! 3! 4!

 1  x  x 2  x3  x 4

1 3 1 4 x  x 2 6

23. f x  sec x

f0  1

f x 

4 3 2 4 x  x 3 3

ex

1 5 1 3 x  x 6 120

1 x1

fx  

f x  xex fx 

f 5x  cos x

x

19.

xex

f 40

 sin x

4 2 8 16 4 x  x3  x 2! 3! 4!

P4x  1  2x 

x3

f x  sin x

f 4x

21.

x2

15.

sec3 x

f0  0

 sec x

tan2

x

f 0  1

1 2 1 x  1  x2 2! 2

Section 8.7 f x 

25.

1 x

fx   f x 

f 4x 

149

f 1  1 1 x2

f1  1

2 x3

fx  

Taylor Polynomials and Approximations

f 1  2 6 x4

f1  6

24 x5

f 41  24

P4x  1  x  1 

2 6 24 x  12  x  13  x  14 2! 3! 4!

 1  x  1  x  12  x  13  x  14 f x  x

27.

fx 

f 1  1

1

f1 

2x

1 f x   4xx fx 

1 2

3

f1 

15 16x3x

3 8

f 41  

15 16

fx 

fx  4 sec2 x tan2 x  2 sec4 x f 4x  8 sec2 x tan3 x  16 sec4 x tan x f 5x  16 sec2 x tan4 x  88 sec4 x tan2 x  16 sec6 x 6

 2

f

Q3 −6

f 1  1 f1  2

6 x4

f 41  6

1 P4x  0  x  1  x  12 2 1 1  x  13  x  14 3 4

P3x  0  x 

f x  2 sec2 x tan x

 2 P3 P5

1 x2

(a) n  3, c  0

sec2 x



f1  1

2 x3

f 4x  

5 1 x  13  x  14 16 128

f x  tan x

31.

f 1  0

1 x

f x   fx 

1 1 P4x  1  x  1  x  12 2 8 

f x  ln x fx 

1 f 1   4

8x 2x

f 4x  

29.

0 2 2 1 x  x3  x  x3 2! 3! 3

(b) n  5, c  0 0 2 2 0 16 5 x  x3  x 4  x 2! 3! 4! 5! 2 5 1 x  x  x3  3 15

P5x  0  x 

(c) n  3, c 

 4



  4  x 4 2! 4





  2 x 4 4

2

Q3x  1  2 x  12 x









2





 16 x 3! 4



8  x 3 4





3



3

150

Chapter 8

Infinite Series

f x  sin x

33.

P1x  x P3x  x  16 x3 1 5 P5x  x  16 x3  120 x 1 1 1 P7x  x  6 x3  120 x5  5040 x7

(a)

(b)

x

0.00

0.25

0.50

0.75

1.00

sin x

0.0000

0.2474

0.4794

0.6816

0.8415

P1x

0.0000

0.2500

0.5000

0.7500

1.0000

P3x

0.0000

0.2474

0.4792

0.6797

0.8333

P5x

0.0000

0.2474

0.4794

0.6817

0.8417

P7x

0.0000

0.2474

0.4794

0.6816

0.8415

3

P1

P3

P7 f − 2

2

P5 −3

(c) As the distance increases, the accuracy decreases 35. f x  arcsin x (a) P3x  x  (b)

x3 6

(c)

y

π 2

x

0.75

0.50

0.25

0

0.25

0.50

0.75

f x

0.848

0.524

0.253

0

0.253

0.524

0.848

P3x

0.820

0.521

0.253

0

0.253

0.521

0.820

x

−1

1

P3 −

P8

y

y

P4 4

6

x

−4 −3 −2

8

2

−4 −3

−6

41. f x  ex 1  x 

x 2 x3  2 6

12 0.6042 f x  ln x x  1  12 x  12  13 x  13  14 x  14

f 1.2 0.1823 45. f x  cos x; f 5x  sin x ⇒ Max on 0, 0.3 is 1. R4x ≤

f(x) = ln (x 2 + 1)

1 x

P6 P2

43.

P2

2

f(x) = cos x

2

f

P6

3

6

−6

π 2

39. f x)  lnx2  1

37. f x  cos x

1 0.35  2.025 105 5!

P8

P4

3

4

f

Section 8.7

47. f x  arcsin x; f 4x 

151

x6x 2  9 ⇒ Max on 0, 0.4 is f 40.4 7.3340. 1  x 272

7.3340 0.44 0.00782  7.82 103 4!

R3x ≤

49. gx  sin x gn1x Rnx ≤

Taylor Polynomials and Approximations

51. f x  lnx  1

≤ 1 for all x

f n1x 

1 0.3n1 < 0.001 n  1!

By trial and error, n  3.

Rn ≤

1n1n! ⇒ Max on 0, 0.5 is n!. x  1n1

0.5n1 n! < 0.0001 0.5n1  n  1! n1

By trial and error, n  9. (See Example 9.) Using 9 terms, ln1.5 0.4055.

53.

f x  ex 1  x 

x 2 x3  , x < 0 2 6

ez 4 x < 0.001 4!

R3x 

ez x 4 < 0.024

55. The graph of the approximating polynomial P and the elementary function f both pass through the point c, f c and the slopes of P and f agree at c, f c. Depending on the degree of P, the nth derivatives of P and f agree at c, f c.

xe z4 < 0.3936 x <

0.3936 < 0.3936, z < 0 e z4

0.3936 < x < 0 57. See definition on page 607.

59. The accuracy increases as the degree increases (for values within the interval of convergence).

61. (a) f x  e x

63. (a) Q2x  1 

 2x  22 32

(b) R2x  1 

 2x  62 32

P4x  1  x 

1 2 1 3 1 4 x  x  x 2 6 24

gx  xe x Q5x  x 

x2

1 1 1 5 x  x3  x 4  2 6 24

(c) No. The polynomial will be linear. Translations are possible at x  2  8n.

Q5x  x P4x (b) f x  sin x P5x  x 

x5 x3  3! 5!

gx  x sin x Q6x  x P5x  x 2  (c) gx 

x6 x4  3! 5!

sin x 1 x2 x 4  P5x  1   x x 3! 5!

65. Let f be an even function and Pn be the nth Maclaurin polynomial for f. Since f is even, f is odd, f is even, f is odd, etc. (see Exercise 45). All of the odd derivatives of f are odd and thus, all of the odd powers of x will have coefficients of zero. Pn will only have terms with even powers of x. 67. As you move away from x  c, the Taylor Polynomial becomes less and less accurate.

152

Chapter 8

Infinite Series

Section 8.8

Power Series

1. Centered at 0

5.



xn n1

 1

n

n0

       

n→ 

n1

 1n xn

n1 x  x n2

 lim

n→ 

9.

7.

un1 1n1xn1  lim n→  un n2

L  lim

x

3. Centered at 2

L  lim

n→ 

 lim

n→ 

< 1⇒R1

2x2n n0 2n!



n→ 

11.

   

un  1 2x 2n  2!  lim n→  un 2x2n2n!  lim

n→ 

2n2



1n x n n n1 n→ 

n  12



    

un1 1  lim n→  un n1

n1xn1

n→ 

n

 1n xn

nx  x n1



Interval: 1 < x < 1

n

xn



lim

n→ 

      un1 x n1  lim  n→ un n  1!  lim

n→ 







 n!

n0



1

 n diverges.

Therefore, the interval of convergence is 1 < x ≤ 1. 

 2n!2

n0

lim

n→ 

x

n

  

un1 2n  2!x n1  lim n→  un 2n1

2n

 2n!x n



 lim

n→ 

Therefore, the series converges only for x  0.

19.





2n  22n  1 x  2

1n1x n 4n n1 



 

n!

 xn

x 0 n1

The series converges for all x. Therefore, the interval of convergence is   < x < .

n1

17.

1 2

 

1n When x  1, the alternating series converges. n n1 When x  1, the p-series

x

2x

Since the series is geometric, it converges only if x2 < 1 or 2 < x < 2.

15.

 lim



 2



n0



lim

2n2x

n2

 2xn

2x 0 2n  22n  1 2

Thus, the series converges for all x. R  .



     

un1 2xn1  lim n→  n  12 un

2 x < 1⇒R





L  lim

13.



2xn 2 n1 n 



Since the series is geometric, it converges only if x4 < 1 or 4 < x < 4.

Section 8.8

21.

1n1x  5n n5n n1

Power Series

153





lim

n→ 

  

un1 1n2x  5n1  lim n→ un n  15n1 

n5n

 1n1x  5n

R5

   lim

n→ 



nx  5 1  x5 5n  1 5





Center: x  5 Interval: 5 < x  5 < 5 or 0 < x < 10 When x  0, the p-series





n1

1 diverges. n

When x  10, the alternating series

1n1 converges. n n1 



Therefore, the interval of convergence is 0 < x ≤ 10.

23.

1n1x  1n1 n1 n0 



lim

n→ 

  

un1 1n2x  1n2  lim n→  un n2

n1

 1n1x  1n1

R1

   lim

n→ 



n  1x  1  x  1 n2

Center: x  1 Interval: 1 < x  1 < 1 or 0 < x < 2 

1

 n  1 diverges by the integral test.

When x  0, the series

n0

When x  2, the alternating series

1n1 converges. n0 n  1 



Therefore, the interval of convergence is 0 < x ≤ 2.

25.

x  cn1 cn1 n1 



lim

n→ 

27.

  

un1 x  cn  lim n→  un cn

cn1

 x  cn1

Rc





n

 n  1 2x

n1

n1



1 xc c





lim

n→ 

   

un1 n  12xn  lim n→  un n2  lim

Center: x  c

n→ 

Interval: c < x  c < c or 0 < x < 2c 

When x  0, the series

 1

n1

R diverges.

n1

When x  2c, the series



 1 diverges.

n1

Therefore, the interval of convergence is 0 < x < 2c.



2xn  12  2x nn  2

1 2

Interval: 

n1

 n2xn1



1 1 < x < 2 2

 1 n When x   , the series diverges 2 n  1 n1 by the nth Term Test.



 1n1n 1 When x  , the alternating series diverges. 2 n1 n1



Therefore, the interval of convergence is 

1 1 < x < . 2 2

154

29.

Chapter 8 

Infinite Series

x 2n1

 2n  1!

n0

lim

n→ 

   

un1 x 2n3  lim n→  2n  3! un  lim

n→ 



2n  1! x 2n1

x2

2n  22n  3





0

Therefore, the interval of convergence is   < x < 31.

.

kk  1 . . . k  n  1x n n! n1 



lim

n→ 

  

un1 kk  1 . . . k  n  1k  nx n1  lim n→  un n  1!

 kk  1 .

 



n! k  nx lim  x . . k  n  1xn  n→  n1

R1



When x  ± 1, the series diverges and the interval of convergence is 1 < x < 1.

kk  11  2 . .k .n n  1 ≥ 1

. . .

33.

1n1 3  7  11 . . . 4n  1x  3n 4n n1 



lim

n→ 

   

un1 1n2  3  lim n→  un  lim

n→ 

 7  11 .



. . 4n  14n  3x  3n1 4n1

 1n1

4n  3  7  11 . . . 4n  1x  3n

4n  3x  3  4

R0

Center: x  3 Therefore, the series converges only for x  3. 

35. (a) f x 

 2 , 2 < x < 2 n

x

(Geometric)

37. (a) f x 

n0

(b) fx 



 22 n

x

n1

, 2 < x < 2

1n1x  1n1 ,0 < x ≤ 2 n1 n0

(d)





 2 n

n2



39. g1 

n1 2

2x 

2

x

n2

, 2 < x < 2



1

n

1

n0

(c) f  x 

n1

, 2 ≤ x < 2

n0

 3

 1

n1

x  1n, 0 < x < 2

n0

 n  1 2

f x dx 



(b) fx 

n1

(c) f  x 





1 1 . . .   3 9

(d)





 1

n1

nx  1n1, 0 < x < 2

n1

f x dx 

41. g3.1 



1n1x  1n2 ,0 ≤ x ≤ 2 n  1n  2 n1 



 3  3.1

n

diverges. Matches (b)

n0

S1  1, S2  1.33. Matches (c) 43. A series of the form 

 a x  c n

n

n0

is called a power series centered at c.

45. A single point, an interval, or the entire real line.



Section 8.8

1n x 2n1 ,  < x <  n0 2n  1! 



47. (a) f x 

Power Series

(See Exercise 29.)

1n x 2n ,  < x <  2n! n0 



gx 

1n x 2n  gx 2n! n0 



(b) fx 

(c) gx 

 1n1x 2n1  1n x2n1 1n x 2n1   f x  2n  1! n1 2n  1! n0 n0 2n  1! 







(d) f  x  sin x and gx  cos x

y

49.



x 2n n n!

2

n0



y 

2nx 2n1 n n1 2 n!

y 

2n2n  1x 2n2 2n n! n1

y  xy  y 

 



 2nx 2n  x 2n 2n2n  1x 2n2   n n n 2 n! n1 n1 2 n! n0 2 n! 



 2n  1x 2n 2n2n  1x 2n2  n n! 2 2n n! n1 n0







(a) lim







 

n0

51. J0x 





2n  22n  1x2n 2n  1x2n 2n  1   2n  1 2n1n  1! 2n n!

2n  1x 2n 2n  1  2n  1 0 2n1n  1! n0 



1k x 2k 2k 2 k0 2 k!

k→ 







  

uk1 1k1 x 2k2  lim 2k2 k→  2 uk k  1! 2

22k k!2

 1k x 2k

   lim

Therefore, the interval of convergence is   < x < J0 

(b)



 1

k

k0

J0 

4k k!2



 2k2k  1x 2k2 2k  22k  1x 2k  1k1 4k k!2 4k1 k  1! 2 k0

k

 1

k







1k1

k0

—CONTINUED—

x 2k  2kx 2k1 2k  2 x 2k1  1k1 k1 k 2 4 k! 4 k  1! 2 k0



k1

x 2J0  xJ0  x 2J0 

.



1x 2 0 22k  12

 1

k1

J0 

k→ 



  22k  1 x 2k2 2x 2k2 x 2k2  1k1 k1  1k k 2 k1 4 k  1!k! 4 k  1!k! k0 4 k! k0







1k x2k2 22k  1 2 1  1 1 4k k!2 4k  1 4k  1 k0



1k x 2k2 4k  2 2 4k  4   0 4k k!2 4k  4 4k  4 4k  4 k0



 











155

156

Chapter 8

Infinite Series

51. —CONTINUED— x2 x4 x6   4 64 2304

(c) P6x  1 



1

(d)

0

0

3

 −6

 1

J0dx 

1k x 2k k 2 dx k0 4 k! 

 x  4 1 k! 2k  1



k

k

k0

6

1

2k1

2

0

1k  k 4  k! 22k  1 k0 



−5

1

1 1   0.92 12 320

(exact integral is 0.9197304101) 

 1

53. f x 

n

n0

x 2n  cos x 2n!



2



 x



n

n0

1 1  for 1 < x < 1 1  x 1  x 3

−2

2

−1

−2



n n

n0

(See Exercise 47.)

57.



 1 x

55. f x 

 2 x

1 0

n

n0

(a)



 2  34

n



n0



 8 3

n

(b)

n0







n0

1 8   1.6 1  38 5



n





  8  3

n

n0



1.80

−1

34 2

1 8   0.7272 1  38 11

1.10

−1

6 0

 2 N

(c) The alternating series converges more rapidly. The partial sums of the series of positive terms approach the sum from below. The partial sums of the alternating series alternate sides of the horizontal line representing the sum.

(d)

1nx n n2n n0 



converges for x  2 but diverges for x  2.

3

n

> M

n0

M 10 N

59. False;

6 0.60

4

100

1000

10,000

9

15

21

61. True; the radius of convergence is R  1 for both series.

Section 8.9

Section 8.9 1. (a)

Representation of Functions by Power Series

Representation of Functions by Power Series

1 12 a   2  x 1  x2 1  r 

 2 2



1 x

n



3. (a)

1 12 a   2  x 1  x2 1  r

xn

2



n0



n1

n0



 2  2  1

x

n



n0

This series converges on 2, 2.

1n xn 2n1 n0 



This series converges on 2, 2.

1 x x2 x3    . . . 2 4 8 16 (b) 2  x ) 1 x 1 2 x 2 x x2  2 4 x2 4 x 2 x3  4 8 x3 8 x3 x4  8 16

1 x x2 x3    . . . 2 4 8 16 (b) 2  x ) 1 x 1 2 x  2 x x2   2 4 x2 4 x 2 x3  4 8 x3  8 x3 x4   8 16





5. Writing f x in the form a1  r, we have

7. Writing f x in the form a1  r, we have

1 13 1   2  x 3  x  5 1  13x  5

3 3 a   2x  1 1  2x 1  r

which implies that a  13 and r  13x  5.

which implies that a  3 and r  2x.

Therefore, the power series for f x is given by

Therefore, the power series for f x is given by

  1 1 1  ar n    x  5 2  x n0 3 3 n0

 







x  5n

 3

n0

n1





  3  ar n  32xn 2x  1 n0 n0

n







 <

1

n

< x <

1 . 2

3 3 32 a    x  2 2  x 1  12x 1  r which implies that a  32 and r  12x. Therefore, the power series for f x is given by

which implies that a  111 and r  211x  3. Therefore, the power series for f x is given by





 2x , 2x < 1 or  2

11. Writing f x in the form a1  r, we have

111 a  1  211x  3 1  r

  1 1  ar n   2x  5 n0 11 n0



n0

1 1  2x  5 11  2x  3 

 3

, x  5 < 3 or 2 < x < 8.

9. Writing f x in the form a1  r, we have

x  3

157

  3 1 3  ar n   x x  2 n0 2 2 n0



2nx  3n , 11n1 n0 

17 11 5 or  < x < . 2 2 2



n

1n x n 3  x n   , n1 2 2 2 n0 n0

 112 x  3



 

n

3

x





< 2 or 2 < x < 2.

 

158

13.

Chapter 8

Infinite Series

3x 2 1 2 1 1 1       x 2  x  2 x  2 x  1 2  x 1  x 1  12x 1  x Writing f x as a sum of two geometric series, we have  3x 1   x x  x  2 n0 2



2



n





 1x

n



 2



n0

1

n

n0

The interval of convergence is 1 < x < 1 since lim

n→ 

15.

  

un1 1  2n1x n1  lim n→  un 2n1

2n

 1  2n xn



 1 x n.

   lim

n→ 



1  2n1x  x. 2  2n1

1 1 2   1  x2 1  x 1  x Writing f x as a sum of two geometric series, we have     2  xn  xn  1  1n x n  2x 2n. 1  x 2 n0 n0 n0 n0









 

The interval of convergence is x 2 < 1 or 1 < x < 1 since lim

17.

n→ 

   

un1 2x 2n2  lim  x2 . n→  un 2x 2

 

 1  1n x n 1  x n0



   1  1n xn  12n x n  xn 1  x n0 n0 n0



hx 





   2 1 1    1n x n  xn  1n  1 x n x 2  1 1  x 1  x n0 n0 n0





 2  0x  2x2  0x3  2x4  0x5  2x6  . . . 





 2x

2n,

1 < x < 1 (See Exercise 15.)

n0

19. By taking the first derivative, we have d 1  x  12 dx



d 1 1  . Therefore, dx x  1 x  12







 1 x   1 nx n

n

n0

n

n1

n1





 1

n1

n  1 x n, 1 < x < 1.

n0

21. By integrating, we have lnx  1 

 

1 dx  lnx  1. Therefore, x1



1n x n dx  C 

n0

1n x n1 , 1 < x ≤ 1. n1 n0 



To solve for C, let x  0 and conclude that C  0. Therefore, lnx  1 

23.

1n x n1 , 1 < x ≤ 1. n1 n0 



  1  1n x 2n  1n x 2n, 1 < x < 1 x 2  1 n0 n0

25. Since,





    1 1 1 1 1n x n, we have 2 1n 4x 2n  1n 4n x 2n  1n 2x2n,  < x < .   x  1 n0 4x  1 n0 2 2 n0 n0









Section 8.9 x2 x 2 x3 ≤ lnx  1 ≤ x   2 2 3

27. x 

x x

5

S3 f −4

x2 2

lnx  1 8

x

S2 −3

29. gx  x, line, Matches (c)

31. gx  x  

 1

In Exercises 35 and 37, arctan x 

n

n0

35. arctan

Representation of Functions by Power Series

x2 2



x3 3

0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.180

0.320

0.420

0.480

0.500

0.000

0.180

0.336

0.470

0.588

0.693

0.000

0.183

0.341

0.492

0.651

0.833

x3 x5  , Matches (a) 3 5

33. f x  arctan x is an odd function (symmetric to the origin)

x2n1 . 2n  1

  1 1 1 142n1 1n 1     . . . 1n 2n1  4 4 n0 2n  1  2n  1  4 192 5120 n0





1 1 Since 5120 < 0.001, we can approximate the series by its first two terms: arctan 14  14  192  0.245.

 arctan x 2 x 4n1  1n x 2n  1 n0



37.



12

0

 arctan x 2 x 4n2 dx  1n x 4n  22n  1 n0



 arctan x 2 1 1 1 . . . dx  1n 4n2  8  1152  x  4n  2  2n  1  2 n0



Since

1 < 0.001, we can approximate the series by its first term: 1152

In Exercises 39 and 41, use

39. (a)



12

0

arctan x 2 dx  0.125 x

 1  x n, x < 1. 1  x n0







d d 1 1   1  x2 dx 1  x dx





 x   nx , x < 1 n

n0

n1

n1

(b)

  x  x nx n1  nx n, x < 1 2 1  x n1 n1

(c)

 1x 1 x    nx n1  x n, x < 1 1  x2 1  x2 1  x2 n1













 2n  1x , x < 1 n

n0

(d)

  x1  x  x 2n  1x n  2n  1x n1, x < 1 1  x2 n0 n0



41. Pn  En 

12 



n1





n

nPn 



1  2 n

n1

n



1  1 n 2 n1 2

 

159

n1

1 1  2 2 1  12 2 Since the probability of obtaining a head on a single toss is 12 , it is expected that, on average, a head will be obtained in two tosses.

160

Chapter 8

Infinite Series

43. Replace x with x.

45. Replace x with x and multiply the series by 5.

47. Let arctan x  arctan y  . Then, tanarctan x  arctan y  tan  tanarctan x  tanarctan y  tan  1  tanarctan x tanarctan y xy  tan  1  xy arctan

49. (a) 2 arctan

1x  xyy   . Therefore, arctan x  arctan y  arctan1x  xyy  for xy  1.





21 2 4 1 1 1  arctan  arctan  arctan  arctan 3 2 2 2 1  1 22



 

(b)   8 arctan

1 1 1 0.5 0.5 0.5  4 arctan  8    2 7 2 3 5 7



3

5

lnx  1   

1

  417  1 73 

3

 1n1xn 1n xn1  n  1 n n0 n1 









1

n1



1 75 1 77   3.14 5 7

n1

 1n12 5n 2n  5n n n1 n

1n1xn . n n1 



n1

n1

7

53. From Exercise 51, we have

51. From Exercise 21, we have

Thus,



1 1 4 1 4 3  1 7 25   arctan  arctan  arctan   arctan  arctan 1   arctan 2 7 3 7 1  4 31 7 25 4

2 arctan



 ln

25  1  ln 57  0.3365.

 1n11 2n 1  n 2 n n1 n



 ln

12  1  ln 23  0.4055

55. From Exercise 54, we have 

1

n

n0

 1 1 22n1 1  1n  arctan  0.4636. 22n12n  1 n0 2n  1 2



57. The series in Exercise 54 converges to its sum at a slower rate because its terms approach 0 at a much slower rate.

59. f x 



1

n1

n1

f 0.5 





n1





n1

Section 8.10

Taylor and Maclaurin Series

1. For c  0, we have: f x  e2x f nx  2n e2x ⇒ f n0  2n e2x  1  2x 

 2xn 4x 2 8x3 16x 4 . . .     2! 3! 4! n0 n!



x  1n , 0 < x ≤ 2 n

1n1

 0.5n 1 2n   n n n1

1 2n  0.6931 n



Section 8.10

Taylor and Maclaurin Series

3. For c   4, we have: f x  cosx

f

4  

f x  sinx

f

4    22

f x  cosx

f

4    22

f x  sinx

f

f 4x  cosx

f 4

2

2

4  

2

4  

2

2 2

and so on. Therefore, we have: cos x   

f n 4 x   4 n n! n0 



2

2

1  x  4   x  2! 4

2



x   4 3 x   4 4 . . .   3! 4!

1nn1 2 x   4 n . n! n0

2 



2

[Note: 1nn1 2  1, 1, 1, 1, 1, 1, 1, 1, . . .] 5. For c  1, we have, f x  ln x f x 

1 x

f 1  1 1 x2

f x  

f 1  1

2 x3

f x 

f 4x   f 5x 

f 1  0

f 1  2

6 x4

f 41  6

24 x5

f 51  24

and so on. Therefore, we have: ln x 

f n1x  1n n! n0 



 0  x  1   x  1  



1

n0

n

x  12 2x  13 6x  14 24x  15 . . .     2! 3! 4! 5!

x  12 x  13 x  14 x  15 . . .     2 3 4 5 x  1n1 n1



161

162

Chapter 8

Infinite Series

7. For c  0, we have: f x  sin 2x

f 0  0

f x  2 cos 2x

f 0  2

f x  4 sin 2x

f 0  0

f x  8 cos 2x

f 0  8

f 4x

f 40  0

 16 sin 2x

f 5x  32 cos 2x

f 50  32

f 6x  64 sin 2x

f 60  0

f 7x  128 cos 2x

f 70  128

and so on. Therefore, we have: sin 2x 

f n0xn 0x 2 8x3 0x 4 32x5 0x6 128x7 . . .        0  2x  n! 2! 3! 4! 5! 6! 7! n0 



 1n2x2n1 8x3 32x5 128x7 . . .     3! 5! 7! 2n  1! n0



 2x 

9. For c  0, we have: f x  secx

f 0  1

f x  secxtanx

f 0  0

f x  sec3x  secxtan2x f x  5 f 4x

5

secx 

f 0  1

xtanx  secx

sec3

x

f 0  0

tan3

x  18

sec5

sec3

x

x  secx

tan2

x

tan4

f 40  5

f n0xn x 2 5x 4 . . . 1   n! 2! 4! n0 



11. The Maclaurin series for f x  cos x is

1x2n . n0 2n! 







Because f n1x  ± sin x or ± cos x, we have f n1z ≤ 1 for all z. Hence by Taylor’s Theorem,





0 ≤ Rnx  Since lim

n→ 



f n1z

n  1!



xn1 ≤

x . n  1! n1

xn1  0, it follows that Rnx → 0 as n → . Hence, the Maclaurin series for cos x converges to cos x for all x. n  1!

kk  1x 2 kk  1k  2x3 . . .   , we have 2! 3! 23x 2 234x3 2345x 4 . . . 1  x2  1  2x      1  2x  3x 2  4x3  5x 4  . . . 2! 3! 5!

13. Since 1  xk  1  kx 





1 n  1x .

n0

n

n

Section 8.10

15.

1

2 1 2

121  2x  



4  x 2

and since 1  x1 2  1 

 1n 1 1 1  1 2 2 4  x n1





17. Since 1  x1 2  1 

ex 



xn





3 5.



x3

x4

. . 2n  3xn

2n n!

 1n1 1 x2  2 n2

x2

1n 1 3 5 . . . 2n  1xn , we have 2n n! n1 



. . 2n  1x 22n  1n 1 1   2 n! 2 n1 n

 1n1 1 x  2 n2

we have 1  x 21 2  1 

19.

3 5.

Taylor and Maclaurin Series

3 5.



3 5.

. . 2n  1x2n . n!

3n1

2

(Exercise 14)

. . 2n  3x 2n

2n n!

.

x5

n!  1  x  2!  3!  4!  5!  . . .

n0

ex 2  2

 x 2n x 2 2n x2 x4 x6 x8  1  2  3  4 . . . n n! 2 2 2! 2 3! 2 4! n0 n0 2 n! 



21. sin x  sin 2x 

23.

1n x 2n1 x3 x5 x7 x   . . . 3! 5! 7! n0 2n  1! 



 1n 22n1x2n1 1n2x2n1 8x3 32x5 128x7 . . .   2x     2n  1! 2n  1! 3! 5! 7! n0 n0 





1n x 2n x2 x 4 . . . 1   2n! 2! 4! n0 



cos x 

 1n x3n 1n x3 22n x3 x6  1  . . . 2n! 2n! 2! 4! n0 n0 



cos x3 2 

25.





ex  1  x 

x2 x3 x4 x5    . . . 2! 3! 4! 5!

ex  1  x 

x2 x3 x4 x5    . . . 2! 3! 4! 5!

e x  ex  2x 

2x3 2x5 2x7 . . .    3! 5! 7!

 1 x x3 x2n1 x5 x7 e  ex  x     . . .  2 3! 5! 7! n0 2n  1!



sinhx 



1 27. cos2x  1  cos2x 2

31.

29. x sin x  x x 



1 2x2 2x4 2x6 . . . 11    2 2! 4! 6!

 x2 



 1n2x2n 1 1 2 2n! n0



 







sin x x  x3 3!  x5 5!  . . .  x x 1 



x2 x4  . . . 2! 4!

1nx2n

2n  1!, x  0

n0

x3 x5  . . . 3! 5!

x6 x4  . . . 3! 5!

1nx2n2 n0 2n  1! 





163

164

Chapter 8

Infinite Series

eix  1  ix 

33.

eix  1  ix 

ix2 ix3 ix4 . . . x 2 ix3 x 4 ix5 x6     1  ix      . . . 2! 3! 4! 2! 3! 4! 5! 6! ix2 ix3 ix4 . . . x 2 ix3 x 4 ix5 x6     1  ix      . . . 2! 3! 4! 2! 3! 4! 5! 6!

2ix3 2ix5 2ix7 . . .    3! 5! 7!

eix  eix  2ix 

 1n x2n1 x3 x5 x7 eix  eix x   . . .  sinx 2i 3! 5! 7! n0 2n  1!



35. f x  ex sin x

14



 1x

x2 2



x3 6



x4

. . .

24

 x  x2 



 

 x  x2 

x3 x5  . . . 3 30

x  6  120  . . . x3

x5

 

P5 f



x5 x5 x3 x3 x4 x4 x5       . . . 2 6 6 6 120 12 24

−6

37. hx  cos x ln1  x



 1

x2 2



x4 24

4

. . .





x

x2 2

 



x3 3



x4 4



 

x5 5

. . .

P5



−3



x2 x3 x3 x4 x4 x5 x5 x5        . . . 2 3 2 4 4 5 6 24

x

x2

39. gx 

2



6



3x5 40

9

h

x

x3

6 −2

−4

. . .

sin x . Divide the series for sin x by 1  x. 1x

5x2 5x4   6 6 x3 x5  0x4  . . . 1  x x  0x2  6 120 x  x2 x3 x2  6 x2  x3 5x3  0x4 6 5x4 5x3  6 6 x5 5x4   6 120 5x4 5x5   6 6

gx  x  x2  4

x  x2 



5x 3 5x 4 . . .   6 6

g −6

6

P4 −4



41. y  x 2 





x4 x3 x x  x sin x. 3! 3!

Matches (a)

43. y  x  x 2  Matches (c)





x3 x2 x 1x  xex. 2! 2!

Section 8.10



x

45.

 

 

0



0

1n1t2n2 dt  n  1! n0 

x



0



1n1 t2n3



 2n  3n  1!

x



0

n0

1n1x 2n3



2n  3n  1!

n0

1n x  1n1 x  12 x  13 x  14 . . .  x  1     n1 2 3 4 n0 



47. Since ln x 

 1 1 1 . . . 1     1n1  0.6931. 2 3 4 n n1



we have ln 2  1 

49. Since ex 

 

1n t2n  1 dt n! n0

x

et  1 dt  2

Taylor and Maclaurin Series



xn

x2

(10,001 terms)

x3

n!  1  x  2!  3!  . . . ,

n0

we have e2  1  2 

 2n 22 23 . . .     7.3891. 2! 3! n0 n!



(12 terms)

51. Since cos x 

1n x 2n x2 x 4 x6 x8 1    . . .  2n  ! 2! 4! 6! 8! n0

1  cos x 





 1n x 2n2 x6 x8 x2 x 4    . . . 2! 4! 6! 8! n0 2n  2!



 1n x 2n1 x x3 x5 x7 1  cos     . . . x 2! 4! 6! 8! n0 2n  2!



we have lim

x→0



1

53.

0

 1x 2n1 1  cos x  lim  0. x→0 n0 2n  2! x



sin x dx  x

 

1

0

1nx 2n dx   n0 2n  1! 



1n x 2n1



 2n  12n  1! n0

1



0

1n



2n  12n  1!

n0

Since 1 7 7! < 0.0001, we have



1

0

sin x 1 1 dx  1    . . .  0.9461. x 3 3! 5 5!

Note: We are using lim x→0



 2

55.

sin x  1. x



 2

x cos x dx 

0

0

1nx4n1 2 dx  2n! n0 





Since  219 2 766,080 < 0.0001, we have



1



x cos x dx  2

0



0.3

57.



0.3

1  x3 dx 

0.1

0.1

Since



1 7 56 0.3





n0

1n x4n3 2 4n  3 2n! 2









1n 2x4n3 2 n0 4n  32n! 



0

 23 2  27 2  211 2  215 2  219 2      0.7040. 3 14 264 10,800 766,080



0.3

x 5x   . . . 1  x2  x8  16x  5x128  . . . dx  x  x8  56x  160 1664 3

6

9

12

4

7

 < 0.0001, we have

1  x3 dx 

 2



0

0.17

0.3

0.1



 2



0.3  0.1  80.3 1

4

 0.14 



1 0.37  0.17  0.2010. 56

10

13

0.1

165

166

Chapter 8

Infinite Series

59. From Exercise 19, we have 1 2



1

ex 2 dx  2

0

1 2



1

0

1 1n x 2n dx  n n! 2 2 n0 



61.

f x  x cos 2x  P5x  x 

2x3

1 2

 x  21 n!2n  1 

n

2n1

1

n

n0

0

1  2 1 3  2 1

1n 4n x2n1 2n! n0 

63.

1n 1  n 2 n0 2 n!2n  1

1

2! 5

2









1

 0.3414.

f x  x ln x, c  1

x  13 x  14 71x  15   24 24 1920

P5x  x  1 

2x5  3

3! 7

23

3

2

g

P5

f −3

−2

3

4

P5 −2

−2

The polynomial is a reasonable approximation on the interval 14 , 2 .

The polynomial is a reasonable approximation on the interval  34 , 34 .

67. (a) Replace x with x.

65. See Guidelines, page 636.

(b) Replace x with 3x. (d) Replace x with 2x, then replace x with 2x, and add the two together.

(c) Multiply series by x.





69. y  tan  

g g kx x  2 ln 1  kv0 cos  k v0 cos 











2



3



gx g kx 1 kx    kv0 cos  k2 v0 cos  2 v0 cos 

 tan x 

gx gx gx 2 gkx3 gk2x 4     . . . kv0 cos  kv0 cos  2v02 cos2  3v03 cos3  4v04 cos4 

 tan x 

gx2 kgx3 k2gx 4   . . . 2 3 3 2v0 cos  3v0 cos  4v04 cos4 

71. f x 

e0,



1 kx 3 v0 cos 



 tan x 



1 kx 4 vo cos 



4



. . .



2

x0 x0

1 x2

,

f x  f 0 e1 x  0  lim x→0 x0 x 2

(a)

(b) f 0  lim

y

x→0

2

e1 x . Then x→0 x 2

Let y  lim

1 −3 −2 −1

x 1

2

3

ln y  lim ln x→0

e x   lim  x1  ln x  lim  1 x x 1 x2



x→0

2



x→0

Thus, y  e  0 and we have f 0  0. (c)

f n0 n f 0x f 0x 2 . . . x  f 0     0  f x n! 1! 2! n0 



This series converges to f at x  0 only.

73. By the Ratio Test: lim

n →





xn1 n! x  0 which shows that  xn converges for all x.  nlim → n  1 n  1! xn n0 n!



2

2

ln x

   .

Review Exercises for Chapter 8

Review Exercises for Chapter 8 1. an 

7. an 

1 n!

2 3. an  4  : 6, 5, 4.67, . . . n Matches (a)

5n  2 n

9. lim

n→ 

8

5. an  100.3n1: 10, 3, . . . Matches (d)

n1 0 n2

11. lim

n→ 

n3  n 1  2

Converges

0

12 0

The sequence seems to converge to 5. lim an  n→ lim

n→ 



5n  2 n





2 5 n

 n→ lim 5  

13. lim  n  1  n   lim  n  1  n  n→ 

n→ 

n  1  n n  1  n

sinn 0 n Converges

 lim

n→ 

1 n  1  n



17. An  5000 1 

15. lim

n→ 

n  1, 2, 3

0

0.05 4



n

Converges

 50001.0125n

(a) A1  5062.50

A5  5320.41

A2  5125.78

A6  5386.92

A3  5189.85

A7  5454.25

A4  5254.73

A85522.43

(b) A40  8218.10 19. (a)

(b)

k

5

10

15

20

25

Sk

13.2

113.3

873.8

6448.5

50,500.3

(c) The series diverges  geometric r  32 > 1

21. (a)

0

12

− 10

k

5

10

15

20

25

Sk

0.4597

0.4597

0.4597

0.4597

0.4597

(c) The series converges by the Alternating Series Test.



120

23. Converges. Geometric series, r  0.82, r < 1.

(b)

1

0

12

− 0.1

25. Diverges. nth Term Test. lim an  0. n→ 

167

168

27.

Chapter 8 

3 2

Infinite Series

n

29.

n0



2

1 n

n0



2 Geometric series with a  1 and r  3 .

S

 1 n  1 n 1   n 3 n0 2 n0 3 1 1 3 1   2  1  1 2 1  1 3 2 2

  

 

1 1 a   3 1  r 1  2 3 1 3 

0.090.01

31. 0.09  0.09  0.0009  0.000009  . . .  0.091  0.01  0.0001  . . . 

n



n0

33. D1  8

35. See Exercise 86 in Section 8.2.

D2  0.78  0.78  160.7

A

 D  8  160.7  160.72  . . .  160.7n  . . .  8 



160.7

n

 8 

n0

37.





b→



16  4513 meters 1  0.7

ln x 1    3x 9x 3

3

39.

1

1 3  2n  n n1



43.

1 n3  2n n3 2  lim 1 n→  n→  n3  2n 1 n3 2

n1

1

3 2 ,

2





 1  1 1  2  n n n1 n1 n





 3  5 . . . 2n  1 2  4  6 . . . 2n

1



1  3  5 . . . 2n  1 2  4  6 . . . 2n

an 

1 1 1 > 32  54 . . . 2n 2n  2  2n 2n



By a limit comparison test with the convergent p-series 

1

n1

lim

n

200e0.062  1 e0.06 12  1

Since the second series is a divergent p-series while the first series is a convergent p-series, the difference diverges.

By the Integral Test, the series converges. 



n

n1

1 1  9 9

0

Pe rt  1 er 12  1

 $5087.14

b

x4 lnx dx  lim

1

41.

0.09 1  1  0.01 11



1



1

1

2n  2 n diverges (harmonic series),

Since

the series converges.

n1

n1

so does the original series.

45. Converges by the Alternating Series Test (Conditional convergence)

49.



n

e

n1

lim

n→ 

47. Diverges by the nth Term Test

51.

n2

   

an1 n1  lim n12 n→  e an  lim

n→ 

 lim

n→ 



n  1 2n1n

2 en

2

en

2

en n





e 1 n n 1 2n1

 01  0 < 1 By the Ratio Test, the series converges.



2n

n

n1

lim

n→ 

3

  

an1 2n1  lim n→  n  13 an  lim

n→ 

3

n3

 2n

2n 2 n  13



Therefore, by the Ratio Test, the series diverges.

Review Exercises for Chapter 8

53. (a) Ratio Test: lim

n→ 

 

an1 n  13 5n1  lim n→ an n3 5n 

n n 135  53 < 1

 lim

n→ 

Converges (b)

(c)

x

5

10

15

20

25

Sn

2.8752

3.6366

3.7377

3.7488

3.7499

(d) The sum is approximately 3.75.

4

0

12

−1

55. (a)



1

N

x2



1x

dx  



N

1 N

N

5

10

20

30

40

n

1.4636

1.5498

1.5962

1.6122

1.6202



0.2000

0.1000

0.0500

0.0333

0.0250

5

10

20

30

40

n

1.0367

1.0369

1.0369

1.0369

1.0369



0.0004

0.0000

0.0000

0.0000

0.0000

N

1 2

n1



N





(b)

N



1 1 dx   4 x5 4x



N



1 4N4

1 dx x2

N N

1 5

n1



N

1 dx x5

The series in part (b) converges more rapidly. The integral values represent the remainders of the partial sums. 57. f x  ex 2

f 0  1

1 fx   ex 2 2 1 f x  ex 2 4 1 fx   ex 2 8

f0   f 0 

1 4

f0  

P3x  f 0  f0x  f 0

1 2

1 8

x2 x3  f 0 2! 3!

1 1 x2 1 x3 1 x  2 4 2! 8 3! 1 1 1  1  x  x2  x3 2 8 48

59. sin95   sin

95  95  95  95      0.996 95180   95180  180 3! 180 5! 180 7! 180 9!

61. ln1.75  0.75 

3

3

5

5

7

7

9

9

0.752 0.753 0.754 0.755 0.756 . . . 0.7515        0.560 2 3 4 5 6 15

169

170

Chapter 8

Infinite Series

63. f x  cos x, c  0 Rnx 

f n1z n1 x n  1!

 f n1z

x n1 n  1!

≤ 1 ⇒ Rnx ≤

(a) Rnx ≤

0.5n1 < 0.001 n  1!

(b) Rnx ≤

This inequality is true for n  6.

This inequality is true for n  4. (c) Rnx ≤

0.5n1 < 0.0001 n  1!

(d) Rnx ≤



10 x

2n1 < 0.0001 n  1!

This inequality is true for n  10.

This inequality is true for n  5.

65.

1n1 < 0.001 n  1!

n

n0





Geometric series which converges only if x 10 < 1 or 10 < x < 10.

67.

1nx  2n n  12 n0 



lim

n→ 

69.

  

un1 1n1x  2n1  lim n→  un n  22



n  12

 1nx  2n



 x2



n!x  2

n

n0



lim

n→ 

  

which implies that the series converges only at the center x  2.

R1 Center: 2 Since the series converges when x  1 and when x  3, the interval of convergence is 1 ≤ x ≤ 3.

y

71.



x2n n!2

1

n

4n

n0

y 

 1n12n  2x2n1 1n2nx2n1  n 2 4 n! 4n1n  1! 2 n1 n0

y 

1n12n  22n  1x2n 4n1n  1! 2 n0

x2y  xy  x2y  











 1n12n  2x2n2  1n12n  22n  1x2n2 x2n1   1n n 2 n1n  1! 2 n1n  1! 2 4 4 4 n! n0 n0 n0 







1

n1

n0





1n14n  12 1  1n n x 2n2 4n1n  1! 2 4 n! 2



1n11 1  1n n x 2n2  0 4nn! 2 4 n! 2



n0

73.



2 2 3 a   3  x 1  x 3 1  r 

3 3

n0

2 x

n







n0





n0



2n  22n  1 1n12n  2 1n  n1  n 2 x 2n2 n1 2 2 4 n  1! 4 n  1! 4 n!

1n12n  22n  1  1 1  1n n x 2n2 4n1n  1! 2 4 n! 2

n0









2x n 3n1



un1 n  1!x  2n1  lim  n→  un n!x  2n

75. Derivative:



2nx n1 n1 n1 3



Review Exercises for Chapter 8  2x 4 8 2 77. 1  x  x2  x3  . . .  3 9 27 n0 3

 

n



1 3 ,  1  2x 3 3  2x



3 3 < x < 2 2

f x  sinx

79.

fx  cosx f x  sinx f x  cosx, . . . sinx  

f nxx  3 4 n n! n0 



2

2



2

2

x  34   2  22!x  34  

81. 3x  eln3x  ex ln3 and since ex 



2

2  1nn1 2x  3 4 n . . . 2 n0 n!

xn

n!, we have



f x 

83.

n0

3x 

x ln 3n n! n0 



 1  x ln 3 

1 x

fx   x2 ln2 3 x3 ln3 3 x 4 ln4 3 . . .    . 2! 3! 4!

f x 

1 x2

2 x3

6 fx   4, . . . x  f n1x  1 n 1  x n0 n!





85. 1  xk  1  kx 

 n!x  1n   x  1n n! n0 n0 





kk  1x2 kk  1k  2x3 . . .   2! 3!

x 1 54 5x2 1 54 59 5x3 . . .    5 2! 3!

1  x1 5  1 

1 1  4x2 1  4  9x3 . . . 1 x 2   5 5 2! 533!

ln x 

87.

 1n14 x  5 n2

1

x 2 6 3 . . .  x2  x  5 25 125





1

n1

n1

ln

x  1n , n

54  1 5 4n  1 



n1

n1

89.

ex 



xn

n!,

n0 n

n1

1

. . 5n  6xn

5nn!

0 < x ≤ 2

n1



 9  14 .

1

1  0.2231 4nn

e1 2 



1

 < x <

2 n!  1.6487

n0

n



171

172

Chapter 8

cos x 

91.

Infinite Series



 1

n

x2n ,  < x <  2n!



n

22n 0.7859 32n2n!

n0

cos

23   1 n0

95. (a) f x  e2x

f 0  1

(b) ex 

f0  2

f x  4e2x

f 0  4

f x  8e2x

f 0  8

e2x  1  2x 

4x2 8x3 . . .   2! 3!

 1  2x  2x2 







x

0

e2x 

1  x  x2  x6  . . . 2

 

3



x2 x2 4 x3 x3 x3 x3       . . .  1  2x  2x 2  x 3  . . . 2 2 6 6 2 2 3

1nt 2n1 n0 2n  1! 



 1 1n t n  1  t n0



99.

 1 sin t  t n0 2n  1!

sin t dt  t

n t 2n



ln1  t 

1n t 2n1



x

 2n  12n  1!

0

n0





1nx 2n1

 2n  12n  1!

x

n0

arctan x  x 

101.

0

x3 x5 x7 x9 . . .     3 5 7 9

x 52 x 92 x132 x172 . . . arctan x  x      3 5 7 9 x lim

x→0

arctan x 0 x

 

 

1 arctan x 2x 1  x2  lim  lim  0. By L’Hôpital’s Rule, lim x→0 x→0 x→0 1  x2 1 x 2x

Problem Solving for Chapter 8 1. (a) 1



3  29  427  . . .   3 3 1

1

1

1 2

n0

1 2 (b) 0, , , 1, etc. 3 3 (c) lim Cn  1  n→ 



 3 3

n0

2xn 4x 2 8x 3 . . .  1  2x    n! 2! 3! n0 



4  1  2x  2x 2  x 3  . . . 3

x2 x3 . . .   2 6

 1  x  x  x2 



xn

4 3 . . . x  3

(c) e2x  ex  ex  1  x 

sin t 



 n!

n0

fx  2e2x

97.

93. The series for Exercise 41 converges very slowly because the terms approach 0 at a slow rate.

1 2

n

110

n



13 1 1  23



 1n t n1 1 dt  1t n1 n0



 1n t n lnt  1  t n0 n  1



lnt  1 dt  t

1n t n1 2 n0 n  1 



x



0



1n x n1 2 n0 n  1 



Problem Solving for Chapter 8 nn  1 . 2

3. If there are n rows, then an  For one circle,

3 2

1

a1  1 and r1 

 

1 3 3 2

3

6



1

r1

23 1 2

For three circles, a2  3 and 1  23r2  2r2 r2 

1 2  23

2r2 1

r2

3 r2

For six circles, a3  6 and 1  23r3  4r3 r3 

1 23  4

2r3 1

Continuing this pattern, rn  Total Area   rn2an  An  lim An 

n→ 

5. (a)

a x n

n

2

1

4

r3

3 r3

1 . 23  2n  1

23  12n  1

2

nn  1 2

nn  1  2 2 3  2n  12

8

 1  2x  3x2  x3  2x4  3x5  . . .  1  x3  x6  . . .  2x  x4  x7  . . .  3x2  x5  x8  . . .  1  x3  x6  . . . 1  2x  3x2  1  2x  3x2

1 1  x3

R  1 because each series in the second line has R  1. (b)

a x n

n

 a0  a1x  . . .  ap1x p1  a0 x p  a1x p1  . . .  . . .  a01  x p  . . .  a1 x1  x p  . . .  . . .  a p1 x p11  x p  . . .  a0  a1 x  . . .  a p1x p11  x p  . . .  a0  a1 x  . . .  ap1 x p1

R1

1 . 1  xp

173

174

Chapter 8

Infinite Series

ex  1  x 

7.

xex  x  x2 



x2 . . .  2!  x n1 x3 . . .   2! n0 n!



xex dx  xex  ex  C 



x n2

 n  2n!

n0

Letting x  0, C  1. Letting x  1, 

1



1

1

 n  2n!  2   n  2n!.

1

n0

n1



1

1

 n  2n!  2.

Thus,

n1

9. Let a1 





0

sin x dx, a2   x



2



sin x dx, a3  x



3

2

sin x dx, etc. x

Then,





0

sin x dx  a1  a2  a3  a4  . . . . x

Since lim an  0 and an1 < an, this series converges. n→ 

11. (a) a1  3.0 a2 1.73205 a3 2.17533 a4 2.27493 a5 2.29672 a6 2.30146 lim an 

n→ 

1  13 [See part (b) for proof.] 2

(b) Use mathematical induction to show the sequence is increasing. Clearly, a2  a  a1  aa > a  a1. Now assume an > an1. Then an  a > an1  a an  a > an1  a

an1 > an. Use mathematical induction to show that the sequence is bounded above by a. Clearly, a1  a < a. Now assume an < a. Then a > an and a  1 > 1 implies aa  1 > an1 a2  a > an a2 > an  a a > an  a  an1. Hence, the sequence converges to some number L. To find L, assume an1 an L: L  a  L ⇒ L2  a  L ⇒ L2  L  a  0 L

1 ± 1  4a . 2

Hence, L 

1  1  4a . 2

Problem Solving for Chapter 8

13. (a)



1

2

n1

n 1n



S1 

1 1 1 1 1     . . . 211 221 231 241 251 1 1 20

S1  1 

1 9  8 8

S3 

9 1 11   8 4 8

S4 

11 1 45   8 32 32

S5 

1 47 45   32 16 32

2n 1 21 an1  n1  1n  1  1 1n  1 an 2 2 n

(b)

n

This sequence is 18, 2, 18, 2, . . . which diverges. (c)

2 n

1 n 1n

 

2 2

 21  1

n



1n

n

1 1 n 1 1 n 12 → 1 and  n 2 → 1. → < 1 converges because 21   2, 2, 2, 2, . . . and  n  1  2 2 n

15. S6  130  70  40  240 S7  240  130  70  440 S8  440  240  130  810 S9  810  440  240  1490 S10  1490  810  440  2740

175

C H A P T E R 9 Conics, Parametric Equations, and Polar Coordinates Section 9.1

Conics and Calculus . . . . . . . . . . . . . . . . . . . . 424

Section 9.2

Plane Curves and Parametric Equations . . . . . . . . . . 434

Section 9.3

Parametric Equations and Calculus

Section 9.4

Polar Coordinates and Polar Graphs . . . . . . . . . . . . 444

Section 9.5

Area and Arc Length in Polar Coordinates . . . . . . . . .452

Section 9.6

Polar Equations of Conics and Kepler’s Laws . . . . . . . 458

Review Exercises

. . . . . . . . . . . . 439

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

C H A P T E R 9 Conics, Parametric Equations, and Polar Coordinates Section 9.1

Conics and Calculus

Solutions to Even-Numbered Exercises 2. x2  8y

4.

Vertex: 0, 0

Center: 2, 1 Ellipse Matches (b)

p2 > 0 Opens upward Matches graph (a).

6.

x  22  y  12  1 16 4

x2 y2  1 9 9

8.

Circle radius 3. Matches (g)

x  22 y2  1 9 4 Hyperbola Center: 2, 0 Horizontal transverse axis. Matches (d)

10. x2  8y  0

12. x  12  8 y  2  0

x2  42y Vertex: 0, 0 Focus: 0, 2

x  12  42 y  2

y

(0, 0) −8

x

−4

8

4

y

Focus: 1, 4

−4

Directrix: y  2

Vertex: 1, 2 Directrix: y  0

−8

−8

x

−4

8

4 −4

(1, − 2) −12

−8 −12

14. y 2  6y  8x  25  0

16. y 2  4y  8x  12  0

y 2  6y  9  8x  25  9

y 2  4y  4  8x  12  4

 y  32  42x  2

 y  22  42x  2

Vertex: 2, 3 Focus: 4, 3

8

Focus: 0, 2

Directrix: x  0

4

Directrix: x  4

−20 −16 −12

−8

x

−4

(− 2, − 3)

y 4 2 −6

−4

−2

−12

x 4

(2, − 2) −4

−8

424

Vertex: 2, 2

y

−6 −8

6

Section 9.1 y   16x2  8x  6   16x2  8x  16  10

18.

x2  2x  1  8y  9  1

x  12  42 y  1

6y  10  x  42

x  42  6y  53  x  42  4

425

20. x2  2x  8y  9  0

6y  x  42  10

 32

Conics and Calculus

Vertex: 1, 1

2

Focus: 1, 3

y   5 3

Vertex: 4, 53 

−8

10

Directrix: y  1

4

Focus: 4, 16 

−10

Directrix: y 

−2

19 6

10

−4

x  12  42 y  2

22.

24. Vertex: 0, 2

 y  22  42x  0

x2  2x  8y  15  0

y 2  8x  4y  4  0 y  4  x  22  4x  x2

26.

28. From Example 2: 4p  8 or p  2

x  4x  y  0

Vertex: 4, 0

2

x  42  8 y  0 x2  8x  8y  16  0 30. 5x2  7y 2  70

y 6

y2 x2  1 14 10 a2

 14,

b2

32.

1 3 a2  1, b2  , c2  4 4

4 2

 10,

c2

4

−6

x

−2

2

Center: 0, 0

−4

Foci: ± 2, 0

−6

x  22  y  42  1 1 14

4

Center: 2, 4

6

Foci:

Vertices:  ± 14, 0

2

, 4

3

e

2

16x2  25y2  64x  150y  279  0 16x2  4x  4  25y2  6y  0  279  64  225  10

x  22 y  32  1 58 25

y 1 x

−1

1

2

3

4

−1

5 2 9 a2, , b2  , c2  a2  b2  8 5 40

−2

Center: 2, 3

−4

Foci:

2

Vertices: e

±

2

c 3  a 5



310 , 3 20 ±

10

4

, 3



−3

(2, −3)

−5

−4

−3

−2

x

−1 −1

(− 2, − 4)

−2 −3 −4



Vertices: 1, 4, 3, 4

14 2  e 7 14

34.

2 ±

3

y

−5

426

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

36x2  9y 2  48x  36y  43  0

36.





4 4  9 y 2  4y  4  43  16  36 36 x2  x  3 9 9

x  23  y  2  1 14 1 2

2

1 3 a2  1, b2  , c2  4 4 Center: Foci:

 32, 2

 32, 2 ± 23 

 32, 3,  32, 1

Vertices:

3

Solve for y: 9 y 2  4y  4  36x2  48x  43  36

 y  22 

−4

2

 36x2  48x  7 9

−1

1 y  2 ±  36x2  48x  7 3

(Graph each of these separately.)

2x2  y 2  4.8x  6.4y  3.12  0

38.

50x2  25y 2  120x  160y  78  0









12 32 36 256 x  25 y 2  y   78  72  256  250 5 25 5 25

50 x2 

x  65 2 y  165 2  1 5 10 a2  10, b2  5, c2  5 Center: Foci:

 56, 165

 56, 165 ± 5

Vertices:

7

 56, 165 ± 10

Solve for y: y2  6.4y  10.24  2x2  4.8x  3.12  10.24

−7

5 −1

 y  3.22  7.12  4x  2x2 y  3.2 ± 7.12  4x  2x2 40. Vertices: 0, 2, 4, 2

(Graph each of these separately.) 42 Foci: 0, ± 5

1 2 Horizontal major axis

Major axis length: 14

Center: 2, 2

Center: 0, 0

a  2, c  1 ⇒ b  3

c  5, a  7 ⇒ b  24

x  22  y  22  1 4 3

y2 x2  1 24 49

Eccentricity:

Vertical major axis

Section 9.1

44. Center: 1, 2

46.

Vertical major axis

Conics and Calculus

y2 x2  1 25 9 a  5, b  3, c  a2  b2  34

Points on ellipse: 1, 6, 3, 2

Center: 0, 0

From the sketch, we can see that h  1, k  2, a  4, b  2

y

y

Foci: ± 34, 0 (1, 2) x

−2

−8

3 Asymptotes: y  ± x 5

(3, 2) −4

10 8 6 4 2

Vertices: ± 5, 0

(1, 6) 6

x  12  y  22   1. 4 16

−4 −2 −4 −6 −8 −10

4 −2

48.

427

 y  1 2 x  4 2  1 122 52

x 4

8 10

50. y 2  9x2  36x  72  0 y 2  9x2  4x  4  72  36  36

a  12, b  5, c  a 2  b2  13

x  22 y2  1 36 4

Center: 4, 1 Vertices: 4, 11, 4, 13 Foci: 4, 14, 4, 12 12 Asymptotes: y  1 ± x  4 5

a  6, b  2, c  a2  b2  210 Center: 2, 0 Vertices: 2, 6, 2, 6

Foci:  2, 210,  2, 210

y 20

Asymptotes: y  ± 3x  2 y

5 x −5

1

2

6

7

8 5 x

−2 −1

− 20

4

5

−5

52. 9x2  6x  9  4 y2  2y  1  78  81  4  1

54.

9x 2  y 2  54x  10y  55  0 9x 2  6x  9   y 2  10y  25  55  81  25

9x  32  4 y  12  1

 y  12 x  32  1 14 19

1

13 1 1 a ,b ,c 2 3 6

Foci:



3, 21, 3, 23

1 3, 1 ± 13 6

2

10 1 a  , b  1, c  3 3

1

Center: 3, 5

3

Center: 3, 1 Vertices:

x  32  y  52  1 19 1

y



3 Asymptotes: y  1 ± x  3 2

−3

x

−1 −1

3 ± 13, 5 10 , 5 Foci: 3 ± 3

10

Vertices:

−8

Solve for y: y2  10y  25  9x2  54x  55  25

 y  52  9x2  54x  80 y  5 ± 9x2  54x  80 (Graph each curve separately.)

2 0

428

Chapter 9

Conics, Parametric Equations, and Polar Coordinates 58. Vertices: 0, ± 3

3y 2  x 2  6x  12y  0

56.

Asymptotes: y  ± 3x

3 y 2  4y  4  x 2  6x  9  0  12  9  3

 y  2 x  3  1 1 3 2

2

a  1, b  3, c  2

Vertical transverse axis a3 a Slopes of asymptotes: ±  ± 3 b Thus, b  1. Therefore,

6

Center: 3, 2 Vertices: 3, 1, 3, 3

−4

10

Foci: 3, 0, 3, 4

y 2 x2   1. 9 1

−4

Solve for y: 3 y 2  4y  4  x2  6x  12

 y  22 

x2  6x  12 3

y2 ±

x

2

 6x  12 3

(Graph each curve separately.) 62. Center: 0, 0

60. Vertices: 2, ± 3 Foci: 2, ± 5

Vertex: 3, 0

Vertical transverse axis

Focus: 5, 0

Center: 2, 0

Horizontal transverse axis

a  3, c  5, b2  c2  a2  16

a  3, c  5, b2  c2  a2  16

y2 x  22 Therefore,   1. 9 16

Therefore,

64. Focus: 10, 0

66. (a)

3 Asymptotes: y  ± x 4

y2 x2   1. 9 16

y 2 x2   1, y 2  2x2  4, 2yy  4x  0, 4 2 y 

4x 2x  2y y

Horizontal transverse axis Center: 0, 0 since asymptotes intersect at the origin. c  10

At x  4: y  ± 6, y 

± 24

6



4 3

4 At 4, 6: y  6   x  4 or 4x  3y  2  0 3

b 3 3 Slopes of asymptotes: ±  ± and b  a a 4 4 c2  a2  b2  100 Solving these equations, we have a2  64 and b2  36. Therefore, the equation is x2 y2   1. 64 36

4 At 4, 6: y  6   x  4 or 4x  3y  2  0 3 (b) From part (a) we know that the slopes of the normal lines must be 34. 3 At 4, 6: y  6   x  4 or 3x  4y  36  0 4 3 At 4, 6: y  6  x  4 or 3x  4y  36  0 4

68. 4x2  y 2  4x  3  0

70. 25x2  10x  200y  119  0

72. y2  x  4y  5  0

A  4, C  1

A  25, C  0

A  0, C  1

AC < 0

Parabola

Parabola

Hyperbola

Section 9.1 2x2  2xy  3y  y 2  2xy

74.

Conics and Calculus

9x2  54x  81  36  4 y2  4y  4

76.

2x2  y 2  3y  0

9x2  4y2  54x  16y  61  0

A  2, C  1, AC > 0

A  9, C  4, AC > 0

Ellipse

Ellipse

78. (a) An ellipse is the set of all points x, y, the sum of whose distance from two distinct fixed points (foci) is constant.

x  h y  k x  h y  k   1 or  1 a2 b2 b2 a2 2

(b)

2

2

2

82. Assume that the vertex is at the origin. x2  4py

(a)

82  4p

c 80. e  , c  a2  b2 a

For e 1, the ellipse is elongated.

84. (a) Without loss of generality, place the coordinate system so that the equation of the parabola is x2  4py and, hence,

3 100 

y 

6400 y y 1600 3  3

2 ⇒ x± 100

(b)

1283 ± 6.53 meters.

dy 1  x1 dx 2

x  2x  9

4 100

)

( 0, 1003 )

( 8, 1003 )

3x  9

2 100

x3

1 100

−8

dy 0 dx

At 0, 0, the slope is 1: y  x. At 6, 3, the slope is 2: y  2x  9. Solving for x,

y

(

x2  4x  4y  0 2x  4  4

5 100

3 −8, 100

2p1 x.

Therefore, for distinct tangent lines, the slopes are unequal and the lines intersect.

(b) The deflection is 1 cm when y

0 < e < 1

For e 0, the ellipse is nearly circular.

1600 p 3 x2  4

y  3.

x

−4

4

8

Point of intersection: 3, 3

86. The focus of x2  8y  42y is 0, 2. The distance from a point on the parabola, x, x28, and the focus, 0, 2, is d

x  0  x8  2 . 2

2

2

Since d is minimized when d 2 is minimized, it is sufficient to minimize the function f x  x2 



4





x2 2 8

3

16

xx

x 2 = 8y

(0, 2)

 

x x3   x. 4 16

fx  0 implies that x3

y

2 x2 2 . 8

fx  2x  2

429

2

x, x 8

( )

1 −3

−2

x

−1

1 −2

16x  1  0 ⇒ x  0. 2

This is a minimum by the First Derivative Test. Hence, the closest point to the focus is the vertex, 0, 0.

2

3

430

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

88. (a) C  0.0853t2  0.2917t  263.3559 (b)

1 x  y2 4

90.

320

1 x  y 2

0

1  x2  1 

18 0

s

dC  0.1706t  0.2971 (c) dt

 4

1

0

y

3

y4  dy  21 4  y 2

2

x −1

2

3

4







1 y4  y2  4 ln y  4  y 2 4



1 420  4 ln 4  20  4 ln 2 4





4 0

 25  ln2  5  5.916

1 1

dy

0

2

−1

4



5 4

y2 4

5

The consumption of fruits is increasing at a rate of 0.1706 pounds/year.



h

92. x2  20y y y 

94. A  2

x 20 x 10

y12 dy

0

 x

0

1

  x 10

2



r

dx  2

0

10  23100  x 

r





h

 4p

r

S  2

4py dy

0

2

2 32

0





 4p x100  x2 dx 10

(b) The thumbtacks are located at the foci and the length of string is the constant sum of the distances from the foci.

98.

e 0.0167 

Focus Vertex

h

32

0

8  ph32 3

 100  r 232  1000 15

96. (a) At the vertices we notice that the string is horizontal and has a length of 2a.

23y

c a c 149,570, 000

c 2,497,819

Focus Vertex

Least distance: a  c  147,072,181 km Greatest distance: a  c  152,067,819 km

100. e 

AP AP



122,000  4000  119  4000 122,000  4000  119  4000



121,881

0.9367 130,119

102.

y2 x2  1 a2 b2 y2 x2  2 2 2 1 2 a a b a  y2 x2  2 2 1 2 a a a  c2a2 x2 y2  1 a2 a21  e2 As e → 0, 1  e2 → 1 and we have x2 y2  2  1 or the circle x2  y 2  a2. 2 a a

Section 9.1

104.

x2 y2  1 2 4.5 2.52

Conics and Calculus

y



y2 2.5 2

x2  4.52 1 

5 ft x

9 x  ± 2.52  y 2 5

3 ft

9 ft

V  Area of bottomLength  Area of topLength V





4.52.5 16  16 2

 90 

144 5

0.5

9 2.52  y 2 dy (Recall: Area of ellipse is ab.) 5

0

 2 y2.52  y 2  2.52 arcsin 2.5 0

0.5

y

1

 90 



72 1 0.56  2.52 arcsin

318.5 ft3 5 5

106. 9x2  4y 2  36x  24y  36  0 18x  8yy  36  24y  0

8y  24y   18x  36 y 

 18x  36 8y  24

y  0 when x  2. y undefined when y  3. At x  2, y  0 or 6. Endpoints of major axis: 2, 0, 2, 6 At y  3, x  0 or 4. Endpoints of minor axis: 0, 3, 4, 3 Note: Equation of ellipse is



4

108. (a) A  4

0

x  22  y  32  1 4 9



3 x 3 16  x2 dx  x16  x2  16 arcsin 4 2 4



4

V  2

(b) Disk:

0

9 9 16  x2 dx  16 8

4 0

 12

16x  31x

4

3

0

 48

3 y  16  x2 4 y  1   y2 



4

S  22

0



3x 416  x2

1  16169x x  2

2

16161616 x x 9x dx  4 43

3 16  x2 4

2

7x 3 7x256  7x2  256 arcsin 16 87



—CONTINUED—

4

2

2

0

4 0



16  x2

256  7x2

416  x2

dx 

3 4



7 3 487  256 arcsin

138.93 4 87





4

0

256  7x2 dx

431

432

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

108. —CONTINUED—



4

V  4

(c) Shell:

0

416  x dx  3  2316  x 

x

3

1

2

4

2

2 32

0

 64

4 x  9  y 2 3 4y x   3 9  y2 1  x 2 



S  22  4



3

0

110. (a)

3

0

1  9916y y  2

2

4 9  y 2 3

99 99y y 16y 2

2

2

dy

4 81  7y 2 dy 9







16  9 27



8 3712  81 ln37  12   81 ln 9 168.53 97



 7y81  7y

2

 81 ln 7y  81  7y 2

x2 y2  21 2 a b

At P, y  

b2 a2

Slope of line through c, 0 and x0, y0: m2 

y0 x0  c

x

 y0  m. 0

   

y0 b2x0   2 x0  c a y0 a2y 2  b2x0x0  c  2 0 2 y0 bx a y0x0  c  b2x0 y0 1  2 0 x0  c a y0



a2y02  b2x02  b2x0c a2b2  b2x0c b2a2  x0c b2    2 2 2 2 2 2 x0y0a  b   a y0c x0y0c  a y0c y0cx0c  a  y0c



 arctan 



 

b2 b2  arctan y0c y0c

m m tan  1  1  m1m



y0 x0  c

xb2 ya2

m m (c) tan  2  1  m2m



0

(b) Slope of line through c, 0 and x0, y0: m1 

2x 2yy  2 0 a2 b y  

3

   

y0 b2x   2 0 x0  c a y0 a2y 2  b2x0x0  c  2 0 2 y0 bx a y0x0  c  b2x0y0 1  2 0 x0  c a y0



a2y02  b2x02  b2x0c a2b2  b2x0c b2a2  x0c b2   2 2 2 2 2 2 2  a x0y0  a cy0  b x0 y0 x0y0a  b   a cy0 y0cx0c  a  y0c

 arctan

yb c 2

0



Since  , the tangent line to an ellipse at a point P makes equal angles with the lines through P and the foci.

Section 9.1

112. (a) e 

(b)

Conics and Calculus

114. The transverse axis is vertical since 3, 0 and 3, 3 are the foci.

a2  b2 c ⇒ ea2  a2  b2. Hence,  a a

3, 23

x  h2  y  k2  1 a2 b2

Center:

x  h2  y  k2  2  1. 2 a a 1  e2

3 5 c  , 2a  2, b2  c2  a2  2 4 Therefore, the equation is

x  22  y  32 1  4 41  e2

 y  32 2 x  32   1. 1 54

7

−3

433

9 −1

(c) As e approaches 0, the ellipse approaches a circle. 116. Center: 0, 0 Horizontal transverse axis Foci: ± c, 0 Vertices: ± a, 0 The difference of the distances from any point on the hyperbola is constant. At a vertex, this constant difference is

a  c  c  a  2a. Now, for any point x, y on the hyperbola, the difference of the distances between x, y and the two foci must also be 2a. x  c2   y  02  x  c2   y  02  2a x  c2  y 2  2a  x  c2  y 2

x  c2  y 2  4a2  4ax  c2  y 2  x  c2  y 2 4xc  4a2  4ax  c2  y 2  xc  a2  ax  c2  y 2

y

x2c2  2a2cx  a4  a2x2  2cx  c2  y 2



x2



c2

x2 a2



a2 

a2y2





a2

c2



( x, y )



a2

(c, 0) (− c, 0) (− a, 0) (a, 0)

2

y 1 c2  a2

Since a2  b2  c2, we have x2a2   y 2b2  1.

118. c  150, 2a  0.001186,000, a  93, b  1502  932  13,851 x2 y2  1 2 93 13,851



752 13,851

x 110.3 miles.

y2 x2  21 2 a b 2x 2yy b2x  2  0 or y  2 2 a b ay y  y0 

When y  75, we have x2  932 1 

120.



b2x0 x  x0 a2y0

a2y0y  a2y02  b2x0x  b2x02 b2x02  a2y02  b2x0x  a2y0 y a2b2  b2x 0 x  a2y 0 y x0x y0 y  2 1 a2 b

x

434

Chapter 9

Conics, Parametric Equations, and Polar Coordinates Ax2  Cy2  Dx  Ey  F  0

122.



A x2 







(Assume A  0 and C  0; see (b) below)



D E x  C y 2  y  F A C







D D2 E E2 D2 E2 x  2  C y2  y  2  F   R A 4A C 4C 4A 4C

A x2 

x  2AD  y  2CE  2

2



C

A



(a) If A  C, we have

R AC (b) If C  0, we have

x  2AD    y  2CE  2

2



R A



A x



(c) If AC > 0, we have

C y

2

D

E

 R A

2

 F  Ey 

D2 . 4A

E 2C



2

 F  Dx 

E2 . 4C

2

These are the equations of parabolas.







If A  0, we have

which is the standard equation of a circle.

x  2A y  2C

D 2A

1

R C

(d) If AC < 0, we have

x  2AD  y  2CE  2

which is the equation of an ellipse.

 R A

2





R C

 ±1

which is the equation of a hyperbola. 124. True

126. False. The y4 term should be y2.

Section 9.2

Plane Curves and Parametric Equations

2. x  4 cos2 

y  2 sin 

0 ≤ x ≤ 4

2 ≤ y ≤ 2

(a)

 2





x

0

y

2

0

 4

 2

2

4

2

0

 2

0

2

2



 4

(c)

3

−1

(b)

(d) 3 2 1 x 1

2

3

5

−3

y

−2

128. True

x  cos2  4 y2  sin2  4

5

y2 x  1 4 4 x  4  y2, 2 ≤ y ≤ 2 (e) The graph would be oriented in the opposite direction.

Section 9.2 4. x  3  2t

435

6. x  2t2

y  2  3t y23

Plane Curves and Parametric Equations

y  t4  1

3 2 x

2x 

y

2y  3x  13  0

2

x2  1, x ≥ 0 4

1

For t < 0, the orientation is right to left.

y

For t > 0, the orientation is left to right. y

6

6 5

4

4 3

2

2 x 2

6

4

1

8

x

−1 −1

1

2

3

4

5

6

8. x  t 2  t, y  t 2  t Subtracting the second equation from the first, we have x  y  2t or t 

xy 2

2

t

1

0

1

y

2 4

x  y 2 x  y  y 4 2

x

2

0

0

2

6

y

6

2

0

0

2

3 2

Since the discriminant is

x

−1

B2  4AC  2 2  41 1  0,

3

2

4

−1

the graph is a rotated parabola. 4 t, t ≥ 0 10. x  

12. x  1 

y3t y3

x 4,

x ≥ 0

x1

3

y

2 1 −2

−1

1

2



yt2

1 1 implies t  t x1

1 1 x1

x −1



14. x  t  1

yt1

y

−3

1 t



 



x   y  2  1  y  3 y 5 4 3

y

3 2 1

−2

1

−3

x

−2

x

2 1

2

3

4

5

−3

16. x  et, x > 0 y  e2t  1 y  x2  1 

18.

y 3 2

1  1, x > 0 x2

1 −3

−2

−1

x −1 −2 −3

1

3

x  tan2 

y

y  sec2 

4

sec2   tan2   1

3

yx1

2

x ≥ 0

1 x 1

2

3

4

436

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

x  2 cos 

20.

x  cos 

22.

y  6 sin 

2x   6y  2

2

x  4  2 cos 

24.

y  2 sin 2

y  1  2 sin 

y  4 sin  cos 

 cos2  sin2   1

x  4 2  4 cos2 

1  x2  sin2 

y2 x2   1 ellipse 4 36

 y  1 2  4 sin2 

y  ± 4x1  x2

x  4 2  y  1 2  4 3

3

y

−1

−2

4

7

2

2 −6 −4

4

−2

6

x

26. x  sec 

28.

2

y  tan 

x  cos3 

1.5

y  sin3  −3

x2  sec2 

3

y2  tan2 

−2

x2 3  cos2 

2

y2 3  sin2 

−2

30. x  ln 2t

−1.5

32. x  e2t

3

4

y  et

y  t2 t

−5

−3

ex 2

−2

3 −1

e 2x 1 2x  e y r 4

y2  x

−1

y > 0

3 −1

y  x, x > 0

34. By eliminating the parameters in (a) – (d), we get x2  y 2  4. They differ from each other in orientation and in restricted domains. These curves are all smooth. 4t 2  1 1 1  4 2 y (b) x  (a) x  2 cos , y  2 sin  t t t





y

x ≥ 0, x  2

3

y0

y 1 −3

2 x

−1

1

3

1 x

−1

−3

1

3

−1 −2

(c) x  t

y  4  t

x ≥ 0

y ≥ 0

(d) x   4  e2t

y  et

2 < x ≤ 0

y > 0

y

y

3

3

2

1

1

x 1

2

3

−3

−2

−1

x

Section 9.2

Plane Curves and Parametric Equations

36. The orientations are reversed. The graphs are the same. They are both smooth. 38. The set of points x, y corresponding to the rectangular equation of a set of parametric equations does not show the orientation of the curve nor any restriction on the domain of the original parametric equations.

x  h  r cos 

40.

x  h  a sec 

42.

y  k  r sin 

y  k  b tan 

cos  

xh r

xh  sec  a

sin  

yk r

yk  tan  b

cos2   sin2  

x  h 2  y  k 2  1 r2 r2

x  h 2  y  k 2  1 a2 b2

x  h 2   y  k 2  r 2 44. From Exercise 39 we have

46. From Exercise 40 we have

x  1  4t

x  3  3 cos 

y  4  6t.

y  1  3 sin .

Solution not unique

48. From Exercise 41 we have a  5, c  3 ⇒ b  4 x  4  5 cos y  2  4 sin .

Solution not unique

Center: 4, 2 Solution not unique

50. From Exercise 42 we have a  1, c  2 ⇒ b  3 x  3 tan 

52. y 

Center: 0, 0 Solution not unique The transverse axis is vertical, therefore, x and y are interchanged. 56. x    sin 

54. y  x2 Example

Example x  t, y 

y  sec .

2 t1

x  t, y 

y  t2

x  t 3,

y  t6

60. x  2  sin 

y  2  4 cos 

6

x  t,

2 t  1

58. x  2  4 sin 

y  1  cos 

−6

2 x1

y  2  cos 

9

6 −2

Not smooth at x  2n  1 

−9

4

9 −3

−

0

Smooth everywhere

5

437

438

Chapter 9

62. x 

3t 1  t3

y

3t 2 1  t3

Conics, Parametric Equations, and Polar Coordinates

64. Each point x, y in the plane is determined by the plane curve x  f t , y  gt . For each t, plot x, y . As t increases, the curve is traced out in a specific direction called the orientation of the curve.

2

−3

3

−2

Smooth everywhere 66. (a) Matches (ii) because 1 ≤ x ≤ 0 and 1 ≤ y ≤ 2.

(b) Matches (i) because x  y  2 2  1 for all y.

68. x  cos3 

70. x  cot 

y  2 sin 

y  4 sin  cos 

Matches (a)

Matches (c)

2

72. Let the circle of radius 1 be centered at C. A is the point of tangency on the line OC. OA  2, AC  1, OC  3. P  x, y is the point on the curve being traced out as the angle  changes   AP . AB   2 and AP    ⇒   2. Form the right triangle CDP. The angle AB and OCE   2   DCP   



      3  . 2 2 2



x  OE  Ex  3 sin











y  EC  CD  3 sin   cos 3 

3

C 2

A

1



1

  3 sin   sin 3 2



Hence, x  3 cos   cos 3, y  3 sin   sin 3. 74. False. Let x  t 2 and y  t. Then x  y 2 and y is not a function of x. 76. (a) x  v0 cos  t y  h  v0 sin  t  16t 2 t



x x x ⇒ y  h  v0 sin   16 v0 cos  v0 cos  v0 cos  y  h  tan  x 

(b) y  5  x  0.005x 2  h  tan  x  h  5, tan   1 ⇒   0.005  v02 



2

16 sec2  2 x v02

16 sec2  2 x v02

(c)

80

 , and 4

16 16 sec2 4  22 v02 v0 32  6400 ⇒ v0  80. 0.005

Hence, x  80 cos45 t y  5  80 sin45 t  16t 2.

0

250

−5

(d) Maximum height: y  55 at x  100 Range: 204.88

α D P = ( x, y )

θ

     sin 3   3 cos   cos 3 2 2



y

x

B E

x

Section 9.3

Section 9.3 2.

Parametric Equations and Calculus

Parametric Equations and Calculus

dy dydt 1    3t23 dx dxdt 13t23

4.

dy dyd 12e2 1 1     e32  32 dx dxd 2e 4 4e

8. x  t2  3t  2, y  2t

6. x  t, y  3t  1

dy 2 2   when t  0. dx 2t  3 3

dy 3   6t  6 when t  1. dx 12t 

4 4 d 2y 222t  3    when t  0. dx2 2t  3 2t  32 9

3t d 2y   6 concave upwards dx2 12t 

concave downward 10. x  cos , y  3 sin  dy 3 cos    3 cot  dx sin 

 dx is undefined when   0.

d 2y 3 csc2  3   3 2 dx sin  sin 

d 2y is undefined when   0. dx2



dy

14. x    sin , y  1  cos 

12. x  t, y  t  1 dy 1 2t  1   dx 1 2t  

t t  1

dy sin    0 when   . dx 1  cos 

1  cos  cos   sin2  1  cos 2 d  2 dx 1  cos 

 2 when t  2.

2y

d 2y t  1 2t   t 12t  1 t  1  dx2 1 2t  



1  1 when t  2. t  132

1 1   when   . 1  cos 2 4

concave downward

concave downward 16. x  2  3 cos , y  3  2 sin 

18. x  t  1, y 

2 cos  2 dy   cot  dx 3 sin  3 At 1, 3,   0, and

(a)

dy is undefined. dx

−3

(b) At t  1, x, y  0, 2, and dy dx dy  1,  1,  1 dt dt dx

Tangent line: y  5 3



5

−4

dy   0. At 2, 5,   , and 2 dx

4  23

1  1, t  1 t

4

Tangent line: x  1

At

439

,2 , 

7 dy 23 , and  . 6 dx 3

(c)

Tangent line: 23 4  33 y2 x 3 2





dy  1. At 0, 2, y  2  1x  0 dx y  x  2

(d)

4

−3

5

23x  3y  43  3  0 −4

440

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

20. x  4 cos , y  3 sin ,   (a)

3 4 (b) At  

4

−6

(d)

dy 3 4 3  . At , , dx 4 2 2









dx dy 32 dy 3  22,  ,  dt dt 2 dx 4

6

−4

(c)

3 4 3 , x, y  , , and 4 2 2

y

3 2





3 4 x 4 2



4

−6

6

3 y  x  32 4

−4

22. x  t2  t, y  t3  3t  1 crosses itself at the point x, y  2, 1. At this point, t  1 or t  2. dy 3t2  3  dx 2t  1 At t  1, At t  2,

dy  0 and y  1. Tangent Line dx

dy 9   3 and y  1  3x  2 or y  3x  5. Tangent Line dt 3

24. x  2, y  21  cos  Horizontal tangents:

dy  2 sin   0 when   0, ± , ± 2, . . . . d

Points: 4n, 0, 22n  1, 4 where n is an integer. Points shown: 0, 0, 2, 4, 4, 0 Vertical tangents:

dx  2  0; none d

26. x  t  1, y  t 2  3t Horizontal tangents: Point:

28. x  t2  t  2, y  t 3  3t

dy 3  2t  3  0 when t   . dt 2

Vertical tangents:

dx  1  0; none dt

Point:

30. x  cos , y  2 sin 2 Horizontal tangents: Points:

dy  3 5 7  4 cos 2  0 when   , , , . d 4 4 4 4

 22, 2 ,  22, 2 ,  22, 2 ,  22, 2 

Vertical tangents:

dy  3t 2  3  0 when t  ± 1. dt

Points: 2, 2, 4, 2

 21,  49

Vertical tangents:

Horizontal tangents:







dx  sin   0 when   0, . d

Points: 1, 0, 1, 0

74,  118

dx 1  2t  1  0 when t  . dt 2

Section 9.3 32. x  4 cos2 , y  2 sin 

Since dxd  0 at 2 and 32, exclude them. dx  8 cos  sin   0 when d

Vertical tangents:

441

34. x  cos2 , y  cos 

dy  3  2 cos   0 when   , . d 2 2

Horizontal tangents:

Parametric Equations and Calculus

Horizontal tangents:

dy  sin   0 when x  0, . d

Since dxd  0 at these values, exclude them. Vertical tangents:

  0, .

dx  2 cos  sin   0 when d

 3  , . 2 2

Point: 4, 0

Exclude 0, . Point: 0, 0

36. x  t2  1, y  4t3  3, 1 ≤ t ≤ 0

  dydt 2

dx dy dx  2t,  12t2, dt dt dt

0

s

1

2

38. x  arcsin t, y  ln1  t 2, 0 ≤ t ≤

 4t2  144t4

0

4t2  144t4 dt 

 1  36t232  54



1

2t1  36t2 dt

1  1  3732 4.149 54



0 1

1 2

dx 1 t dy 1 2t    , dt 2 1  t2 1  t2 1  t 2 dt





12

s

0 12





dxdt  dydt dt 1 1 t  dt  2

2

12

2 2

0

 

1 t1   ln 2 t1



0

1 dt 1  t2



12 0



1 1 1  ln3 0.549   ln 2 3 2 t5 1 dx 1 dy t 4  3,  1,   4 10 6t dt dt 2 2t

40. x  t, y 

 2

S

1

1



 2



1

2



1



t2  2t1 dt  4

t4 1  4 2 2t



 4a

2

2 1



779 240

44. x  cos    sin , y  sin    cos , dy   sin  d S



2

 2 cos2    2 sin2  d

0



2

0

 d 

2 2

2

0

 2 2

a2 sin2   a2 cos2  d

2

0

dt



3

2

dx dy  a sin ,  a cos  d d

0

t4 1  4 dt 2 2t 1



S4

4

10t  6t 5

2

42. x  a cos , y  a sin ,

dx   cos  d

2



d  4a

0

 2a

442

Chapter 9

46. x 

Conics, Parametric Equations, and Polar Coordinates

4t 4t 2 , y 1  t3 1  t3

(a) x 3  y 3  4xy

(b)

dy 1  t 38t  4t 23t2  dt 1  t 32

4

 −6

4t2  t3 3 2.  0 when t  0 or t   1  t32

6

Points: 0, 0,

4 3 2, 4 3 4 1.6799, 2.1165 3 

3 

−4



1

(c) s  2

0

1

8

41  2t 3 1  t 32



2



4t2  t 3 1  t 32



2

t 8  4t 6  4t 5  4t 3  4t 2  1

1  t 32

0

 1

dt  2

0

16 t 8  4t 6  4t 5  4t 3  4t 2  1 dt 1  t 34

dt 6.557

48. x  3 cos , y  4 sin 

4

dy dx  3 sin ,  4 cos  d d s

2

−6

6

9 sin2   16 cos2  d 22.1

−4

0

50. x  t, y  4  2t,

1 52. x  t3, y  t  1, 1 ≤ t ≤ 2, y-axis 3

dx dy  1,  2 dt dt

2

(a) S  2

dx dy  t2, 1 dt dt

4  2t1  4 dt

0





 254t  t 2

2 0

2

(b) S  2



(a) S  4

1



t1  4 dt  5 t 2

0

54. x  a cos , y  b sin ,



2

2 0

 45



2

ab sin 

  1

a2  b2 4ab cos2  d  a2 e



2ab e cos 1  e2 cos2   arcsine cos  e



 2b2 

e 

 32 17  232 23.48 9

b sin a2 sin2   b2 cos2  d

0



13 4  4 t t  1 dt  x  132 3 9

dx dy  a sin ,  b cos  d d

0

 4

2

S  2

 85

2aabb arcsin

a2  b2

a

—CONTINUED—

2



2

2

a2  b2

a

2

c  : eccentricity a



 2b

2

0



 2

2

e sin 1  e2 cos2  d

0

ab e1  e2  arcsine e

abe arcsine





2 1

Section 9.3

Parametric Equations and Calculus

443

54. —CONTINUED— (b) S  4

2

a cos a2 sin2   b2 cos2  d

0

 4

2

4a c

a cos b2  c2 sin2  d 

0

2

c cos b2  c 2 sin2  d

0



2a c sin b2  c2 sin2   b2 ln c sin   b2  c 2 sin2  c



2a c b2  c2  b2 ln c  b2  c 2  b2 ln b c













2

 0

 

2ab2 a  a2  b2 b2 1e ln  2a 2  ln 2 2 b e 1e a  b

 2a 2 



56. (a) 0

58. One possible answer is the graph given by x  t, y  t.

(b) 4

y

4 3 2 1 x

−4 −3 −2

1

2

3

4

−2 −3

−4



b

60. (a) S  2

dxdt  dydt dt dx dy f t   dt dt dt

gt

a

b

(b) S  2

a

2

2

2

2

62. Let y be a continuous function of x on a ≤ x ≤ b. Suppose that x  f t, y  gt, and f t1  a, f t 2  b. Then using integration by substitution, dx  f t dt and

b

y dx 

a

64. x  4  t, y  t,

0

A



t 

4

t2

gtf t dt.

t1

dx 1  , 0 ≤ t ≤ 4 dt 24  t



1 dt  24  t

2

4  u2 du 

0



1 u u4  u2  4 arcsin 2 2



2 0



Let u  4  t, then du  1 24  t  dt and t  4  u2. x y

x, y 

1 

 0



4  tt 

4

1 2

0

t

4

2



1 1 dt   2  24  t



1 1 dt   4 24  t

0

4

0



t dt  

4

1 2 32 t 2 3



dx  sin  d

0

V  2

2

3 sin 2sin  d

0

 18



sin3  d  18 cos  

2

0 4



8 3

t 1 28  t 4  t dt   4 3 4  t

38, 38

66. x  cos , y  3 sin ,



cos3  3



0

2

 12



0 4



8 3

444

Chapter 9

Conics, Parametric Equations, and Polar Coordinates dx  2 csc2  d

68. x  2 cot , y  2 sin2 ,





0

A2

0

2 sin2 2 csc2  d  8

2

12 

144  x2

x



0

2

 4

72. 2a2 is area of deltoid (c).

3 70. 8 a2 is area of asteroid (b).

76. (a) y  12 ln

2



d  8

 144  x

74. 2ab is area of teardrop (e).

(b) x  12 sech

2

0 < x ≤ 12

t t , y  t  12 tanh , 0 ≤ t 12 12

60

60

0

12 0

0

12

Same as the graph in (a), but has the advantage of showing the position of the object and any given time t.

0

(c)

dy 1  sech2t12 t   sinh dx secht12 tant12 12



y 24





t t t Tangent line: y  t0  12 tanh 0  sinh 0 x  12 sech 0 12 12 12



y  t0  sinh

(0, y0)



16 12



t0 x 12

8

( x, y )

4

y-intercept: 0, t0

x 2

Distance between 0, t0 and x, y: d 

12 sech 12t  12 tanh 12t

0

2

0

2

4

6

10

12

 12

d  12 for any t ≥ 0. 78. False. Both dxdt and dydt are zero when t  0. By eliminating the parameter, we have y  x 23 which does not have a horizontal tangent at the origin.

Section 9.4 2.

Polar Coordinates and Polar Graphs

7

2, 4

4.

7 0 6



7 0 6

74  2

y  0 sin 

x  3 cos1.57 0.0024



y  3 sin1.57 3

x, y  0.0024, 3



π 2

x, y  0, 0

(− 0.0024, 3)

π 2

π

2

2,





x, y   2, 2 (−

6. 3, 1.57

x  0 cos 

x  2 cos y  2 sin

7   2 4

0,  76

2) (0, 0) 0 1

2

0 1

0 1

2

Section 9.4



8. r,   2,

11 6



Polar Coordinates and Polar Graphs

10. r,   8.25, 1.3

12. x, y  0, 5 r  ±5

x, y  2.2069, 7.9494

x, y  1.7321, 1

tan  undefined

y

 3 3    , , 5, , 5, 2 2 2 2



y 8

2

6

(−1.7321, 1)

−2

(2.2069, 7.9494)



4

1

y

2 −2

x

−1

1

x

−1

1

−2

2

2

−2

x

−1

1

−2

2

3

−1

−4

−1

−6

−2

−8

−3 −4

(0, −5)

−5

14. x, y  4, 2

y

r  ± 16  4  ± 2 5

x 1

2

3

4

5

−1

2 1 tan      4 2

−2

 0.464

−4

(4, −2)

−3

2 5, 0.464, 2 5, 2.678

−5

16. x, y   3 2, 3 2

18. x, y  0, 5

r,   5, 1.571

r,   6, 0.785

20. (a) Moving horizontally, the x-coordinate changes. Moving vertically, the y-coordinate changes. (b) Both r and  values change. (c) In polar mode, horizontal (or vertical) changes result in changes in both r and . 22. x2  y 2  2ax  0

π 2

24.

r 2  2ar cos   0 rr  2a cos   0

π 2

r  10 sec 

xy  4

26.

x  10 r cos   10

r  2a cos 

0

a

0

2a

2

28.

8

r 2 r 2  9cos 2  0 r 2  9 cos 2

 8 csc 2 π 2

π 2

0

0 4

6

x2  y 22  9x2  y 2  0

r 2  4 sec  csc 

2

4

r 22  9r 2 cos2   r 2 sin2   0

r cos r sin   4

445

1

2

12



446

Chapter 9

30.

r  2

Conics, Parametric Equations, and Polar Coordinates

r  5 cos 

32.

r2  4

r 2  5r cos 

x2  y 2  4

x2  y2  5x

x  25

1

2

 y2 

52

5 6

3 y  x 3 2

y

3

3

x

−1 −1

x

y

y

1

5 6

tan   tan

25 25  y2  4 4

x2  5x 

y



34.

4

2

3 2

1

1 −2 −1

x 1

2

3

4

6

−2

x

−1

1

−2

−1

−3 −4

−2

38. r  51  2 sin 

r  2 csc 

36.

40. r  4  3 cos 

0 ≤  < 2

r sin   2 y2

0 ≤  < 2

3 −10

y20

2

6

10 −4

y

3

−18

10

−6

1

x

−1

42. r 

1

2

2 4  3 sin 

44. r  3 sin

Traced out once on 0 ≤  ≤ 2

1 46. r2  . 

5 2



0 ≤  < 4

Graph as

4

r1 

3

−6

6

1 

, r2  

1 

It is traced out once on 0, . 1.5

−3

3 −4 −1

.

−2

2

−1.5

Section 9.4

Polar Coordinates and Polar Graphs

48. (a) The rectangular coordinates of r1, 1 are r1 cos 1, r1 sin 1. The rectangular coordinates of r2, 2 are r2 cos 2, r2 sin 2. d 2  x2  x12   y2  y12  r2 cos 2  r1 cos 12  r2 sin 2  r1 sin 12  r22 cos2  2  2r1r2 cos 1 cos  2  r12 cos2 1  r22 sin2  22  2r1r2 sin 1 sin  2  r12 sin2 1  r22 cos2 2  sin2 2  r12 cos2 1  sin2 1  2 r1r2cos 1 cos 2  sin 1 sin 2  r12  r22  2r1r2 cos1  2 d  r12  r22  2r1r2 cos1  2 (b) If 1  2, the points lie on the same line passing through the origin. In this case, d  r12  r22  2r1r2 cos0





 r1  r22  r1  r2

(c) If 1  2  90, then cos1  2  0 and d  r12  r22, the Pythagorean Theorem! (d) Many answers are possible. For example, consider the two points r1, 1  1, 0 and r2, 2  2, 2. d

1  2

2



 212 cos 0 

  5 2



Using r1, 1  1,  and r2, 2  2, 52 , d 

1

2



 22  212 cos  

5  5. 2



You always obtain the same distance.

50.

10, 76 , 3,  d 



102

52. 4, 2.5, 12, 1 

32

7  2103 cos  6





d  42  122  2412 cos2.5  1  160  96 cos 1.5 12.3

109  60 cos 6  109  30

3 7.6

54. r  21  sin 

56. (a), (b) r  3  2 cos 

dy 2 cos  sin   2 cos 1  sin   dx 2 cos  cos   2 sin 1  sin  At 2, 0,



At 3,

dy  1. dx

7 dy , is undefined. 6 dx



3 dy At 4, ,  0. 2 dx





4

−8

4

−4

r,   1, 0 ⇒ x, y  1, 0 Tangent line: x  1 (c) At   0,

dy does not exist (vertical tangent). dx

447

448

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

58. (a), (b) r  4

r  a sin 

60.

dy  a sin  cos   a cos  sin  d

6

−8

 2a sin  cos   0

8

  0,

−6

 4 ⇒ x, y   2 2, 2 2 

dx  a sin2   a cos2   a1  2 sin2   0 d

at r,   4,

Tangent line: y  2 2  1 x  2 2 

sin   ±

y  x  4 2

, 

 3 5 7 , , , 4 4 4 4

Horizontal: 0, 0, a,

a 2 2, 4 , a 2 2, 34



Vertical:

62.

1 2

 2

 dy ,  1. 4 dx

(c) At  

 3 , , 2 2

r  a sin  cos2 



64. r  3 cos 2 sec 

dy  a sin  cos3   2a sin2  cos   a cos3  sin  d

2

 2a sin  cos3   sin3  cos 

−2

4

 2a sin  cos cos2   sin2   0 −2

 3   0, tan2   1,   , 4 4 Horizontal:



2a 

,

4

4

, 

Horizontal tangents: 2.133, ± 0.4352

2a 3

4

,

4

, 0, 0

66. r  2 cos3  2

r  3 cos 

68.

π 2

r 2  3r cos 

2

x2  y2  3x −3

3



3 x 2



2

0



−2

Circle: r 

Horizontal tangents:

1.894, 0.776, 1.755, 2.594, 1.998, 1.442 Center:

y2 3 2

32, 0

Tangent at pole:  

70. r  31  cos 

1

9  4

 2

π 2

Cardioid Symmetric to polar axis since r is a function of cos . 0 1



0

 3

 2

2 3



r

0

3 2

3

9 2

6

2

4

Section 9.4 72. r  sin5

Polar Coordinates and Polar Graphs

74. r  3 cos 2

Rose curve with five petals

Rose curve with four petals

 Symmetric to   2

Symmetric to the polar axis,  

Relative extrema occur when

Relative extrema: 3, 0, 3,



dr  3 5 7 9  5 cos5  0 at   , , , , . d 10 10 10 10 10

Tangents at the pole:  

 2 3 4 Tangents at the pole:   0, , , , 5 5 5 5



0







 3 , 4 4

0 2

76. r  2

80. r  5  4 sin 

78. r  1  sin 

Circle radius: 2 

 3 , 3, , 3, 2 2

π 2

1

y2

 , and pole 2

7 5 and given the same tangents. 4 4

π 2

x2

449

Limaçon

Cardioid

4

Symmetric to  

π 2

 2

π 2

0

0

1

1

 2





r

9

 6

0

 6

 2

7

5

3

1



2 π 2

0 2

r

82.

6 2 sin   3 cos 

2r sin   3r cos   6 2y  3x  6 Line π 2

84. r 

1 

Hyperbolic spiral



 4

 2

3 4



5 4

3 2

r

4 

2 

4 3

1 

4 5

2 3

π 2

0 1

0 1

4

450

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

86. r2  4 sin 

π 2

Lemniscate Symmetric to the polar axis,  



Relative extrema: ± 2,

 2

 , and pole 2 0



2



0

 6

 2

5 6



r

0

± 2

±2

± 2

0

Tangent at the pole:   0 90. r  2 cos 2 sec 

88. Since r  2  csc   2 

1 , sin 

the graphs has symmetry with respect to   2. Furthermore, r ⇒  as  ⇒ 0

Strophoid r ⇒  as  ⇒ r ⇒ as  ⇒

r cos   4 cos2   2

r r 1 2 2 sin  sin  y

x  4 cos2   2 lim 4 cos2   2  2

ry  2y  r r

  2

r  2 cos 2 sec   22 cos2   1 sec 

r ⇒  as  ⇒ . Also, r  2 

 2

 → ±2

2y . y1

x = −2

Thus, r ⇒ ±  as y ⇒ 1.

2

−3

3

4

−2 −4

4

y=1 −2

92. x  r cos , y  r sin  x2  y2  r 2, tan  

y x

94. Slope of tangent line to graph of r  f  at r,  is dy f cos   f sin   . dx f sin   f cos  If f    0 and f   0, then   is tangent at the pole.

96. r  4 cos 2

98. r  2 sec 

Rose curve

Line

Matches (b)

Matches (d)

Section 9.4 100. r  6 1  cos   (a)  0, r  6 1  cos 

(c)  

 2

  2     6 1  cos  cos  sin  sin  2 2

9

r  6 1  cos  

−9

15

 6 1  sin 

−9

(b)  

Polar Coordinates and Polar Graphs

  , r  6 1  cos   4 4





15



12 −12

12 −3

−9

The graph of r  6 1  cos  is rotated through the angle 2.

15

−6

The graph of r  6 1  cos  is rotated through the angle 4.



102. (a) sin  

    sin  cos  cos  sin 2 2 2







(b) sin    sin  cos   cos  sin   sin 

 cos 

 

r  f sin  

 2

r  f sin  



 f sin 

 f cos 



(c) sin  

3 3 3  sin  cos  cos  sin 2 2 2







 cos 

 

r  f sin  

3 2

  f cos 

104. r  2 sin 2  4 sin  cos 



(a) r  4 sin  

  cos   6 6







(b) r  4 sin  

2

−3

−3

−2





3

−2

2 2 cos   3 3





(d) r  4 sin   cos    4 sin  cos  2

2 −3 −3

3

3 −2 −2



2

3

(c) r  4 sin  

  cos    4 sin  cos  2 2

451

452

Chapter 9

Conics, Parametric Equations, and Polar Coordinates π 2

106. By Theorem 9.11, the slope of the tangent line through A and P is f cos   f sin  f sin   f cos 

Radial line

Polar curve r = f (θ)

P = (r, θ)

This is equal to tan   

ψ

sin   cos  tan  tan   tan   . 1  tan  tan  cos   sin  tan 

Tangent line

θ

0

A

Equating the expressions and cross-multiplying, you obtain

 f cos   f sin cos   sin  tan   sin   cos  tan f sin   f cos  f cos2   f cos  sin  tan   f sin  cos   f sin2  tan   f sin2   f sin  cos  tan   f sin  cos   f cos2  tan  f cos2   sin2   f tan  cos2   sin2  tan  

108. tan   At  

r 31  cos   drd 3 sin 

110. tan  

3 1   22 2  2 , tan    . 4 2 2

  arctan

f r  . f drd

At  

2 2 2   1.041 59.64 

r 4 sin 2  drd 8 cos 2

3 sin 3 , tan    . 6 2 cos 3 2

  arctan

−6

2

6

−4

−5

112. tan  



4

5

−8

 23  0.7137 40.89

r 5  undefined ⇒   . drd 0 2 6

−9

9

−6

114. True

Section 9.5 2. (a) r  3 cos 

116. True

Area and Arc Length in Polar Coordinates (b) A  2

π 2

12 3 cos 

9

2



2

d

0

2

cos2  d

0

0 2

A

32

4

2



9 4

 

9 2

2

1  cos 2 d

0

9 sin 2  2 2



2



0



9 4

Section 9.5



4

6 sin 22 d  36

0

sin2 2 d



6. A  2

0

4

 36



4

1 2

4. A  2

Area and Arc Length in Polar Coordinates

0

1  cos 4 d 2



 18  

sin 4 4



1 2

10

cos 5 d 2

0





10



1 1  sin10  2 10

453

0



20

4



0

4  92

 18







2

1 2

8. A  2

1  sin d 2

0



3 1   2 cos   sin 2 2 4



10. A  2 2



0



3  8 4

 

1 2

2

4  6 sin 2 d

arcsin23

2

16  48 sin   36 sin2  d

arcsin23

2

2 16  48 sin   361  cos  d 2

arcsin23



 34  48 cos   9 sin 2

2



arcsin23

 1.7635

2 −8

8

−12

12. Four times the area in Exercise 11, A  4  33 . More specifically, we see that the area inside the outer loop is

12

2

2

 6



21  2 sin 2 d 



2

 6

4  16 sin   16 sin2  d  8  63.

6

The area inside the inner loop is 2

1 2



3 2

7 6



21  2 sin 2 d  4  63.

−4

4 −1

Thus, the area between the loops is  8  63    4  63   4  123. 14. r  31  sin 

16. r  2  3 cos 

r  31  sin 

r  cos 

Solving simultaneously,

Solving simultaneously,

31  sin   31  sin  2 sin   0

  0, . Replacing r by r and  by   in the first equation and solving, 31  sin   31  sin , sin   1,   2. Both curves pass through the pole, 0, 3 2, and 0, 2, respectively. Points of intersection: 3, 0, 3, , 0, 0

2  3 cos   cos  1 2 5  , . 3 3 Both curves pass through the pole, (0, arccos 23), and 0, 2, respectively. cos  

Points of intersection:

12, 3 , 12, 53 , 0, 0

454

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

20.  

18. r  1  cos  r  3 cos 

4

π 2

r2

Solving simultaneously,

Line of slope 1 passing through the pole and a circle of radius 2 centered at the pole.

1  cos   3 cos  cos  

1 2

0 1

3

Points of intersection:

2, 4 , 2, 4 

5  , . 3 3 Both curves pass through the pole, 0, , and 0, 2, respectively. Points of intersection:

32, 3 , 32, 53 , 0, 0

22. r  3  sin 

π 2

Points of intersection:



r  2 csc 

0 1

2

17  3



2

17  3

2



, arcsin

17  3

,  arcsin

2



,

17  3

2

,

3.56, 0.596, 3.56, 2.545 The graph of r  3  sin  is a limaçon symmetric to   2, and the graph of r  2 csc  is the horizontal line y  2. Therefore, there are two points of intersection. Solving simultaneously, 3  sin   2 csc  sin2   3 sin   2  0 sin  

3 ± 17 2

  arcsin



17  3

2

  0.596.

24. r  31  cos  r

r=

6 1  cos 

The graph of r  31  cos  is a cardioid with polar axis symmetry. The graph of

6 1 − cos θ

−10

5

r  61  cos  is a parabola with focus at the pole, vertex3, , and polar axis symmetry. Therefore, there are two points of intersection. Solving simultaneously, 31  cos  

5

r = 3(1 − cos θ )

6 1  cos 

1  cos 2  2 cos   1 ± 2

  arccos  1  2 . Points of intersection:  32, arccos  1  2   4.243, 1.998,  32, 2  arccos 1  2    4.243, 4.285

−5

Section 9.5

Area and Arc Length in Polar Coordinates



26. r  4 sin  r  21  sin 

2

1 2

28. A  4

2

 18

Points of intersection: 0, 0, 4, 2

 

91  sin  d 2

0

455



1  sin 2 d 

0

9 3  8 2

(from Exercise 14)

7

The graphs reach the pole at different times ( values). 6

−7

7

r = 4 sin θ −7 −6

6 −2

r = 2 (1 + sin θ)



32. A  2

30. r  5  3 sin  and r  5  3 cos  intersect at   4 and  5 4.



1 A2 2  



5 4

5  3 sin 

4

2 d





59 9   30 cos   sin 2 2 4

6

2

6

3 sin 2 d 





4

  

4

 −4

59   302  50.251 2

4

−4

8

−12

12

−8

34. Area  Area of r  2a cos   Area of sector  twice area between r  2a cos  and the lines  , . 3 2



2 1 A  a 2  a 2 3 2





2



2

3



2 a 2  2a 2 3



sin 2 2 a 2  2a 2   3 2



3



2 a 2 3 π 2

 2a 2



tan   1,   4

2a cos  2 d



 a2

3

 6

33a 2

2a

4

1  cos 2 d 2

1 1  a2  2 4 2



0



π 2

r = a sin θ

0

0

a π θ =−3

4



1 1  a2  a2 4 8 a

a

a cos 2 d

0



2



2

1 sin 2  a2   2 2



2 a 2

1 2

0

1  cos 2 d

3    2 3 4

π θ = 3

36. r  a cos , r  a sin 

A2

1 2



2

6

2  sin 2 d

4 cos 2  4 sin  d

 2 sin2  4 cos 

5 4

2 2 59 5 9 59 9  30    30  2 4 2 4 2 4 2 4

  





2

1 2

r = a cos θ

2



6

 33



456

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

38. By symmetry, A1  A2 and A3  A4.



6

1 2

A1  A2 



2a cos 2  a2 d 

 3

6



a2 2



a2   sin 2 2

 3

4 cos2   1 d  2a2



6



 3



 



1 5 2 1 a 2 2 6 2

 

5 a 2  2a 2 12



A6  2

5 6



12

5 6

cos 2 d



3 a2  3  a 2 1   a2 1 2 2 2 4



















5 6

0

6



6

4

6





4

6

r=2



6



0



2a

4 6









2a sin 2  a2 d



4 sin2   1 d  a 2   sin 2

4



6

12  1  23

 a2



[Note: A1  A6  A7  A4  a2  area of circle of radius a]

r  sec   2 cos , 

40.

<  < 2 2

y

1

r cos   1  2 cos2  x12

r 2 cos2  x2 12 2 2 r x  y2



x 2  y 2x  x 2  y 2  2x 2



x

−1

y 2x  1  x 2  x3 y2 

  1 2

A2 

4

0

x 21  x 1x

4

sec   2 cos 2 d

0

sec2   4  4 cos2  d 



4

0



sec2   4  21  cos 2 d  tan   2  sin 2

0

r = 2a cos θ

π θ = −3

a2 d

a 2 3 a 2 5 3  a2   a2   12 3 2 12 12 2

π θ= 6

A1 a





4



A6 A4

π θ= 4 A7

a

A5

12

1  cos 2 d  a 2

12

A2

5π θ= 6

3 5 a 2 3  a2   a2  12 3 2 12 2



π θ= 3

2a

r = 2a sin θ

1  cos 2 d

2a sin 2 d  2

 a 2 2  sin 2

 a2

6

2a cos 2  2a sin 2 d

2a sin 2 d

0

A7  2

4



6

A3





6

 2a 2

6

4

π 2

5 a 2  a 2 2  sin 2 12



4



1 2 a 2 a  2 2 4

A3  A4  A5 



 a 2 sin 2



1 2

4



0

2

2

Section 9.5 42. r  2a cos 

s 



2

 2

r  8 sin 



2a cos 2  2a sin 2 d

 2

457

44. r  81  cos , 0 ≤  ≤ 2

r  2a sin  2

Area and Arc Length in Polar Coordinates



s2

 81  cos  2  8 sin  2 d

0



2a d  2

2

 2

 2 a

 16



1  2 cos   cos2   sin2  d

0



 162



1  cos  d

0

 162



1  cos 

0

 162



0

sin  1  cos 



 3221  cos 





1  cos  1  cos 

 d

d





0

 64

46. r  sec , 0 ≤  ≤

3

48. r  e, 0 ≤  ≤

50. r  2 sin2 cos , 0 ≤  ≤

10

2

3

−2

−3

4

−25

−2

−5

−3

Length  7.78

Length  31.31

Length  1.73  exact 3 

4

5

52. r  a cos  r  a sin  S  2



2

0

 2 a2

a cos  cos a2 cos   a2 sin2  d



2

cos2  d  a2

0



 a2  



2

1  cos 2 d

0

sin 2 2



2

0



2a2 2

54. r  a1  cos  r  a sin S  2





a1  cos  sin a21  cos 2  a2 sin2  d  2 a2

0

 22 a2





1  cos 32sin  d  

sin 1  cos 2  2 cos  d

42 a2 1  cos 52 5







0



32 a2 5

58. The curves might intersect for different values of :

56. r  

S  2



0

0

r  1







0

See page 696.

 sin  2  1 d  42.32

458

Chapter 9

60. (a) S  2

 

(b) S  2





Conics, Parametric Equations, and Polar Coordinates

f sin f 2  f2 d





f cos f 2  f2 d

62. r  8 cos , 0 ≤  ≤  (a) A 

1 2





r 2 d 

0

1 2





64 cos2  d  32

0





0

1  cos 2 sin 2 d  16   2 2







 16 

0

(Area circle  r2  42  16) (b)



0.2

0.4

0.6

0.8

1.0

1.2

1.4

A

6.32

12.14

17.06

20.80

23.27

24.60

25.08

1 (c), (d) For 4 of area 4  12.57: 0.42 1 For 2 of area 8  25.13: 1.57  2 3 For 4 of area 12  37.70: 2.73

(e) No, it does not depend on the radius. 64. False. f   0 and g  sin 2 have only one point of intersection.

Section 9.6 2. r 

Polar Equations of Conics and Kepler’s Laws

2e 1 e cos 

(a) e  1, r 

4. r 

2 , parabola 1 cos 

2e 1  e sin 

(a) e  1, r 

2 , parabola 1  sin 

(b) e  0.5, r 

1 2  , ellipse 1 0.5 cos  2 cos 

(b) e  0.5, r 

1 2  , ellipse 1  0.5 sin  2  sin 

(c) e  1.5, r 

3 6  , hyperbola 1 1.5 cos  2 3 cos 

(c) e  1.5, r 

3 6  , hyperbola 1  1.5 sin  2  3 sin 

4

e = 1.5

9

e=1

−9

e = 1.5

3

e=1 −9

9

e = 0.5 −4

6. r 

e = 0.5

−3

4 1 0.4 cos  (b) r 

(a) Because e  0.4 < 1, the conic is an ellipse with vertical directrix to the left of the pole. (c)

9

7

−10

10 −8

8

4 1  0.4 cos 

The ellipse is shifted to the left. The vertical directrix is to the right of the pole 4 r . 1 0.4 sin  The ellipse has a horizontal directrix below the pole.

−7

8. Ellipse; Matches (f)

−5

10. Parabola; Matches (e)

12. Hyperbola; Matches (d)

Section 9.6

14. r 

6 1  cos 

16. r 

Parabola since e  1

Polar Equations of Conics and Kepler’s Laws

1 5  5  3 sin  1  3 5sin 

18. r3 2 cos   6 r

3 Ellipse since e  < 1 5

Vertex: 3, 0 π 2

Vertices:

5  5 3 , , , 8 2 2 2







2 1 2 3 cos 

Ellipse since e 

π 2 0 4

6 3 2 cos 

Vertices: 6, 0,

8

0 1

2

2 < 1 3

65, 

π 2

0 1

20. r 

6 2  3  7 sin  1  7 3sin 

Hyperbola since e  Vertices:



22. r 





43, 0 ,  4, 

π 2

0

0

2

2

Hyperbola

4

−6

6

26.

Hyperbola

4

−6

−4

28. r 

6

−4

6

 1  cos  3



30. r 



6 Rotate the graph of r  1  cos 

 counterclockwise through the angle . 3

6 3  7 sin  2 3

Rotate graph of r 

6 . 3  7 sin 

Clockwise through angle of 2 3. 4

6

−6 −14

6

10

−4 −10

4

4 1  2 cos 

Vertices:

π 2

24.

3

Hyperbola since e  2 > 1

7 > 1. 3

3  3 3 , , , 5 2 2 2

2

5

459

460

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

32. Change  to 

 :r 6

2



1  sin 

 6

34. Parabola



e  1, y  1, d  1 r

36. Ellipse

38. Hyperbola

3 e  , y  2, d  2 4 r

40. Parabola Vertex: 5, 

3 e  , x  1, d  1 2

ed 1 e sin 

r

e  1, d  10

ed 1 e cos 

r



23 4 1 3 4 sin 



3 2 1 3 2 cos 



6 4 3 sin 



3 2 3 cos 

42. Ellipse

10 ed  1 e cos  1 cos 

44. Hyperbola

3  Vertices: 2, , 4, 2 2



Vertices: 2, 0, 10, 0



3 10 e ,d 2 3

1 e ,d8 3

r

ed r 1  e sin  8 3  1  1 3 sin  8  3  sin 

46. r 

1 ed  1  e sin  1  sin 

ed 1  e cos 



5 1  3 2 cos 



10 2  3 cos 

4 is a parabola with horizontal directrix above the pole. 1  sin 

(a) Parabola with vertical directrix to left pole.

(b) Parabola with horizontal directrix below pole.

(c) Parabola with vertical directrix to right of pole.

(d) Parabola (b) rotated counterclockwise  4.

x2 y2  1 a2 b2

48. (a)

x 2b 2  y 2a 2  a 2b 2 b 2 r 2 cos 2   a2r 2 sin2   a 2b 2 r 2 b 2 cos 2   a 21 cos 2   a 2b 2 r 2 a 2  cos 2  b 2 a 2  a 2b 2 r2  

a2

a 2b 2 a 2b 2  2 2 2   a  cos  a c 2 cos 2  b2

b2 b2  1 c a 2 cos 2  1 e 2 cos 2

y2 x2 21 2 a b

(b)

x 2b 2 y 2a 2  a 2b 2 b 2r 2 cos 2  a 2r 2 sin 2   a 2b 2 r 2 b 2 cos 2  a 2 1 cos 2   a 2b2 r 2 a 2  cos 2 a 2  b 2  a 2b 2 r2  

a 2b 2 b2  a 2  c 2 cos 2  1  c 2 a 2 cos 2  b 2 1 e 2 cos 2 

Review Exercises for Chapter 9

50. a  4, c  5, b  3, e  r2 

5 4

52. a  2, b  1, c  3, e 

9 1  2516 cos 2 

54. A  2

 1 2

2

r2 

2

1 1  34 cos 2 

2

1 d 3.37  3  2 sin  2 2

ed 1  e cos 

56. (a) r 

3

3  22 sin  d  4  2

2

(b) The perihelion distance is a  c  a  ea  a1  e .

1  e2 a  a1  e . 1e

When   0, r  c  a  ea  a  a1  e .

When   , r 

Therefore,

The aphelion distance is a  c  a  ea  a1  e . ed a1  e  1e

When   0, r 

a1  e 1  e  ed

1  e2 a  a1  e . 1e

a1  e 2  ed. Thus, r 

1  e2 a . 1  e cos 

58. a  1.427  109 km

60. a  36.0  10 6 mi, e  0.206

e  0.0543 r

r

1.422792505  109 1  e 2 a  1  e cos  1  0.0543 cos 

34.472  10 6 1  e 2 a

1  e cos 1  0.206 cos 

Perihelion distance: a1  e  28.582  10 6 mi Aphelion distance: a1  e  43.416  10 6 mi

Perihelion distance: a1  e  1.3495139  109 km Aphelion distance: a1  e  1.5044861  109 km r  a sin   b cos 

62.

461

r 2  ar sin   br cos  x 2  y 2  ay  bx x 2  y 2  bx  ay  0 represents a circle.

Review Exercises for Chapter 9 2. Matches (b) - hyperbola

4. Matches (c) - hyperbola

6. y 2  12y  8x  20  0

y

y 2  12y  36  8x  20  36

16

 y  6 2  42 x  2

12

Parabola Vertex: 2, 6 −4

x 8

12

462

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

8. 4x 2  y 2  16x  15  0

y

4x 2  4x  4  y 2  15  16

1

(2, 0)

x  2 2 y 2  1 14 1

x 1

2

3

−1

Ellipse Center: 2, 0

−2

Vertices: 2, ± 1 4x 2  4y 2  4x  8y  11  0

10.



y 4



1  4 y 2  2y  1  11  1  4 4

4 x2  x 

x  12 2  y  1 2  1 2 2

3

1 x

−2

1

Hyperbola

−1

12, 1 1 Vertices:  ± 2, 1 2 1 Asymptotes: y  1 ± x   2

−2

3

4

Center:

12. Vertex: 4, 2 Focus: 4, 0 Parabola opens downward p  2

x  4 2  42  y  2 x 2  8x  8y  0 14. Center: 0, 0

16. Foci: 0, ± 8

Solution points: 1, 2 , 2, 0

Asymptotes: y  ± 4x

Substituting the values of the coordinates of the given points into

Center: 0, 0

   

x2 y2  2  1, b2 a

c8 a y  x  4x asymptote → a  4b b

we obtain the system

b1   a4   1, 4b 2

2

2

 1.

18.

   

16 x2 3y 2   1. and b 2  4, 3 4 16

21 y2 x2   1, a  5, b  2, c  21, e  4 25 5

By Example 5 of Section 9.1, C  20



2

0

b2  c2  a2  64  4b 2 ⇒ 17b2  64 ⇒ b2 

Solving the system, we have a2 

Vertical transverse axis

1  2521 sin  d 23.01. 2

64 1024 ⇒ a2  17 17

x2 y2  1 102417 6417

Review Exercises for Chapter 9

463

1 2 x 200

20. y 

(a) x 2  200y

y

1 2 x 200

y 

1 x 100

(b)

x2  450 y Focus: 0, 50

x 1  10,000 x dx 38,294.49 S  2 x 1  10,000 2

1   y 2 

100

2

0



a

22. (a) A  4

0

 

b 4b 1 a 2  x 2 dx  a a 2



b

(b) Disk: V  2

0

  b

S  4

0

 

4 a b2



b

b 2  y 2 dy 

0



a 0

  ab

2 a 2 2 1 b y  y3 b2 3





b

4   a 2b 3

0



b

b 4  c 2y 2 dy 

0

2 a cy b 4  c 2y 2  b 4 ln cy  b 4  c 2y 2 b 2c



 0



b

2 a 2 b c b 2  c 2  b 4 ln cb  b b 2  c 2  b 4 lnb 2 b 2c



ab 2 ca ln c e



  

a

(c) Disk: V  2

0 a

S  22

0



a2 2 2 a 2 b  y 2 dy  2 b2 b

  x a

b 4  a 2  b 2 y 2 a b 2  y 2 dy b b b 2  y 2

 2 a 2 



x a 2  x 2  a 2 arcsin

4 b a2



2



 2 a 2 

b2 2 2 b 2 a  x 2 dx  2 a2 a



eb  ln11  ee 2

a

a 2  x 2 dx 

0



a 4  a 2  b 2 x 2 b a 2  x 2 a a a 2  x 2

a

a 4  c 2x 2 dx 

0





 



   2 b

t  x  4 ⇒ y  x  4 2 Parabola

0

4   ab 2 3

2

 2

a 0

abe arcsine

26. x  3  3 cos , y  2  5 sin 

24. x  t  4, y  t2

a

 dx

2 b cx cx a 4  c 2x 2  a 4 arcsin 2 a 2c a

c a b 2 a c a 2  c 2  a 4 arcsin a 2c a



2 b 2 2 1 a x  x3 a2 3

x 3 3  y 5 2 2

2

1

28. x  5 sin3 , y  5 cos3 

5x 

23

x  3 2 y  2 2  1 9 25

y 7 6

23

1

y 6 4

4

y

3

2

2 1 −1

5y 

x23  y23  523

Ellipse

5



x 1

2

3

4

5

6

7

7 6 5 4 3 2 1 −2 −1 −2 −3

−6

x

−4

2 −4 −6

x 1 2 3 4 5 6 7 8

4

6

464

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

30. x  h 2   y  k 2  r 2

y2 x2  1 16 9

32. a  4, c  5, b2  c2  a2  9,

x  5 2   y  3 2  2 2  4 Let

x2 y2  sec 2  and  tan 2 . 16 9

Then x  3 tan  and y  4 sec  . 34. x  a  b cos t  b cos y  a  b sin t  b sin

a b b t

a b b t (b) a  3, b  1

(a) a  2, b  1

(c) a  4, b  1

x  cos t  cos t  2 cos t

x  2 cos t  cos 2t

x  3 cos t  cos 3t

y  sin t  sin t  0

y  2 sin t  sin 2t

y  3 sin t  sin 3t

4

2

4

y=0 −2 ≤ x ≤ 2 −3

−6

3

−6

6

6

−4

−2

−4

(e) a  3, b  2

(d) a  10, b  1 x  9 cos t  cos 9t

(f) a  4, b  3

x  cos t  2 cos

y  9 sin t  sin 9t

y  sin t  2 sin

10

−15

x  cos t  3 cos

t 2

y  sin t  3 sin

4

15

−6

−10

t 2

 rcos    sin 

−6

6

6

−4

38. x  t  4 y  t2

y  v  w  r sin   r cos 

(a)

 r sin    cos 

dy 2t   2t  0 when t  0. dx 1 Point of horizontal tangency: 4, 0

y

(b) t  x  4 y  x  4 2

θ t

v

(c)



θ w

r

u

y 6 5

( x, y ) x

t 3

4

−4

36. x  t  u  r cos   r sin 

t 3

4 3 2 1 x 1

2

3

4

5

6

Review Exercises for Chapter 9 40. x 

1 t

42. x  2t  1

y  t2 (a)

dy 2t   2t 3 dx 1t 2 No horizontal tangents

y

1 t 2  2t

(a)

dy  t 2  2t 2 2t  2  dx 2

t 0



1 (b) t  x

1t  0 when t  1. t 2t  2 2

Point of horizontal tangency: 1, 1

1 y 2 x

x1 2

(b) t 

(c)

y

1 4  x  1 2 2  2 x  1 2 x  3 x  1

y

4 3

(c)

y

2

2

1 x

−2 −2

2

4

x

−1

1

2

44. x  6 cos 

46. x  e t

y  6 sin  (a)

465

y  et

dy 6 cos   3   cot   0 when   , . dx 6 sin  2 2

(a)

Points of horizontal tangency: 0, 6 , 0, 6 (b)

6x   6y 

(c)

y

2

2

1 1 dy et    2t   2 dx et e x No horizontal tangents

(b) t  ln x

1

1 y  eln x  e ln1x  , x > 0 x (c)

4

y

3

2 −4

x

−2

2

2

4

−2 1

−4

x 1

48. x  2  sin 

50.

3

x  6 cos  y  6 sin 

y  2  cos  (a), (c)

2

dx  6 sin  d

8

−8

dy  6 cos  d

8

−4





3  dx (b) At   ,

1.134, 2  , 6 d 2

dy dy  0.5, and

0.441 dt dx

s





 

36 sin 2   36 cos 2  d  6

0

(one-half circumference of circle)

 0

 6

466

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

52. x, y  1, 3

y

(−1, 3)

r  1 2  3 2  10

2

  arctan 3 1.89 108.43

1

r,    10, 1.89 ,  10, 5.03

−3

−2

x

−1

1

2

3

−1 −2 −3

r  10

54.

r

56.

r 2  100

1 2  cos 

2r  r cos   1

x 2  y 2  100

2 ± x 2  y 2  x  1 4x 2  y 2  x  1 2 3x 2  4y 2  2x  1  0

58.



r  4 sec  

4   3 cos   3



60.

3 4

tan   1

4 12 cos    32 sin 





r  cos   3 sin   8

y  1 x

x  3 y  8

y  x



64. x 2  y 2 arctan

62. x 2  y 2  4x  0 r 2  4r cos   0

 12



2

 a2

r 2 2  a 2

r  4 cos 

66.  

y x

π 2

68. r  3 csc , r sin   3, y  3

π 2

Horizontal line

Line 0 1

2 0 1

70. r  3  4 cos  Limaçon Symmetric to polar axis π 2

2



0

 3

 2

2 3



r

1

1

3

5

7

0

2

3

4

Review Exercises for Chapter 9

467

72. r  2 Spiral Symmetric to   2 π 2

0 2

4

8



0

r

0

 4  5

 2

3 4 3 2



5 4 5 2

 2

3 2 3

74. r  cos 5

π 2

Rose curve with five petals Symmetric to polar axis

 2 3 4 , 1, , 1, , 1, 5 5 5 5  3  7 9 Tangents at the pole:   , , , , 10 10 2 10 10



Relative extrema: 1, 0 , 1,



76. r 2  cos2 Lemniscate Symmetric to the polar axis Relative extrema: ± 1, 0





0

r

±1



 6 ±



0 1

π 2

 4

2

2

0 0 1 2

 3 Tangents at the pole:   , 4 4

78. r  2 sin  cos 2 

80. r  4sec   cos 

0.75

Bifolium

3

Semicubical parabola

Symmetric to   2 −1

1 −0.25

Symmetric to the polar axis  r ⇒ as  ⇒ 2  r ⇒ as  ⇒ 2

−1

5

−3

82. r 2  4 sin2 (a) 2r

ddr  8 cos2

(b)

4 cos2 dr  d r



Tangents at the pole:   0, (c)

2

−3

dy r cos   4 cos 2 sin  r  dx r sin   4 cos 2 cos  r

3

 2

cos2 sin   sin2 cos  cos2 cos   sin2 sin 

Horizontal tangents: dy  0 when cos2 sin   sin 2 cos   0, dx



  tan   tan 2 ,   0, , 0, 0 , ± 2 3, 3 3



Vertical tangents when cos 2 cos   sin 2 sin   0: −2



  tan 2 tan   1,   0, , 0, 0 , ± 2 3, 6 6



468

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

84. False. There are an infinite number of polar coordinate representations of a point. For example, the point x, y  1, 0 has polar representations r,   1, 0 , 1, 2 , 1,  , etc. 86. r  a sin , r  a cos  The points of intersection are  a 2, 4 and 0, 0 . For r  a sin , dy a cos  sin   a sin  cos  2 sin  cos    . dx a cos 2   a sin 2  cos 2

m1 

At  a 2, 4 , m1 is undefined and at 0, 0 , m1  0. For r  a cos , dy a sin 2   a cos 2  cos 2   . dx a sin  cos   a cos  sin  2 sin  cos 

m2 

At  a 2, 4 , m2  0 and at 0, 0 , m2 is undefined. Therefore, the graphs are orthogonal at  a 2, 4 and 0, 0 . 90. r  4 sin 3 

88. r  51  sin 



1 A2 2



32

2

51  sin 

 d 117.81    75 2

2

A3



1 2



3

4 sin 3 2 d

0

12.57 4

4 −8

4

8

−6

6

−12 −4

92. r  3, r 2  18 sin 2

4

9  r 2  18 sin 2 −6

sin 2 

−4

  12 A2

 1 2

6

1 2

12

18 sin 2 d 

0

1 2



512

12

9 d 

1 2



2

512

18 sin 2 d



1.2058  9.4248  1.2058 11.84

94. r  e, 0 ≤  ≤  A

1 2





96. r  a cos 2,

e 2 d 133.62

0

s8

 

4

dr  2a sin 2 d

a 2 cos 2 2  4a 2 sin 2 2 d

0

10

 8a

4

1  3 sin 2 2 d (Simpson’s Rule: n  4)

0

−25

5

−5



a 1  41.1997  21.5811  41.8870  2 6

9.69a

Review Exercises for Chapter 9

50. a  4, c  5, b  3, e  r2 

5 4

52. a  2, b  1, c  3, e 

9 1  2516 cos 2 

54. A  2

 1 2

2

r2 

2

1 1  34 cos 2 

2

1 d 3.37  3  2 sin  2 2

ed 1  e cos 

56. (a) r 

3

3  22 sin  d  4  2

2

(b) The perihelion distance is a  c  a  ea  a1  e .

1  e2 a  a1  e . 1e

When   0, r  c  a  ea  a  a1  e .

When   , r 

Therefore,

The aphelion distance is a  c  a  ea  a1  e . ed a1  e  1e

When   0, r 

a1  e 1  e  ed

1  e2 a  a1  e . 1e

a1  e 2  ed. Thus, r 

1  e2 a . 1  e cos 

58. a  1.427  109 km

60. a  36.0  10 6 mi, e  0.206

e  0.0543 r

r

1.422792505  109 1  e 2 a  1  e cos  1  0.0543 cos 

34.472  10 6 1  e 2 a

1  e cos 1  0.206 cos 

Perihelion distance: a1  e  28.582  10 6 mi Aphelion distance: a1  e  43.416  10 6 mi

Perihelion distance: a1  e  1.3495139  109 km Aphelion distance: a1  e  1.5044861  109 km r  a sin   b cos 

62.

461

r 2  ar sin   br cos  x 2  y 2  ay  bx x 2  y 2  bx  ay  0 represents a circle.

Review Exercises for Chapter 9 2. Matches (b) - hyperbola

4. Matches (c) - hyperbola

6. y 2  12y  8x  20  0

y

y 2  12y  36  8x  20  36

16

 y  6 2  42 x  2

12

Parabola Vertex: 2, 6 −4

x 8

12

462

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

8. 4x 2  y 2  16x  15  0

y

4x 2  4x  4  y 2  15  16

1

(2, 0)

x  2 2 y 2  1 14 1

x 1

2

3

−1

Ellipse Center: 2, 0

−2

Vertices: 2, ± 1 4x 2  4y 2  4x  8y  11  0

10.



y 4



1  4 y 2  2y  1  11  1  4 4

4 x2  x 

x  12 2  y  1 2  1 2 2

3

1 x

−2

1

Hyperbola

−1

12, 1 1 Vertices:  ± 2, 1 2 1 Asymptotes: y  1 ± x   2

−2

3

4

Center:

12. Vertex: 4, 2 Focus: 4, 0 Parabola opens downward p  2

x  4 2  42  y  2 x 2  8x  8y  0 14. Center: 0, 0

16. Foci: 0, ± 8

Solution points: 1, 2 , 2, 0

Asymptotes: y  ± 4x

Substituting the values of the coordinates of the given points into

Center: 0, 0

   

x2 y2  2  1, b2 a

c8 a y  x  4x asymptote → a  4b b

we obtain the system

b1   a4   1, 4b 2

2

2

 1.

18.

   

16 x2 3y 2   1. and b 2  4, 3 4 16

21 y2 x2   1, a  5, b  2, c  21, e  4 25 5

By Example 5 of Section 9.1, C  20



2

0

b2  c2  a2  64  4b 2 ⇒ 17b2  64 ⇒ b2 

Solving the system, we have a2 

Vertical transverse axis

1  2521 sin  d 23.01. 2

64 1024 ⇒ a2  17 17

x2 y2  1 102417 6417

Review Exercises for Chapter 9

463

1 2 x 200

20. y 

(a) x 2  200y

y

1 2 x 200

y 

1 x 100

(b)

x2  450 y Focus: 0, 50

x 1  10,000 x dx 38,294.49 S  2 x 1  10,000 2

1   y 2 

100

2

0



a

22. (a) A  4

0

 

b 4b 1 a 2  x 2 dx  a a 2



b

(b) Disk: V  2

0

  b

S  4

0

 

4 a b2



b

b 2  y 2 dy 

0



a 0

  ab

2 a 2 2 1 b y  y3 b2 3





b

4   a 2b 3

0



b

b 4  c 2y 2 dy 

0

2 a cy b 4  c 2y 2  b 4 ln cy  b 4  c 2y 2 b 2c



 0



b

2 a 2 b c b 2  c 2  b 4 ln cb  b b 2  c 2  b 4 lnb 2 b 2c



ab 2 ca ln c e



  

a

(c) Disk: V  2

0 a

S  22

0



a2 2 2 a 2 b  y 2 dy  2 b2 b

  x a

b 4  a 2  b 2 y 2 a b 2  y 2 dy b b b 2  y 2

 2 a 2 



x a 2  x 2  a 2 arcsin

4 b a2



2



 2 a 2 

b2 2 2 b 2 a  x 2 dx  2 a2 a



eb  ln11  ee 2

a

a 2  x 2 dx 

0



a 4  a 2  b 2 x 2 b a 2  x 2 a a a 2  x 2

a

a 4  c 2x 2 dx 

0





 



   2 b

t  x  4 ⇒ y  x  4 2 Parabola

0

4   ab 2 3

2

 2

a 0

abe arcsine

26. x  3  3 cos , y  2  5 sin 

24. x  t  4, y  t2

a

 dx

2 b cx cx a 4  c 2x 2  a 4 arcsin 2 a 2c a

c a b 2 a c a 2  c 2  a 4 arcsin a 2c a



2 b 2 2 1 a x  x3 a2 3

x 3 3  y 5 2 2

2

1

28. x  5 sin3 , y  5 cos3 

5x 

23

x  3 2 y  2 2  1 9 25

y 7 6

23

1

y 6 4

4

y

3

2

2 1 −1

5y 

x23  y23  523

Ellipse

5



x 1

2

3

4

5

6

7

7 6 5 4 3 2 1 −2 −1 −2 −3

−6

x

−4

2 −4 −6

x 1 2 3 4 5 6 7 8

4

6

464

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

30. x  h 2   y  k 2  r 2

y2 x2  1 16 9

32. a  4, c  5, b2  c2  a2  9,

x  5 2   y  3 2  2 2  4 Let

x2 y2  sec 2  and  tan 2 . 16 9

Then x  3 tan  and y  4 sec  . 34. x  a  b cos t  b cos y  a  b sin t  b sin

a b b t

a b b t (b) a  3, b  1

(a) a  2, b  1

(c) a  4, b  1

x  cos t  cos t  2 cos t

x  2 cos t  cos 2t

x  3 cos t  cos 3t

y  sin t  sin t  0

y  2 sin t  sin 2t

y  3 sin t  sin 3t

4

2

4

y=0 −2 ≤ x ≤ 2 −3

−6

3

−6

6

6

−4

−2

−4

(e) a  3, b  2

(d) a  10, b  1 x  9 cos t  cos 9t

(f) a  4, b  3

x  cos t  2 cos

y  9 sin t  sin 9t

y  sin t  2 sin

10

−15

x  cos t  3 cos

t 2

y  sin t  3 sin

4

15

−6

−10

t 2

 rcos    sin 

−6

6

6

−4

38. x  t  4 y  t2

y  v  w  r sin   r cos 

(a)

 r sin    cos 

dy 2t   2t  0 when t  0. dx 1 Point of horizontal tangency: 4, 0

y

(b) t  x  4 y  x  4 2

θ t

v

(c)



θ w

r

u

y 6 5

( x, y ) x

t 3

4

−4

36. x  t  u  r cos   r sin 

t 3

4 3 2 1 x 1

2

3

4

5

6

Review Exercises for Chapter 9 40. x 

1 t

42. x  2t  1

y  t2 (a)

dy 2t   2t 3 dx 1t 2 No horizontal tangents

y

1 t 2  2t

(a)

dy  t 2  2t 2 2t  2  dx 2

t 0



1 (b) t  x

1t  0 when t  1. t 2t  2 2

Point of horizontal tangency: 1, 1

1 y 2 x

x1 2

(b) t 

(c)

y

1 4  x  1 2 2  2 x  1 2 x  3 x  1

y

4 3

(c)

y

2

2

1 x

−2 −2

2

4

x

−1

1

2

44. x  6 cos 

46. x  e t

y  6 sin  (a)

465

y  et

dy 6 cos   3   cot   0 when   , . dx 6 sin  2 2

(a)

Points of horizontal tangency: 0, 6 , 0, 6 (b)

6x   6y 

(c)

y

2

2

1 1 dy et    2t   2 dx et e x No horizontal tangents

(b) t  ln x

1

1 y  eln x  e ln1x  , x > 0 x (c)

4

y

3

2 −4

x

−2

2

2

4

−2 1

−4

x 1

48. x  2  sin 

50.

3

x  6 cos  y  6 sin 

y  2  cos  (a), (c)

2

dx  6 sin  d

8

−8

dy  6 cos  d

8

−4





3  dx (b) At   ,

1.134, 2  , 6 d 2

dy dy  0.5, and

0.441 dt dx

s





 

36 sin 2   36 cos 2  d  6

0

(one-half circumference of circle)

 0

 6

466

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

52. x, y  1, 3

y

(−1, 3)

r  1 2  3 2  10

2

  arctan 3 1.89 108.43

1

r,    10, 1.89 ,  10, 5.03

−3

−2

x

−1

1

2

3

−1 −2 −3

r  10

54.

r

56.

r 2  100

1 2  cos 

2r  r cos   1

x 2  y 2  100

2 ± x 2  y 2  x  1 4x 2  y 2  x  1 2 3x 2  4y 2  2x  1  0

58.



r  4 sec  

4   3 cos   3



60.

3 4

tan   1

4 12 cos    32 sin 





r  cos   3 sin   8

y  1 x

x  3 y  8

y  x



64. x 2  y 2 arctan

62. x 2  y 2  4x  0 r 2  4r cos   0

 12



2

 a2

r 2 2  a 2

r  4 cos 

66.  

y x

π 2

68. r  3 csc , r sin   3, y  3

π 2

Horizontal line

Line 0 1

2 0 1

70. r  3  4 cos  Limaçon Symmetric to polar axis π 2

2



0

 3

 2

2 3



r

1

1

3

5

7

0

2

3

4

Review Exercises for Chapter 9

467

72. r  2 Spiral Symmetric to   2 π 2

0 2

4

8



0

r

0

 4  5

 2

3 4 3 2



5 4 5 2

 2

3 2 3

74. r  cos 5

π 2

Rose curve with five petals Symmetric to polar axis

 2 3 4 , 1, , 1, , 1, 5 5 5 5  3  7 9 Tangents at the pole:   , , , , 10 10 2 10 10



Relative extrema: 1, 0 , 1,



76. r 2  cos2 Lemniscate Symmetric to the polar axis Relative extrema: ± 1, 0





0

r

±1



 6 ±



0 1

π 2

 4

2

2

0 0 1 2

 3 Tangents at the pole:   , 4 4

78. r  2 sin  cos 2 

80. r  4sec   cos 

0.75

Bifolium

3

Semicubical parabola

Symmetric to   2 −1

1 −0.25

Symmetric to the polar axis  r ⇒ as  ⇒ 2  r ⇒ as  ⇒ 2

−1

5

−3

82. r 2  4 sin2 (a) 2r

ddr  8 cos2

(b)

4 cos2 dr  d r



Tangents at the pole:   0, (c)

2

−3

dy r cos   4 cos 2 sin  r  dx r sin   4 cos 2 cos  r

3

 2

cos2 sin   sin2 cos  cos2 cos   sin2 sin 

Horizontal tangents: dy  0 when cos2 sin   sin 2 cos   0, dx



  tan   tan 2 ,   0, , 0, 0 , ± 2 3, 3 3



Vertical tangents when cos 2 cos   sin 2 sin   0: −2



  tan 2 tan   1,   0, , 0, 0 , ± 2 3, 6 6



468

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

84. False. There are an infinite number of polar coordinate representations of a point. For example, the point x, y  1, 0 has polar representations r,   1, 0 , 1, 2 , 1,  , etc. 86. r  a sin , r  a cos  The points of intersection are  a 2, 4 and 0, 0 . For r  a sin , dy a cos  sin   a sin  cos  2 sin  cos    . dx a cos 2   a sin 2  cos 2

m1 

At  a 2, 4 , m1 is undefined and at 0, 0 , m1  0. For r  a cos , dy a sin 2   a cos 2  cos 2   . dx a sin  cos   a cos  sin  2 sin  cos 

m2 

At  a 2, 4 , m2  0 and at 0, 0 , m2 is undefined. Therefore, the graphs are orthogonal at  a 2, 4 and 0, 0 . 90. r  4 sin 3 

88. r  51  sin 



1 A2 2



32

2

51  sin 

 d 117.81    75 2

2

A3



1 2



3

4 sin 3 2 d

0

12.57 4

4 −8

4

8

−6

6

−12 −4

92. r  3, r 2  18 sin 2

4

9  r 2  18 sin 2 −6

sin 2 

−4

  12 A2

 1 2

6

1 2

12

18 sin 2 d 

0

1 2



512

12

9 d 

1 2



2

512

18 sin 2 d



1.2058  9.4248  1.2058 11.84

94. r  e, 0 ≤  ≤  A

1 2





96. r  a cos 2,

e 2 d 133.62

0

s8

 

4

dr  2a sin 2 d

a 2 cos 2 2  4a 2 sin 2 2 d

0

10

 8a

4

1  3 sin 2 2 d (Simpson’s Rule: n  4)

0

−25

5

−5



a 1  41.1997  21.5811  41.8870  2 6

9.69a

Problem Solving for Chapter 9

98. r 

2 ,e1 1  cos 

100. r 

4 45 3  ,e 5  3 sin  1  35sin  5

Ellipse

Parabola

π 2

π 2

0 2 0 1

102. r 

8 4 5  ,e 2  5 cos  1  52cos  2

Hyperbola

2

104. Line Slope: 3 Solution point: 0, 0

π 2

y  3 x, r sin   3 r cos , tan   3,  

 3

0 1

2

106. Parabola

 Vertex: 2, 2 Focus: 0, 0 e  1, d  4 4 r 1  sin 

 

108. Hyperbola Vertices: 1, 0, 7, 0 Focus: 0, 0 4 7 a  3, c  4, e  , d  3 4

4374 7  r 4 3  4 cos  1    cos  3

Problem Solving for Chapter 9 2. Assume p > 0. Let y  mx  p be the equation of the focal chord.

y

x2

= 4py (0, p)

First find x-coordinates of focal chord endpoints: x

x2  4py  4pmx  p x2  4pmx  4p2  0

y = −p

4pm ± 16p2m2  16p2  2pm ± 2pm2  1 2 x x2  4py, 2x  4py ⇒ y  . 2p

x

(a) The slopes of the tangent lines at the endpoints are perpendicular because 1 1 2pm  2pm2  1 2p 2pm  2pm2  1  4p1 2 4p2m2  4p2m2  1  4p1 2 4p2  1 2p —CONTINUED—

469

470

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

2. —CONTINUED— (b) Finally, we show that the tangent lines intersect at a point on the directrix y  p. Let b  2pm  2pm2  1 and c  2pm  2pm2  1. b2  8p2m2  4p2  8p2mm2  1 c2  8p2m2  4p2  8p2mm2  1 b2  2pm2  p  2pmm2  1 4p c2  2pm2  p  2pmm2  1 4p Tangent line at x  b: y 

b2 b bx b2  x  b ⇒ y   4p 2p 2p 4p

Tangent line at x  c: y 

c2 c c2 cx   x  c ⇒ y  4p 2p 2p 4p bx b2 cx c2    2p 4p 2p 4p

Intersection of tangent lines:

2bx  b2  2cx  c2 2xb  c  b2  c2 2x4pm2  1   16p2mm2  1 x  2pm Finally, the corresponding y-value is y  p, which shows that the intersection point lies on the directrix.

4.

y2 x2  2  1, a2  b2  c2, MF2  Mf1  2a 2 a b y 

y

β

b2x a2y

α

F2(−c, 0)

M (x 0 , y 0 ) x

b2x y  y0  2 0 x  x0 a y0

Tangent line at Mx0, y0:

β

F1(c, 0) Q

yy0  y02 x0 x  x02  b2 a2 x0 x y0 y x02 y02  2  2  2 a2 b a b x0 x y0 y  2 1 a2 b





QF2  QF1  MQ 



b2 b2 ⇒ Q  0,  . y0 y0

At x  0, y  

x

2

0

c2



b4  2d y0

 y0 

b2 y0



2

f

By the Law of Cosines,

F2Q2  MF2 2  MQ2  2MF2 MQcos d 2  MF2 2  f 2  2 f MF2 cos

F1Q2  MF12  f 2  2 f MF1cos  d 2  MF12  f 2  2 f MF1cos . cos 

 F2 2 f 2  d 2 MF12  f 2  d2 , cos   2 f MF2  2 f MF1

MF2  MF1  2a. Let z  MF1. Slopes: MF1: —CONTINUED—

y0 b2 b2 ; QF1: ; QF2: x0  c y0c y0c

Problem Solving for Chapter 9

471

4. —CONTINUED— To show  , consider

MF2 2  f 2  d2 2 f MF1  MF12  f 2  d 2 2 f MF2  ⇔

z  2a2  f 2  d 2 z  z2  f 2  d 2 z  2a



z2  2az  f 2  d 2







x0  c2  y02  2az  x02  y0 



b2 y0

   c 2

2



b4 y02



az  x0c  a2  0



ax0  c2  y02  x0c  a2



x02b2  a2y02  a2b2 x02 y02  2  1. a2 b



Thus,   and the reflective property is verified.

6. (a) y2 

t21  t22 2 1  t22 ,x  1  t22 1  t22

11  tt  2t 1x   1x 1t 2 1 1t  2 2

2

r cos  sin2   sin2   cos2   r cos3 

 t2

r cos sin2   cos2   cos2   sin2 

2

r cos   cos 2

11  xx.

r  cos 2

(d) r  0 for  

π 2

(c)

 11  rr cos cos  

sin2 1  r cos   cos2 1  r cos 

2

1

Thus, y2  x2

r 2 sin2   r 2 cos2 

(b)

sec 

 3 , . 4 4

Thus, y  x and y  x are tangent lines to curve at the origin. 0 1

(e) yt 

2

1  t21  3t2  t  t32t 1  4t2  t4  0 1  t22 1  t22

t4  4t2  1  0 ⇒ t2  2 ± 5 ⇒ x  



5  1

2



5  1

2



2  5

1  2 ± 5  3 5  1  2 ± 5  1 ± 5 5  1 3  5  1  5 2

472

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

10. r 

8. (a)

ab  ,0 ≤  ≤ a sin   b cos  2

r a sin   b cos   ab ay  bx  ab y x  1 b a Line segment

Generated by Mathematica





 u2 du,  (b) x, y   cos 2 0 t





 u2 sin du is on 2 0 t

1 Area  ab 2

the curve whenever x, y is on the curve. (c) xt  cos

 t2  t2 , yt  sin , xt2  yt2  1 2 2



a

Thus, s 

dt  a.

0

On  ,  , s  2. 12. Let r,  be on the graph. r 2  1  2r cos r 2  1  2r cos   1

r 2  12  4r 2 cos2   1 r 4  2r 2  1  4r 2 cos2   1 r 2r 2  4 cos2   2  0 r 2  4 cos2   2 r 2  22 cos2   1 r 2  2 cos 2 14. (a) r  2

(c) r  2  2 cos 

4

4

Cardioid

Circle radius 2 −6

−6

6

−4

−4

(b) r  2  cos 

(d) r  2  3 cos 

4

Convex limaçon −6

6

−4

16. The curve is produced over the interval 0 ≤  ≤ 9.

6

Limaçon with inner loop

4

−6

6

−4

C H A P T E R 9 Conics, Parametric Equations, and Polar Coordinates Section 9.1

Conics and Calculus . . . . . . . . . . . . . . . . . . . . 177

Section 9.2

Plane Curves and Parametric Equations . . . . . . . . . . 188

Section 9.3

Parametric Equations and Calculus

Section 9.4

Polar Coordinates and Polar Graphs . . . . . . . . . . . . 198

Section 9.5

Area and Arc Length in Polar Coordinates

Section 9.6

Polar Equations of Conics and Kepler’s Laws . . . . . . . 210

Review Exercises

. . . . . . . . . . . . 192

. . . . . . . . 205

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

C H A P T E R 9 Conics, Parametric Equations, and Polar Coordinates Section 9.1

Conics and Calculus

Solutions to Odd-Numbered Exercises 3. x  32  2 y  2

1. y 2  4x

5.

Vertex: 0, 0

Vertex: 3, 2

p1 > 0

p   12 < 0

Opens to the right Matches graph (h).

Opens downward Matches graph (e).

x2 y 2  1 9 4

7.

Center: 0, 0 Ellipse Matches (f)

Hyperbola Center: 0, 0 Vertical transverse axis. Matches (c)

9. y 2  6x  4  32 x

11. x  3   y  22  0

Vertex: 0, 0

 y  22  4  14 x  3

y

3 Focus:   2 , 0

Directrix: x 

y2 x2  1 16 1

8

3 2

Vertex: 3, 2 (0, 0)

12

8

y

Focus: 3.25, 2

4 x

4

4

Directrix: x  2.75

4

(− 3, 2) −8

−6

2

−4

x

−2 −2

8

−4

13. y2  4y  4x  0

15. x2  4x  4y  4  0

y 2  4y  4  4x  4

x 2  4x  4  4y  4  4

 y  22  41x  1

x  22  41 y  2

Vertex: 1, 2

Vertex: 2, 2

y

Focus: 0, 2

6

Directrix: x  2

4

y

Focus: 2, 1

4

(− 2, 2)

Directrix: y  3 (−1, 2) −6

x

2

2 2

4

−4

x

−2

2 −2

6 −4

177

178

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

17. y 2  x  y  0

19. y 2  4x  4  0

y2  y  14  x  14

 y  12 2  4  14  x  14  1 1 Vertex:  4 ,  2  1 Focus:  0,  2 

y 2  4x  4  41x  1 Vertex: 1, 0

2

4

Focus: 0, 0

−5

2

Directrix: x  2

1

Directrix: x  2

−6

6

−3

−4

 y  22  42x  3

21.

23.

x  h2  4p y  k x2  46 y  4

y 2  4y  8x  20  0

x2  24y  96  0 y  4  x2

25.

x2  y  4  0 27. Since the axis of the parabola is vertical, the form of the equation is y  ax2  bx  c. Now, substituting the values of the given coordinates into this equation, we obtain

29. x2  4y 2  4 x2 y 2  1 4 1

3  c, 4  9a  3b  c, 11  16a  4b  c. Solving this system, we have a  Therefore,

5 3, b



14 3,

c  3.

Foci:  ± 3, 0

−2

3

2

y

33.

12

(1, 5)

Center: 1, 5

9x2  4y 2  36x  24y  36  0 9x2  4x  4  4 y2  6y  9  36  36  36  36

4

x  22  y  32  1 4 9

x 8

4

4

8

Vertices: 1, 10, 1, 0 4 e 5

x

1

Vertices: ± 2, 0

a2  25, b2  9, c2  16 Foci: 1, 9, 1, 1

(0, 0) −1

Center: 0, 0

e

x  12  y  52  1 9 25

2

a2  4, b2  1, c2  3

2 y  53 x2  14 3 x  3 or 5x  14x  3y  9  0.

31.

y

a2  9, b2  4, c2  5 y

Center: 2, 3 Foci:  2, 3 ± 5 

6

Vertices: 2, 6, 2, 0 e

(− 2, 3) 2

5

3

x 6

4

2

2

Section 9.1 12x2  20y 2  12x  40y  37  0

35.



12 x2  x 



x

2

 3x 

a2  4, b2  2, c 2  2

a2  5, b2  3, c2  2 Center: Foci:

Center:

12, 1

Foci:

12 ± 2, 1

Vertices:



9 1 9  2 y 2  2y  1     2  4 4 4 4

x  32 2  y  12  1 4 2

 60

x  12 2  y  12  1 5 3

32, 1

32 ± 2, 1  21, 1, 72, 1

Vertices:

12 ± 5, 1

Solve for y: 2 y 2  2y  1  x2  3x 

Solve for y:

 y  12 

20 y 2  2y  1  12x2  12x  37  20

 y  12 

57  12x  12x2 20

y  1 ±

57  12x20  12x

y  1 ±

2

1 −2

−3

4

3

−3 −3

41. Vertices: 3, 1, 3, 9 Minor axis length: 6 Vertical major axis Center: 3, 5

39. Center: 0, 0 Focus: 2, 0 Vertex: 3, 0 Horizontal major axis a  3, c  2 ⇒ b  5

a  4, b  3

x2

x  32  y  52  1 9 16

9



y2 5

1

43. Center: 0, 0 Horizontal major axis Points on ellipse: 3, 1, 4, 0 Since the major axis is horizontal,

ax   by   1. 2

2

2

2

Substituting the values of the coordinates of the given points into this equation, we have

a9   b1   1, and 16a  1. 2

2

2

The solution to this system is a2  16, b2  167. Therefore, x2 y2 x2 7y 2   1,   1. 16 167 16 16



1 2 4

1 7  3x  x2 2 4



7  12x8  4x

(Graph each of these separately.)

(Graph each of these separately.) 1

179

x2  2y 2  3x  4y  0.25  0

37.

1  20y 2  2y  1  37  3  20 4

Conics and Calculus

2

180

45.

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

y 2 x2  1 1 4

47.

x  12  y  22  1 4 1

a  1, b  2, c  5

a  2, b  1, c  5

Center: 0, 0

Center: 1, 2

Vertices: 0, ± 1

Vertices: 1, 2, 3, 2

1 Asymptotes: y  ± x 2

1 Asymptotes: y  2 ± x  1 2

Foci:  1 ± 5, 2

Foci:  0, ± 5 

y

y

4

1 x

2

1 x

4

2

2

1

2

3

2

4

2 4 5

4

9x2  y 2  36x  6y  18  0

49.

x2  9y 2  2x  54y  80  0

51.

9x2  4x  4   y 2  6y  9  18  36  9

x2  2x  1  9 y 2  6y  9  80  1  81  0 x  12  9 y  32  0

x  22  y  32  1 1 9

1 y  3  ± x  1 3

a  1, b  3, c  10 Center: 2, 3

Degenerate hyperbola is two lines intersecting at 1, 3.

Vertices: 1, 3, 3, 3 Foci:  2 ± 10, 3

y

Asymptotes: y  3 ± 3x  2

x

4

y

2

2 2

x

2

2

4

4

6

2

6

4 6

53.

9y 2  x2  2x  54y  62  0

55.

9 y 2  6y  9  x2  2x  1  62  1  81  18

3x2  2y 2  6x  12y  27  0 3x2  2x  1  2 y 2  6y  9  27  3  18  12

 y  32 x  12  1 2 18 a  2, b  32, c  25 Center: 1, 3

x  12  y  32  1 4 6

−5

7

Vertices:  1, 3 ± 2 

9 y2  6y  9  x2  2x  62  81 x2  2x  19 9

1 y  3 ± x2  2x  19 3 (Graph each curve separately.)

1 −5

7

Foci:  1 ± 10, 3 −7

Solve for y:

Center: 1, 3 Vertices: 1, 3, 3, 3

Foci:  1, 3 ± 25 

 y  32 

a  2, b  6, c  10

1

−7

Solve for y:

2 y 2  6y  9  3x2  6x  27  18

 y  32 

3x2  6x  9 2

y  3 ±

3x

(Graph each curve separately.)

2

 2x  3 2

Section 9.1 57. Vertices: ± 1, 0 Asymptotes: y  ± 3x Horizontal transverse axis Center: 0, 0

181

59. Vertices: 2, ± 3 Point on graph: 0, 5 Vertical transverse axis Center: 2, 0 a3

b b a  1, ±  ±  ± 3 ⇒ b  3 a 1 Therefore,

Conics and Calculus

Therefore, the equation is of the form y2 x  22  1.  9 b2

x2 y 2   1. 1 9

Substituting the coordinates of the point 0, 5, we have 25 4  21 9 b

9 or b2  . 4

Therefore, the equation is

61. Center: 0, 0 Vertex: 0, 2 Focus: 0, 4 Vertical transverse axis

63. Vertices: 0, 2, 6, 2 2 2 Asymptotes: y  x, y  4  x 3 3 Horizontal transverse axis

a  2, c  4, b2  c2  a2  12 Therefore,

y2 x  22   1. 9 94

Center: 3, 2 a3

y2 x2   1. 4 12

b 2 Slopes of asymptotes: ±  ± a 3 Thus, b  2. Therefore,

x  32  y  22   1. 9 4

65. (a)

x2 2x x  y 2  1,  2yy  0,  y 9 9 9y At x  6: y  ± 3, y  At  6, 3 : y  3 

±6

93



(b) From part (a) we know that the slopes of the normal lines must be 9 23 .

± 23

At  6, 3 : y  3  

9

23 x  6 9

or 9x  23y  60  0 At  6,  3 : y  3 

or 2x  33y  3  0 At  6,  3 : y  3 

9 x  6 23

23 x  6 9

9 23

x  6

or 9x  23y  60  0

or 2x  33y  3  0 67. x2  4y 2  6x  16y  21  0

69. y2  4y  4x  0

71. 4x2  4y 2  16y  15  0

A  1, C  4

A  0, C  1

AC4

AC  4 > 0

Parabola

Circle

Ellipse 73. 9x2  9y 2  36x  6y  34  0

3x2  6x  3  6  2y2  4y  2

75.

AC9

3x2  2y2  6x  4y  5  0

Circle

A  3, C  2, AC < 0 Hyperbola

182

Chapter 9

Conics, Parametric Equations, and Polar Coordinates 79. (a) A hyperbola is the set of all points x, y for which the absolute value of the difference between the distances from two distance fixed points (foci) is constant.

77. (a) A parabola is the set of all points x, y that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the line. (b) x  h2  4py  k or y  k2  4px  h

(b)

(c) See Theorem 9.2.

y  k2 x  h2 x  h2 y  k2   1 or  1 2 2 a b a2 b2

b a (c) y  k ± x  h or y  k ± x  h a b 83. y  ax2

81. Assume that the vertex is at the origin.

y  2ax

x2  4py

3  4p1 2

The equation of the tangent line is y  ax02  2ax0x  x0 or y  2ax 0 x  ax 02.

9 p 4

Let y  0. Then:

The pipe is located 94 meters from the vertex.

ax02  2ax0x  2ax02

y

ax02  2ax0x

3

Focus

Therefore,

2

(− 3, 1)

x0  x is the x-intercept. 2

y

(3, 1) 1

−3

−2

−1

x 2

1

3

(x0, ax02 )

y = ax 2

x

( x2 , 0) 0

85. (a) Consider the parabola x2  4py. Let m0 be the slope of the one tangent line at x1, y1 and therefore, 1m0 is the slope of the second at x2, y2. From the derivative given in Exercise 32 we have: m0 

1 x or x1  2pm0 2p 1

1 1 2p  x2 or x2  m0 2p m0 Substituting these values of x into the equation x2  4py, we have the coordinates of the points of tangency 2pm0, pm02 and 2pm0, pm02 and the equations of the tangent lines are

 y  pm02  m0x  2pm0 and

2p x  .  y  mp   1 m  m 2

0

0

0

The point of intersection of these lines is

pm m  1, p and is on the directrix, y  p. 2

0

y

x 2 = 4py

0

2p p − , 2 m0 m0

(

) (2pm0, pm02) x

y = −p

( p(mm− 1) , − p) 0

0

—CONTINUED—

Section 9.1

Conics and Calculus

85. —CONTINUED— (b) x2  4x  4y  8  0

x  22  4 y  1. Vertex 2, 1 2x  4  4

dy 0 dx dy 1  x1 dx 2

At 2, 5, dydx  2. At  3, 54 , dydx  12 . Tangent line at 2, 5: y  5  2x  2 ⇒ 2x  y  1  0. Tangent line at  3, 54 : y  54  12 x  3 ⇒ 2x  4y  1  0. Since m1m2  2 12   1, the lines are perpendicular. 1 1 Point of intersection: 2x  1  x  2 4 5 5  x 2 4 x

1 2

y0 1 Directrix: y  0 and the point of intersection  2 , 0 lies on this line.

87.

y  x  x2 dy  1  2x dx At x1, y1 on the mountain, m  1  2x1. Also, m 

y1  1 . x1  1

y1  1  1  2x1 x1  1

x1  x12  1  1  2x1x1  1 x12  x1  1  2x12  x1  1 x12  2x1  2  0 x1 

2 ± 22  412 2 ± 23   1 ± 3 21 2

Choosing the positive value for x1, we have x1  1  3. m  1  2 1  3  3  23 m

01 1  x0  1 x0  1

1  3  23 Thus,  x0  1 1  x0  1 3  23 3  23  1  x0 3 23  x0. 3 The closest the receiver can be to the hill is  233  1 0.155.

y 2

(− 1, 1) −2

1

−1

( x1 , y1 ) (x0, 0) 1

−1 −2

x

183

184

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

89. Parabola Vertex: 0, 4

Circle Center: 0, k Radius: 8

x2  4p y  4

x2   y  k2  64

y

42  4p0  4

42  0  k2  64

p  1 −6

x2  4 y  4

−4

−2

4

6

k  43

8

−4

x2 y4 4

k2  48

x 2

−2

(Center is on the negative y-axis.)

x2   y  43   64

−6

2

−8

y  43 ± 64  x2 Since the y-value is positive when x  0, we have y  43  64  x2.

 4

A2

4

0







x3 1 x  43x  x64  x2  64 arcsin 12 2 8



64 1  163  248  32 arcsin 12 2

 2 4x   2 16  



x2   43  64  x2  dx 4



4 0



16 4  33  2

15.536 square feet 3

91. (a) Assume that y  ax2.

y

(− 60, 20)

(60, 20) 20

2 1 1 2  x ⇒ y 20  a60 ⇒ a  360 180 180 2

(b) f x 

1 2 1 x , fx  x 180 90

 60

 

1 x 1 90

S2

0

15 10

2

2 dx  90

5

60

902



dx

−60 −45 −30 −15

0





x2



60



2 1 x902  x2  902 ln x  902  x2 90 2



1 6011,700  902 ln 60  11,700   902 ln 90 90



1 180013  902 ln 60  3013   902 ln 90 90

 2013  90 ln



60  9030

 10 213  9 ln

13

(formula 26)

0



2  3 13 128.4 m 

1 1 3 93. x2  4py, p  , , 1, , 2 4 2 2

95.

y

As p increases, the graph becomes wider. 1

y

p=

1 4

p=2 p= p=

−8

3 2

1 2

x

8

3

p=1

24

−16

2

16

17

16

15

14

13

12

11

4

10

5

9

6

8

7

7

8

6

9

5

10

4

11

3

12

2

13

1

14

15

16

17

x

x 15 30 45 60

Section 9.1 5 97. a  , b  2, c  2

52

2

 22 

Conics and Calculus

3 2

The tacks should be placed 1.5 feet from the center. The string should be 2a  5 feet long. c a

e

99.

y

A  P  2a c

AP a 2

x

caP

103.

AP AP P 2 2

c A  P2 A  P   a A  P2 A  P

e

101. e 

(a, 0) P

A

35.34au  0.59au AP 

0.9672 AP 35.34au  0.59au

y2 x2  1 102 52

105. 16x2  9y 2  96x  36y  36  0 32x  18yy  96  36y  0

2yy 2x  2 0 102 5 y 

y18y  36   32x  96

52x x  102y 4y

At 8, 3: y 

y 

 32x  96 18y  36

y  0 when x  3. y is undefined when y  2.

8 2  12 3

At x  3, y  2 or 6. Endpoints of major axis: 3, 2, 3, 6

The equation of the tangent line is y  3  3 x  8. It 2 25 will cross the y-axis when x  0 and y  3 8  3  3 . 2

At y  2, x  0 or 6. Endpoints of minor axis: 0, 2, 6, 2 Note: Equation of ellipse is

2

 



1 x 4  x2 dx  x4  x2  4 arcsin 2 2

107. (a) A  4

0

2

V  2

(b) Disk:

0

2 0

or, A  ab  21  2

 2





1 1 1 4  x2 dx   4x  x3 4 2 3

x  32  y  22  1 9 16

2 0



8 3

1 y  4  x2 2 y  1   y2 

 2

S  22

y

x 24  x2

1  16 x 4x  16 4y 3x

16  3x2

0

—CONTINUED—

4y

2

2

2

 dx  2 3 3x16  3x

2

 16 arcsin



3x

4



2 0



2  9  43 21.48 9

185

186

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

107. —CONTINUED—

2

V  2

(c) Shell:

2

x4  x2 dx   

0

2x4  x212 dx  

0

2 4  x232 3





2 0



16 3

x  21  y 2 x  1  x2 

2y 1  y 2

1  1 4y y

1

S  22

21  y 2

2

1 

0



3y2

1  y 2

2



1  3y 2 1  y 2

1

dy  8

1  3y 2 dy

0



  436 

8 3y1  3y 2  ln 3y  1  3y 2 23



0

1  e2 sin2  d

2100  10a ⇒ a  20

0

For

x2 25



y2 49

Hence, the length of the major axis is 2a  40.

 1, we have

a  7, b  5, c  49  25  26, e 

C  47

 34.69



Area ellipse  ab  a10

2

C  4a



3 ln 2  3

111. Area circle   r 2  100

109. From Example 5,

1

c 26  . a 7

2

0

1  4924 sin  d 2

281.3558 37.9614 113. The transverse axis is horizontal since 2, 2 and 10, 2 are the foci (see definition of hyperbola).

115. 2a  10 ⇒ a  5 c  6 ⇒ b  11

Center: 6, 2 c  4, 2a  6, b2  c2  a2  7 Therefore, the equation is

x  62  y  22   1. 9 7

117. Time for sound of bullet hitting target to reach x, y: Time for sound of rifle to reach x, y:

2c x  c2  y 2  vm vs

y

( x, y )

x  c2  y 2

vs

2c x  c2  y 2 x  c2  y 2 Since the times are the same, we have:   vm vs vs 4c2 4c x  c2  y 2 x  c2  y 2 x  c2  y 2    2 vm vmvs vs2 vs2 x  c2  y2 

1  vv x 2 m 2 s

x2 c2vs2vm2



c2



vm2

2

 y2 

vm2x  vs2c vsvm

vv

y2 1  vs2vm2

2 s 2 m



 1 c2

(− c, 0) rifle

x

(c, 0) target

Section 9.1

Conics and Calculus

187

119. The point x, y lies on the line between 0, 10 and 10, 0. Thus, y  10  x. The point also lies on the hyperbola x236   y264  1. Using substitution, we have: x2 10  x2  1 36 64 16x2  910  x2  576 7x2  180x  1476  0 x

180 ± 1802  471476 27



180 ± 1922 90 ± 962  14 7

Choosing the positive value for x we have: x

90  962 160  962

6.538 and y 

3.462 7 7 2y 2 x2 2y 2 x2  2  1 ⇒ 2  1  2, c 2  a2  b2 a2 b b a

121.

x2 2y 2 2y 2 x2  2 1 ⇒ 2  2 1 a2  b2 b b a  b2 1



x2 x2 1 1  2  1 ⇒ 2  x2 2  2 2 a a  b2 a a  b2 x2 



2aa2  b2 2ac 2a2a2  b2 ⇒ x± ± 2 2 2a  b 2a2  b2 2a2  b2



2y2 1 2a2c 2 1 2 2 b a 2a2  b2 y2 

 ⇒ 2yb

2

2



2a2

b2  b2

b4 b2 ⇒ y± 22a2  b2 22a2  b2

There are four points of intersection:



2ac 2a2



b2



 

b2 , 22a2  b2

2ac 2a2



b2



b2 22a2  b2



2y2 2x 4yy b2x x2  2  1 ⇒ 2  2  0 ⇒ ye   2 2 a b a b 2a y a2 At



2y 2 2x 4yy b 2x x2  2  1 ⇒ 2  2  0 ⇒ yh  2 2 b b c b 2c y 2ac

2a2

ye 



, b2

b2 2a2





b2 , the slopes of the tangent lines are: 22a2  b2 2a  b  2ac



2

22a

2

b2

2

 b2





c a

b2 and

yh  2c 2



2ac 2a2  b2

22a

b2 2



 b2





a c

Since the slopes are negative reciprocals, the tangent lines are perpendicular. Similarly, the curves are perpendicular at the other three points of intersection. 123. False. See the definition of a parabola.

125. True

127. False. y2  x2  2x  2y  0 yields two intersecting lines.

129. True

188

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

Section 9.2

Plane Curves and Parametric Equations

1. x  t, y  1  t (b)

(a) t

0

1

2

3

4

x

0

1

2

3

2

y

1

y

1

1

0

2

x

−1

3

1

2

3

−1 −2

(c)

2

−3 −1

3

(d) x2  t y  1  x2, x ≥ 0

−4

5. x  t  1

3. x  3t  1 y  2t  1 y2

x 3 1  1

7. x  t 3

y  t2

y  12 t 2

y  x  12

x  t 3 implies t  x13 y  12 x 23

y

2x  3y  5  0

y

4 y

1 4 x

3 2

2

1

1

2

3

x

2

2

4

x

4

2 2

9. x  t, t ≥ 0

11. x  t  1

yt2



t t1

y t2

y

x1 x

y

4

 





x4 x 2  2 2 y

y

3

8

2

4 4

1

x −1



y

y  x2  2, x ≥ 0 y

13. x  2t

2

3

4

5

2

6

x

4

−2

x

2

2

15. x  et, x > 0

y 5

y  e3t  1

4

y  x3  1, x > 0

3 2 1 −2 −1

x −1

1

2

3

4

4

8

12

Section 9.2 17. x  sec 

19. x  3 cos , y  3 sin 

y  cos 

x

y  2 cos 2 2

x  sin2 2 16

x2  y 2  9.

xy  1 y

x  4 sin 2

21.

Squaring both equations and adding, we have

  , <  ≤  2 2

0 ≤  <

Plane Curves and Parametric Equations

y

y2  cos2 2 4

4

1 x

2



≥ 1, y ≤ 1

y2 x2  1 16 4

x

4

2

2

4 4

2

y

4

3

−6

2

6

1 x

1

2

−4

3

2 3

x  4  2 cos 

23.

x  4  2 cos 

25.

y  1  sin 

y  1  4 sin 

x  4  cos2  4

x  42  cos2  4

 y  12  sin2  1

 y  12  sin2  16

2

x  42  y  12  1 4 1

x  42  y  12  1 4 16

2

3

−1

8

−2

−4

−5

x  4 sec 

27.

10

29. x  t 3

y  3 tan  x2  sec2  16

x  et

31.

y  3 ln t

y  e3t

3 x  ln x y  3 ln 

et 

2

y2  tan2  9

−1

x2 y2  1 16 9

1 x

3 y et   3  y

5

1 x

y

−2

6

1 x3

x > 0 y > 0

−9

9 3

−6 −1

5 −1

189

190

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

33. By eliminating the parameters in (a) – (d), we get y  2x  1. They differ from each other in orientation and in restricted domains. These curves are all smooth except for (b). (a) x  t, y  2t  1

(b) x  cos 

3

1 ≤ y ≤ 3

dx dy   0 when   0, ± , ± 2, . . . . d d

2

y

1

−2

y  2 cos   1

1 ≤ x ≤ 1

y

x

−1

1

3

2

−1

2 1

−2

x

−1

1

2

−1

(c) x  et

(d) x  e t

y  2et  1

x > 0

y > 1

x > 0

y

y > 1

y

4

4

3

3

2

2

1

1 x

−1

y  2et  1

1

2

−1

3

x 1

2

3

35. The curves are identical on 0 <  < . They are both smooth. Represent y  21  x2 37. (a)

4

(b) The orientation of the second curve is reversed.

4

(c) The orientation will be reversed. −6

−6

6

(d) Many answers possible. For example, x  1  t, y  1  2t, and x  1  t, x  1  2t.

−4

−4

39.

6

x  x1  tx2  x1

x  h  a cos 

41.

y  y1  t y2  y1

y  k  b sin 

x  x1 t x2  x1 y  y1 

xh  cos  a

xx  xx  y 1

2

2

yk  sin  b

 y1

1

x  h2  y  k2  1 a2 b2

y  y1 y  y1  2 x  x1 x2  x1 y  y1  mx  x1 43. From Exercise 39 we have

45. From Exercise 40 we have

x  5t

x  2  4 cos 

y  2t.

y  1  4 sin .

Solution not unique

Solution not unique

47. From Exercise 41 we have a  5, c  4 ⇒ b  3 x  5 cos  y  3 sin . Center: 0, 0 Solution not unique

Section 9.2

Plane Curves and Parametric Equations

51. y  3x  2

49. From Exercise 42 we have a  4, c  5 ⇒ b  3

53. y  x3

Example

Example

x  4 sec 

x  t,

y  3t  2

x  t,

y  t3

y  3 tan .

x  t  3,

y  3t  11

3 t, x 

yt

x  tan t,

y  tan3 t

Center: 0, 0 Solution not unique 55. x  2  sin 

57. x    32 sin 

59. x  3 cos3 

y  21  cos 

y  1  32 cos 

y  3 sin3 

5

5

4

−6 −2

−2

16

6

7 −1

−1

−4

Not smooth at   2n

61. x  2 cot 

Not smooth at x, y  ± 3, 0 and 0, ± 3, or   12 n. 63. See definition on page 665.

4

y  2 sin  2

−6

6

−4

Smooth everywhere 65. A plane curve C, represented by x  f t, y  gt, is smooth if f and g are continuous and not simultaneously 0. See page 670. 67. x  4 cos 

69. x  cos    sin 

y  2 sin 2

y  sin    cos 

Matches (d)

Matches (b)

71. When the circle has rolled  radians, we know that the center is at a, a. sin   sin180   

191

 C  BD b

 

AP cos   cos180    b

b

or

or

BD  b sin 

AP  b cos 

Therefore, x  a  b sin  and y  a  b cos . 73. False x  t2 ⇒ x ≥ 0 x  t2 ⇒ y ≥ 0 The graph of the parametric equations is only a portion of the line y  x.

y

P b A

B

C θ a D

x

192

Chapter 9

75. (a) 100 mihr 

Conics, Parametric Equations, and Polar Coordinates

1005280 440  ftsec 3600 3

x  v0 cos t 



(d) We need to find the angle  (and time t) such that x



440 cos  t 3

y3

y  h  v0 sin t  16t 2 3 (b)

sin t  16t 440 3

cos t  400 440 3 sin t  16t 440 3

10  3 

1200 1200 sin   16 440 3 440 cos   440 cos  

7  400 tan   16 400 0

It is not a home run—when x  400, y ≤ 20. (c)

 10.

From the first equation t  1200440 cos . Substituting into the second equation,

2

30

0

2

 400 tan   16

60

120 44 

2

sec2 

tan 120 44  2

2

  1.

We now solve the quadratic for tan : 16

0

120 44 

2

tan2   400 tan   7  16

120 44 

2

tan   0.35185 ⇒   19.4

400 0

Yes, it’s a home run when x  400, y > 10.

Section 9.3 1.

Parametric Equations and Calculus

dy dydt 4 2    dx dxdt 2t t

3.

dy dydt 2 cos t sin t    1 dx dxdt 2 sin t cos t

Note: x  y  1 ⇒ y  1  x and dydt  1 5. x  2t, y  3t  1

7. x  t  1, y  t 2  3t

dy dydt 3   dx dxdt 2

dy 2t  3   1 when t  1. dx 1

d 2y  0 Line dx2

d 2y  2 concave upwards dx2

9. x  2 cos , y  2 sin  dy 2 cos     cot   1 when   . dx 2 sin  4 d 2y csc2  csc3      2 when   . 2  dx 2 sin  2 4 concave downward

11. x  2  sec , y  1  2 tan  2 sec2  dy  dx sec  tan  

2 sec    2 csc   4 when   . tan  6

d 2y 2 csc  cot   dx2 sec  tan   2 cot3   6 3 when   concave downward

 . 6

0

2

Section 9.3 13. x  cos3 , y  sin3 

15. x  2 cot , y  2 sin2 

3 sin2  cos  dy  dx 3 cos2  sin 

4 sin  cos  dy   2 sin3  cos  dx 2 csc2 

 tan   1 when  

 . 4



At 

sec2  1 d 2y   dx2 3 cos 2  sin  3 cos4  sin  

Parametric Equations and Calculus

2

,

3

3 2

,   23, and dydx  3 8 3.

y

Tangent line:

sec4  csc  4 2  when   .  3 3 4



3 3 3 2  x 2 8

3



3 3x  8y  18  0 At 0, 2,  

concave upward

dy  , and  0. 2 dx

Tangent line: y  2  0



At 2 3,

3 1  dy ,   , and  . 2 6 dx 8



y

Tangent line:

3 1   x  2 3  2 8

3x  8y  10  0

17. x  2t, y  t2  1, t  2 (a)

19. x  t 2  t  2, y  t3  3t, t  1 (a)

10

−6

5

−1

6

−4

8

−3

(b) At t  2, x, y  4, 3, and

(b) At t  1, x, y  4, 2, and

dx dy dy  2,  4, 2 dt dt dx

dx dy dy  3,  0, 0 dt dt dx

(c)

dy  2. At 4, 3, y  3  2x  4 dx y  2x  5

(d)

(c)

dy  0. At 4, 2, y  2  0x  4 dx y2

(d)

10

5

(4, 2)

(4, 3) −5

5 −4

21. x  2 sin 2t, y  3 sin t crosses itself at the origin, x, y  0, 0. At this point, t  0 or t  . dy 3 cos t  dx 4 cos 2t At t  0:

3 dy 3  and y  x. Tangent Line dx 4 4

At t  ,

3 dy 3   and y  x Tangent Line dx 4 4

−1

8

−3

193

194

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

23. x  cos    sin , y  sin    cos  Horizontal tangents:

dy   sin   0 when   0, , 2, 3, . . . . d

Points: 1, 2n  1 , 1, 2n where n is an integer. Points shown: 1, 0, 1, , 1, 2 dx  3 5   cos   0 when   , , ,. . .. d 2 2 2

Vertical tangents:

1

2n  1 , 1n1 2

 3  5 Points shown:  , 1,  , 1,  , 1 2 2 2 n1

Points:

25. x  1  t, y  t 2 Horizontal tangents:

27. x  1  t, y  t 3  3t dy  2t  0 when t  0. dt

Horizontal tangents:

dy  3t 2  3  0 when t  ± 1. dt Points: 0, 2, 2, 2

dx  1  0; none dt

Vertical tangents:

Point: 1, 0 Vertical tangents: 3

dx  1  0; none dt

3

(2, 2) −4 −2

5

4

(1, 0)

(0, − 2)

−1

−3

29. x  3 cos , y  3 sin  Horizontal tangents:

dy  3  3 cos   0 when   , . d 2 2

31. x  4  2 cos , y  1  sin 

Points: 0, 3, 0, 3 dx  3 sin   0 when   0, . d

Vertical tangents:

dy  3  cos   0 when   , . d 2 2

Horizontal tangents:

Points: 4, 0, 4, 2 dx  2 sin   0 when x  0, . d

Vertical tangents:

Points: 3, 0, 3, 0

Points: 6, 1, 2, 1 2

4

(0, 3) (4, 0) 0 −6

(− 3, 0)

(3, 0)

9

(2, − 1)

6

(6, − 1)

(4, − 2) (0, − 3) −4

−4

35. x  t 2, y  2t, 0 ≤ t ≤ 2

33. x  sec , y  tan  Horizontal tangents:

dy  sec2   0; none d

Vertical tangents:

dx  sec  tan   0 when x  0, . d

Points: 1, 0, 1, 0 4

−6

(− 1, 0)

(1, 0)

−4

6

   dydt

dx dy dx  2t,  2, dt dt dt



2

2

 4t 2  4  4t 2  1

2

s2

t 2  1 dt

0





0

 t t 2  1  ln t  t2  1  2 5  ln 2  5   5.916

2

Section 9.3

37. x  et cos t, y  et sin t, 0 ≤ t ≤

 2

 

2

   

0

dx dt



2

dy dt



2

0

0

2



dt



2e2t dt   2

2

et1 dt





  2et

0

 21  e2  1.12

1 1  9 dt  4t 2

dx  3a cos2  sin , d

dy  3a sin2  cos  d



1  u2 du

0





1 ln 37  6  6 37  3.249 12



3

t

dt

dx dy  a1  cos ,  a sin  d d



S2



a2 1  cos  2  a2 sin2  d

sin  cos  cos2   sin2  d

 



 2 2a

0

 6a

0



0

2

6



0

 

dt

t

0

43. x  a  sin , y  a1  cos ,

9a2 cos4  sin2  9a2 sin4  cos2  d

 12a

1  36t

1 ln 1  u2  u  u 1  u2 12

2

S4

1

6

1 6

u  6 t, du 

41. x  a cos3 , y  a sin3 ,





0

2



 1

S

195

dx 1 dy  , 3 dt 2 t dt

39. x  t, y  3t  1,

dx dy  etsin t  cos t,  etcos t  sin t dt dt s

Parametric Equations and Calculus

1  cos  d

0

2



sin 2 d  3a cos 2

0

2



0

 6a



 2 2a

0

sin 

1  cos 



 4 2a 1  cos 

d 



0

 8a

45. x  90 cos 30t, y  90 sin 30t  16t 2 (a)

(d) y  0 ⇒ 90 sin t  16t2 ⇒ t 

35

x  90 cos t  0

240 0

(b) Range: 219.2 ft (c)

dx dy  90 cos 30,  90 sin 30  32t. dt dt y  0 for t 



45 . 16

90 cos 302  90 sin 30  32t2 dt

902 2 cos 2  0 ⇒   45 32  By the First Derivative Test,   45 4 maximizes the range.



dx  90 cos , dt





90 dy  90 sin   32  90 sin   32 sin   90 sin  dt 16 s

0

 230.8 ft

902 902 cos  sin   sin 2  16 32

x  

4516

s

90 sin  16

 

9016sin 

90 cos 2  90 sin 2 dt

0



9016sin 

0

0



9016sin 



90 dt  90t

2

90 sin  16

ds 902   cos   0 ⇒   d 16 2 By the First Derivative Test,   90 maximizes the arc length.

196

Chapter 9

47. (a)

Conics, Parametric Equations, and Polar Coordinates

x  t  sin t

x  2t  sin2t

y  1  cos t

y  1  cos2t

0 ≤ t ≤ 2

0 ≤ t ≤ 

3

The time required for the particle to traverse the same path is t  4.

−1

49. x  t, y  2t,



dx dy  1, 2 dt dt

51. x  4 cos , y  4 sin ,

4



4

2t 1  4 dt  4 5

0

S  2

t dt

0



4

 2 5 t 2



0

0

 32







4

2

dx dy  3a cos2  sin ,  3a sin2  cos  d d

−4

x

−2

2

4

−2 −4

61. x  r cos , y  r sin

y

r sin

r 2 sin2  r 2 cos2 d

0

sin d

θ

0

 2r 2 cos

2





0

1  cos 

r 2

 32

59. s 

  a

2





dx dt

  dydt 2

0

12 2 a 5



2

dt

See Theorem 9.8, page 678.

x  t, y  t.

2



0

12a2 sin5  5

sin4  cos  d 

b

4



2

57. One possible answer is the graph given by

y





0

See Theorem 9.7, page 675.

 2r 2

2



t dt

a sin3  9a2 cos4  sin2   9a2 sin4  cos2  d  12a2

dy dydt  dx dxdt





cos  d  32 sin 

0

0



2

 16 5

0

53. x  a cos3 , y  a sin3 ,

S  2

4 cos  4 sin 2  4 cos 2 d

0

 5 t 2

55.

2

4

t 1  4 dt  2 5



 

dx dy  4 sin ,  4 cos  d d

0

 32 5

4

S  4

1

3

−1

(b) S  2

y  1  cos 2 t

−

3



(c) x  12 t  sin 12 t

3

−

(a) S  2

(b) The average speed of the particle on the second path is twice the average speed of a particle on the first path.

x

Section 9.3

Parametric Equations and Calculus

197

63. x  t, y  4  t, 0 ≤ t ≤ 4



4

A

4  t

0

x y

3 16 3 32

 

1 2 t

dt 

4

1 2



4

4t12  t12 dt 

0

 28 t  3t t 1

0 4

4  t 2

0

0

2 1 t dt  323  4  t dt   323 4t  t2  4

4  t t

4

2

1 2 t

dt 

3 64

2

0

0



4

4

16t12  8t12  t32 dt 

0





16 3

3 4





4

3 16 2 32 t  t t  t 2 t 64 3 5

0



8 5

 

3 8 x, y  , 4 5

65. x  3 cos , y  3 sin ,



dx  3 sin  d

0

V  2

2

3 sin 23 sin  d

 

0

 54

sin3  d

2 0

 54

1  cos2  sin  d

2



 54 cos  

67.

cos3  3



0

2

 36

x  2 sin2 

y

y  2 sin2  tan 

2

dx  4 sin  cos  d A



2

π 0≤θ< 2



2 sin2  tan 4 sin  cos  d  8

0

sin4  d

0

3 sin3  cos  3 8  sin  cos    4 8 8



69. ab is area of ellipse (d).

75. (a) x 

−2

2

2



0

1 x

−1

1 −1 −2

3  2

71. 6a2 is area of cardioid (f).

73. 83 ab is area of hourglass (a).

1  t2 2t , y , 20 ≤ t ≤ 20 1  t2 1  t2

2

The graph is the circle x 2  y 2  1, except the point 1, 0. Verify: x2  y 2 

11  tt   1 2t t  2 2 2

2

2



−3

1  2t 2  t 4  4t 2 1  t 22  1 1  t 22 1  t 22

(b) As t increases from 20 to 0, the speed increases, and as t increases from 0 to 20, the speed decreases. 77. False d g t d 2y dt f t f tg t  g t f t   dx2 f t f t 3



3

−2

198

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

Section 9.4 1.

Polar Coordinates and Polar Graphs

4, 2 

3.

5.  2, 2.36

 0 2



x  4 cos 

2   4

y  4 sin 

x  4 cos y  4 sin

4,  3 

x  2 cos2.36  1.004

  2 3

 

y  2 sin2.36  0.996

x, y  1.004, 0.996

 3   23

π 2

x, y   2, 23 

x, y  0, 4 π 2

π 2

(4, 36π )

(

2, 2.36 )

0

(− 4, − π3 )

1

0 1

2

3

0 1



7. r,   5,

3 4



9. r,   3.5, 2.5

11. x, y  1, 1 r  ± 2

x, y  2.804, 2.095

x, y  3.5355, 3.5355

tan   1

y

 5 5    , , 2, , 2, 4 4 4 4

y



1 4

(−3.54, 3.54)

3

−1

1 −3

−2

−2 x

−1

1

2

3

y

−1

2

−4



x

2

(2.804, − 2.095)

−3

1

(1, 1)

−1

1

x 1

13. x, y  3, 4

y

r  ± 9  16  ± 5 tan  

2

5

(− 3, 4)

 43

4 3

  2.214, 5.356, 5, 2.214, 5, 5.356

2 1 −4

−3

−2

−1

x 1

5 4 17. x, y   2 , 3 

15. x, y  3, 2

r,   3.606, 0.588

r,   2.833, 0.490 y

19. (a) x, y  4, 3.5

π 2

(b) r,   4, 3.5

4

(4, 3.5) 0

3

1

2

(4, 3.5) 1 x 1

2

3

4



Section 9.4 21. x2  y 2  a2

π 2

Polar Coordinates and Polar Graphs y4

23.

π 2

r sin   4

ra

r  4 csc  0 a 0 2

3x  y  2  0

25.

y 2  9x

27.

3r cos   r sin   2  0

r 2 sin2   9r cos 

r3 cos   sin   2 r

4

r

2 3 cos   sin 

9 cos  sin2 

r  9 csc2  cos 

π 2

π 2

0 1

0 1

r3

29.



y2

3

4

5

r  sin 

31.

6

7

r

33.

r 2  r sin 

r2  9 x2

2

2



y2

9

x2  y 



x2



y

2

1 2

tan r  tan 

y 2



tanx2  y 2  1 4

x2  y 2  arctan

x2  y 2  y  0

1

y x y x

y x

2

1

1

y 2π

2

1

π

2

π

1 2

x



−π x 1 2

35.

r  3 sec 

37. r  3  4 cos 

y

r cos   3

− 2π

1 2

6

0 ≤  < 2

3

− 12

x3

6

2

x30

−6

1

x 1

39. r  2  sin 

2

41. r 

4

0 ≤  < 2 −4

5

2 1  cos 

Traced out once on  <  < 

5

−10

5

−5 −2

199

200

Chapter 9

43. r  2 cos

Conics, Parametric Equations, and Polar Coordinates

32

45. r2  4 sin 2

2

0 ≤  < 4

−3

0 ≤  <

3

 2

2

−3

3

−2

−2

r  2h cos   k sin 

47.

Radius: h2  k 2 Center: h, k

r 2  2rh cos   k sin  r 2  2hr cos   kr sin  x2  y 2  2hx  ky x2  y 2  2hx  2ky  0

x2  2hx  h2   y 2  2ky  k2  0  h2  k 2 x  h2   y  k2  h2  k 2

49.

4, 23, 2, 6 

51. 2, 0.5, 7, 1.2 d  22  72  227 cos0.5  1.2

      20  16 cos  2 5  4.5 2

d

42

22

2    242 cos 3 6

 53  28 cos0.7  5.6



53.

55. (a), (b) r  31  cos 

r  2  3 sin  dy 3 cos  sin   cos 2  3 sin   dx 3 cos  cos   sin 2  3 sin  

4

2 cos 3 sin   1 2 cos 3 sin   1  3 cos 2  2 sin  6 cos2   2 sin   3

 

 2  ⇒ x, y  0, 3

r,   3,

Tangent line: y  3  1x  0



y  x  3

 dy (c) At   ,  1.0. 2 dx

57. (a), (b) r  3 sin 

5

−4

5 −1

r,  

3 2 3, 3  ⇒ x, y  3 4 3, 94 

Tangent line: y 





33 9   3 x  4 4 y   3x 

(c) At  

4

−4

 dy ,  0. 2 dx dy 2 At 2, ,  . dx 3 3 dy ,  0. At 1, 2 dx At 5,



−8

9 2

 dy ,   3  1.732. 3 dx



Section 9.4 59.

r  1  sin 

61.

dy  1  sin  cos   cos  sin  d

201

r  2 csc   3 dy  2 csc   3 cos   2 csc  cot  sin  d

 cos 1  2 sin   0

 3 cos   0

1  3  5 cos   0, sin   ⇒   , , , 2 2 2 6 6 Horizontal tangents:

Polar Coordinates and Polar Graphs

 3  , 2 2

2, 32, 12, 6 , 12, 56

5, 2 , 1, 32

Horizontal:

dx  1  sin  sin   cos  cos  d  sin   sin2   sin2   1  2 sin2   sin   1  2 sin   1sin   1  0 sin   1, sin    Vertical tangents:

1  7 11 ⇒  , , 2 2 6 6

32, 76, 32, 116 65. r  2 csc   5

63. r  4 sin  cos2 

10

2

−3

3

−12

12

−6

−2

Horizontal tangents:

 2 , 3, 32

Horizontal tangents: 7,

0, 0, 1.4142, 0.7854, 1.4142, 2.3562 r  3 sin 

67.

69. r  21  sin 

π 2

r2  3r sin 

Cardioid 0

x 2  y 2  3y



x2  y 

3 2

Circle r 

3 2



2



π 2

0

9 4

1

2

 Symmetric to y-axis,   2

3

 32

Center: 0,

Tangent at the pole:   0 71. r  2 cos3 π 2

Rose curve with three petals Symmetric to the polar axis



Relative extrema: 2, 0, 2,

 2 , 2, 3 3





0 2



0

 6

 4

 3

 2

2 3

5 6

r

2

0

 2

2

0

2

0

Tangents at the pole:  

  5 , , 6 2 6

 2

1

2

3

202

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

73. r  3 sin 2 π 2

Rose curve with four petals

 Symmetric to the polar axis,   , and pole 2



Relative extrema: ± 3,

5  , ± 3, 4 4



Tangents at the pole:   0,



0 3

 2

  , 3 2 give the same tangents. 75. r  5

77. r  41  cos 

π 2

π 2

Cardioid

Circle radius: 5 x2  y2  25

0

0 2

4

79. r  3  2 cos 

2

6

r  3 csc 

81.

π 2

r

1

10

π 2

y3

Symmetric to polar axis 0

6

r sin   3

Limaçon



4

0

 3

 2

2 3



2

3

4

5

Horizontal line

2

0 1

83. r  2

π 2

Spiral of Archimedes Symmetric to  

 2



0

 4

 2

3 4



5 4

3 2

r

0

 2



3 2

2

5 2

3

0 1

Tangent at the pole:   0 85. r2  4 cos2 Lemniscate

 Symmetric to the polar axis,   , and pole 2

π 2

Relative extrema: ± 2, 0 0



0

 6

r

±2

± 2

 4 0

Tangents at the pole:  

1

 3 , 4 4

2

3

2

Section 9.4

Polar Coordinates and Polar Graphs 2 

89. r 

87. Since r  2  sec   2 

1 , cos 

Hyperbolic spiral r ⇒  as  ⇒ 0

the graph has polar axis symmetry and the lengths at the pole are

   , . 3 3

r

2 2 2 sin  2 sin  ⇒    r r sin  y

y

2 sin  

x = −1 4

Furthermore,

−6

 r ⇒   as  ⇒  2

6

lim

 →0

2 sin  2 cos   lim 2  →0  1

−4 3

 r ⇒  as  ⇒  . 2 Also, r  2 

y=2

1 r r 2 2 cos  r cos  x

−3

3 −1

rx  2x  r r

2x . 1x

Thus, r ⇒ ±  as x ⇒ 1. 91. The rectangular coordinate system consists of all points of the form x, y where x is the directed distance from the y-axis to the point, and y is the directed distance from the x-axis to the point. Every point has a unique representation. The polar coordinate system uses r,  to designate the location of a point. r is the directed distance to the origin and  is the angle the point makes with the positive x-axis, measured clockwise. Point do not have a unique polar representation. 97. r  31  cos 

95. r  2 sin  circle

93. r  a circle

  b line

Cardioid

Matches (c)

Matches (a) 99. r  4 sin  (a) 0 ≤  ≤

 2

(b)

 ≤  ≤  2

(c) 

π 2

π 2

0 1

2

  ≤  ≤ 2 2 π 2

0 1

2

0 1

2

203

204

Chapter 9

Conics, Parametric Equations, and Polar Coordinates π 2

101. Let the curve r  f  be rotated by  to form the curve r  g. If r1, 1 is a point on r  f , then r1, 1   is on r  g. That is,

(r, θ +φ )

g1    r1  f 1. Letting   1  , or 1    , we see that

(r, θ )

g  g1    f 1  f   .

φ θ 0

103. r  2  sin 



(a) r  2  sin  

2  2 sin   cos  4 2



(b) r  2  cos   2  cos  4

4

−6

−6

6

6

−4

−4

(d) r  2  cos 

(c) r  2  sin   2  sin 

4

4

−6

−6

6

6

−4

−4

105. (a) r  1  sin 



(b) r  1  sin  

π 2

 4



π 2

Rotate the graph of r  1  sin 

0 1

107. tan 

2

r 21  cos   dr d 2 sin 

At   , tan is undefined ⇒ 

109. tan 

 . 2

At  

3

−6

r 2 cos 3  dr d 6 sin 3

 , tan  0 ⇒  0. 6 2

3

−3

0 1

through the angle  4.

−3

3

−2

2

Section 9.5

111.

r

Area and Arc Length in Polar Coordinates

6 dr 6 sin   61  cos 1 ⇒  1  cos  d 1  cos 2

7

ψ

6 r 1  cos  1  cos  tan     dr 6 sin  sin  d 1  cos  2 2 At   , tan   3

 21

1  3

θ −8

7

−3

 3.

2

   , 60 3 113. True

115. True

Section 9.5

Area and Arc Length in Polar Coordinates

1. (a) r  8 sin 

(b) A  2

π 2

12 8 sin   2

 64



2

d

0

 2

sin2  d

0

 32

 2

1  cos 2 d

0



 32  

0 2

4

sin 2 2



 2

 16

0

A  42  16



3. A  2

1 2



 6

 

1 sin 6 6

2 cos 32 d  2  

0



 6



0



 3

5. A  2 



7. A  2 

 2

1 2

 2

1  sin 2 d

1 2



 4



1 1   sin 4 2 4





9. A  2  2

 32   2 cos   41 sin 2

 2



3 2

cos 22 d

0

1 2



2 3

 4



0

  8



1  2 cos 2 d



 3  4 sin   sin 2







2 3



2  33 2

2

−1

4

−2

11. The area inside the outer loop is

 12

2 3

2

2

 

1  2 cos 2 d  3  4 sin   sin 2

0

2 3



0



4  33 . 2

−1

4

From the result of Exercise 9, the area between the loops is



 



4  33 2  33     33. A 2 2

−2

205

206

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

13. r  1  cos 

15. r  1  cos 

r  1  cos 

r  1  sin 

Solving simultaneously,

Solving simultaneously,

1  cos   1  cos 

1  cos   1  sin 

2 cos   0

cos   sin  tan   1

 3  , . 2 2 Replacing r by r and  by    in the first equation and solving, 1  cos   1  cos , cos   1,   0. Both curves pass through the pole, 0, , and 0, 0, respectively.

 2 , 1, 32, 0, 0

Points of intersection: 1,



3 7 , . 4 4

Replacing r by r and  by    in the first equation and solving, 1  cos   1  sin , sin   cos   2, which has no solution. Both curves pass through the pole, 0, , and 0,  2, respectively. Points of intersection:

17. r  4  5 sin 

19. r 

r  3 sin 

2 3

2 2

,

4

2 7

, 2 2

 2

,

4

, 0, 0

π 2

r2

Solving simultaneously, 4  5 sin   3 sin  sin  

1 2

Solving simultaneously, we have 0

 2  2,   4.

1

Points of intersection:

 5  , . 6 6

2, 4, 2, 4

Both curves pass through the pole, 0, arcsin 4 5, and 0, 0, respectively. Points of intersection:

32, 6 , 32, 56, 0, 0

21. r  4 sin 2

π 2

r2 r  4 sin 2 is the equation of a rose curve with four petals and is symmetric to the polar axis,    2, and the pole. Also, r  2 is the equation of a circle of radius 2 centered at the pole. Solving simultaneously, 4 sin 2  2 2 



 5 , 6 6  5 , . 12 12

Therefore, the points of intersection for one petal are 2,  12 and 2, 5 12. By symmetry, the other points of intersection are 2, 7 12, 2, 11 12, 2, 13 12, 2, 17 12, 2, 19 12, and 2, 23 12.

0 1

3

Section 9.5 23. r  2  3 cos  sec  2

r

25. r  cos 

r = sec θ 2

4

Area and Arc Length in Polar Coordinates

r  2  3 sin 

−4

Points of intersection:

8

0, 0, 0.935, 0.363, 0.535, 1.006 −4

The graphs reach the pole at different times ( values).

r = 2 + 3 cos θ

The graph of r  2  3 cos  is a limaçon with an inner loop b > a and is symmetric to the polar axis. The graph of r  sec  2 is the vertical line x  1 2. Therefore, there are four points of intersection. Solving simultaneously, 2  3 cos  

1

r = cos θ

−4

5

sec  2

−5

r = 2 − 3 sin θ

6 cos2   4 cos   1  0 cos  

2 ± 10 6

  arccos

2 6 10 1.376

  arccos

2 6



10

 2.6068.

Points of intersection: 0.581, ± 2.607, 2.581, ± 1.376 27. From Exercise 21, the points of intersection for one petal are 2,  12 and 2, 5 12. The area within one petal is





 12

1 2

0

 12

 16





Total area  4



29. A  4

1 2

 2

1 sin 4 4

 12



0

 12

5 12

sin22 d  2

 12

0

8 

5 12

1 2

4 sin 22 d 

 12

1 2



 2

5 12

4 sin 22 d

4

d (by symmetry of the petal)

5 12

 

 2

22 d 



−6

4  3. 3

6

−4

43  3  163  43  34 4  33 3  2 sin 2 d

0





6

 2



 2 11  12 cos   sin2

0

−9

9

 11  24 −6

12

 6

31. A  2

4 sin 2 d 

0

 6

 12   41 sin2

 16 

0

1 2



 2

 6

8 2  23   4  33  3 3 5

−6

6

−3

 2

 

 4

22 d

 6



 

33. A  2

 a2 

1 2





a 1  cos  2 d 

0

 32  2 sin   sin42

3a 2 a 2 5a 2   2 4 4

 0

a2 4



a 2 4

207

208

Chapter 9

35. A    

Conics, Parametric Equations, and Polar Coordinates





a 2 1  8 2



a 2 a 2  8 2 a 2 8

a 2 8

a1  cos  2 d

 2

 2

π 2

32  2 cos   cos22 d

sin 2 3   2 sin   2 2 4





a2

 32  34  2  2   2

2

0





a2



a

2a

 2

a2

37. (a) r  a cos2 

(b)

4

a=6

a=4

r3  ar2 cos2  −6

x 2  y 23 2  ax 2

6

−4

(c) A  4

12

 2

6 cos2 2  4 cos2 2 d  40

0

 10



 2

cos4  d  10

0



 2



 2

1  cos 22 d

0

4 1  2 cos 2  1  cos  d  10 32   sin 2  81 sin 4 2

 2



0

0

15 2

39. r  a cosn For n  1:

For n  2:

r  a cos  A

 a 2

2

r  a cos 2 

a 2 4

A8

π 2

 4

a cos 22 d 

0

a 2 2

π 2

a

0

a

For n  3:

0

For n  4:

r  a cos 3 A6

 

1 2

r  a cos 4

12

 6

a cos 32 d 

0

π 2

a 2 4

A  16

12

 8

a cos 42 d 

0

a 2 2

π 2

a

0 a

0

In general, the area of the region enclosed by r  a cosn for n  1, 2, 3, . . . is a 2 4 if n is odd and is  a 2 2 if n is even.

Section 9.5

43. r  1  sin 

41. r  a r  0 s

Area and Arc Length in Polar Coordinates

r  cos 



2

 

a2  02 d  a

0

2 0

 2a

s2

(circumference of circle of radius a)



3 2

 2

1  sin 2  cos 2 d



3 2

 22

 2

1  sin  d

3 2

 22

cos  1  sin 

 2



 42 1  sin 

d



3 2

 2

 42  2  0  8

 2

45. r  2, 0 ≤  ≤

1 47. r  ,  ≤  ≤ 2 

49. r  sin3 cos , 0 ≤  ≤  1

4

0.5

−1

− 0.5 −1

2 −1

53. r  ea r  aea

r  6 sin 



Length 4.39

Length 0.71

51. r  6 cos 

S  2

−1

− 0.5

Length 4.16

 2

S  2

6 cos  sin 36 cos2   36 sin2 d

 72



 2

ea cos ea2  aea2 d

0

0

 2

sin  cos  d

 21  a2

0



 2

e2a cos  d

0



 36 sin2 

 2



 21  a2

0

 36



21  4a2  1

a2

2a

2

ea  2a

r  8 sin 2 S  2



 4

4 cos 2 sin 16 cos2 2  64 sin2 2 d

0

 32

 4

cos 2 sin cos2 2  4 sin2 2 d 21.87

0

Area  Arc length 





1 2







f  2d 

1 2







59. (a) is correct: s 33.124.

r2 d

f 2  f 2 d 





r2 

ddr

2

d

 2

 4ae  1 2a cos   sin 

55. r  4 cos 2

57.

2

0.5

0

209

210

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

61. Revolve r  a about the line r  b sec  where b > a > 0.`

π 2

f   a f  0 S  2

2a a



2

b  a cos  a2  02 d

a

b

0

0



 2a b  a sin   2a2b 



2 0

4 2ab

63. False. f   1 and g  1 have the same graphs. 65. In parametric form,



b

s

a

dx dt

 dydt 2

2

dt.

Using  instead of t, we have x  r cos   f  cos  and y  r sin   f  sin . Thus, dx dy  f cos   f  sin  and  f sin   f  cos . d d It follows that

ddx  ddy 2

Therefore, s 







Section 9.6 1. r 

2

  f 2   f2.

 f 2   f2 d

Polar Equations of Conics and Kepler’s Laws

2e 1  e cos 

(a) e  1, r 

3. r 

2 , parabola 1  cos 

2e 1  e sin 

(a) e  1, r 

2 , parabola 1  sin 

(b) e  0.5, r 

1 2  , ellipse 1  0.5 cos  2  cos 

(b) e  0.5, r 

1 2  , ellipse 1  0.5 sin  2  sin 

(c) e  1.5, r 

3 6  , hyperbola 1  1.5 cos  2  3 cos 

(c) e  1.5, r 

3 6  , hyperbola 1  1.5 sin  2  3 sin 

e = 1.0

4

e = 1.5

e = 0.5 −4

4

−9

9

8

e = 1.5 e = 1.0 −4

e = 0.5

−8

Section 9.6 5. r 

Polar Equations of Conics and Kepler’s Laws

4 1  e sin 

(a)

5

(b)

e = 0.1

− 30

5 − 30

30

30

e = 0.25 e = 0.5 e = 0.75 e = 0.9

− 40

− 40

The conic is a parabola.

The conic is an ellipse. As e → 1, the ellipse becomes more elliptical, and as e → 0  , it becomes more circular. (c)

e = 1.1

80

e=1 e=2 − 90

90

− 40

The conic is a hyperbola. As e → 1, the hyperbolas opens more slowly, and as e → , they open more rapidly. 7. Parabola; Matches (c)

13. r 

9. Hyperbola; Matches (a)

1 1  sin 

15. r 

Parabola since e  1 1 3 Vertex:  , 2 2







6 2  cos 

17. r 2  sin   4 r

3 1  1 2 cos 

Ellipse since e 

π 2

11. Ellipse; Matches (b)



1 < 1 2

Vertices: 2, 0, 6,  0 1

2

4 2  sin  2 1  1 2 sin 

Ellipse since e 

π 2

Vertices:

1 < 1 2

43, 2 , 4, 32 π 2

0 1

3

0 1

19. r 

5 5  1  2 cos  1  2 cos 

Hyperbola since e  2 > 1



5 Vertices: 5, 0,  ,  3 π 2



21. r 

3 3 2  2  6 sin  1  3 sin 

Hyperbola since e  3 > 1 Vertices:

38, 2 ,  43, 32 π 2

0 4

6

8

0 1

3

4

211

212

Chapter 9

23.

Conics, Parametric Equations, and Polar Coordinates Ellipse

1

−2

25.

Parabola

2

2 −2

1

−2

−2

27. r 

1

 1  sin   4



29. r 



Rotate the graph of r

6



2  cos  

 6



Rotate the graph of

1 1  sin 

r

 counterclockwise through the angle . 4

6 2  cos 

 clockwise through the angle . 6 5

2 −2

10

−8

4

−6

31. Change  to  

−3

 :r 4

5



5  3 cos  

 4



.

33. Parabola e  1, x  1, d  1 r

35. Ellipse 1 e  , y  1, d  1 2 r

ed 1  e sin 



1 2 1  1 2 sin 



1 2  sin 

41. Ellipse Vertices: 2, 0, 8,  3 16 e ,d 5 3 r  

ed 1  e cos  16 5 1  3 5 cos  16 5  3 cos 

ed 1  1  e cos  1  cos  39. Parabola

37. Hyperbola



 2



e  2, x  1, d  1

Vertex: 1, 

2 ed  r 1  e cos  1  2 cos 

e  1, d  2, r 

43. Hyperbola



Vertices: 1,

3 3 , 9, 2 2



5 9 e ,d 4 5 r

ed 1  e sin 



9 4 1  5 4 sin 



9 4  5 sin 



2 1  sin 

45. Ellipse if 0 < e < 1, parabola if e  1, hyperbola if e > 1.

Section 9.6



1 < 1 2

213

4 49. a  5, c  4, e  , b  3 5

47. (a) Hyperbola e  2 > 1 (b) Ellipse e 

Polar Equations of Conics and Kepler’s Laws



r2 

(c) Parabola e  1

9 1  16 25 cos 2 

(d) Rotated hyperbola e  3 51. a  3, b  4, c  5, e 

5 3

53. A  2

16 r2  1  25 9 cos 2 

9



1 2





0



0

3 2  cos 

d 2

1 d 10.88 2  cos  2

55. Vertices: 126,000, 0, 4119,  a

126,000  4119 c 40,627 84,000  65,059.5, c  65,059.5  4119  60,940.5, e   , d  4119 2 a 43,373 40,627

r

411984,000 43,373 345,996,000 ed   1  e cos  1  40,627 43,373 cos  43,373  40,627 cos 



When   60 , r 



345,996,000

15,004.49. 23,059.5

Distance between the surface of the earth and the satellite is r  4000  11,004.49 miles. 57. a  92.957 106 mi, e  0.0167 r

59. a  5.900 109 km, e  0.2481

92,931,075.2223 1  e2a  1  e cos  1  0.0167 cos 

r

5.537 10 9 1  e 2 a

1  e cos 1  0.2481 cos 

Perihelion distance: a1  e 91,404,618 mi

Perihelion distance: a1  e  4.436 10 9 km

Aphelion distance: a1  e 94,509,382 mi

Aphelion distance: a1  e  7.364 10 9 km

61. r 

5.537 109 1  0.2481 cos 

  

 9

1 2

(a) A 

0



1 2

9

 9

1 2 248 1 2 (b)

10  1 5.537 0.2481 cos 

0

2

0







2

d 9.341 1018 km2

10 d  1 5.537 0.2481 cos  5.537 10  1  0.2481 cos  d 9

2

9

2

 1  0.2481 cos  5.537 109

2



21.867 yr

d  9.341 1018

  0.8995 rad In part (a) the ray swept through a smaller angle to generate the same area since the length of the ray is longer than in part (b). (c) r  s

5.537 10 90.2481 sin  1  0.2481 cos  2



 9

0

10 1.3737297 10 sin   1 5.537 0.2481 cos  1  0.2481 cos  

9

2



9

2

2

d 2.559 109 km

2.559 109 km

1.17 108 km yr 21.867 yr s



 0.899



10 1.3737297 10 sin   d 4.119 1 5.537 0.2481 cos  1  0.2481 cos  

9

4.119 109 km

1.88 108 km yr 21.867 yr

2



2

9

2



109 km

214

Chapter 9

63. r1 

Conics, Parametric Equations, and Polar Coordinates

ed ed and r2  1  sin  1  sin 

Points of intersection: ed, 0, ed,  ed ed cos  cos   sin  dy 1  sin  1  sin 2 r1:  dx ed ed cos  sin   cos  1  sin  1  sin  2

 

 

At ed, 0,

 

 

dy dy  1. At ed, ,  1. dx dx

ed ed cos  cos   sin  dy 1  sin  1  sin 2 r2:  dx ed ed cos  sin   cos  1  sin  1  sin  2

 

 

At ed, 0,

 

 

dy dy  1. At ed, ,  1. dx dx

Therefore, at ed, 0 we have m1m2  11  1, and at ed,  we have m1m2  11  1. The curves intersect at right angles.

Review Exercises for Chapter 9 1. Matches (d) - ellipse

3. Matches (a) - parabola

16x 2  16y 2  16x  24y  3  0

5.

x

2

x

 

y



1 3 9 3 1 9    y2  y   4 2 16 16 4 16

1 x



1 x 2

  2

3  y 4

 1 2

1

2

1 , 2

2

Circle Center:

1

3 4

12,  43

Radius: 1 3x 2  2y 2  24x  12y  24  0

7.

3x 2  2y 2  12x  12y  29  0

9.

3x 2  8x  16  2 y 2  6y  9  24  48  18

3x 2  4x  4  2 y 2  6y  9  29  12  18

x  4 2  y  3 2  1 2 3

x  2 2  y  3 2  1 13 12

Hyperbola

Ellipse

Center: 4, 3

Center: 2, 3

Vertices:  4 ± 2, 3 Asymptotes: y  3 ±

Vertices:

32 x  4

2, 3

±

2

2

y

x

1

y

1

2

1 6

2

4

3 4

2 x

6

4

2

(2, − 3)

3



Review Exercises for Chapter 9 13. Vertices: 3, 0, 7, 0

11. Vertex: 0, 2

15. Vertices: ± 4, 0

Directrix: x  3

Foci: 0, 0, 4, 0

Foci: ± 6, 0

Parabola opens to the right

Horizontal major axis

Center: 0, 0

p3

Center: 2, 0

Horizontal transverse axis

 y  2  4 3x  0

a  5, c  2, b  21

a  4, c  6, b  36  16  25

y 2  4y  12x  4  0

x  22 y 2  1 25 21

x2 y2  1 16 20

2

17.

215

5 x2 y2   1, a  3, b  2, c  5, e  9 4 3

19. y  x  2 has a slope of 1. The perpendicular slope is 1. y  x 2  2x  2

By Example 5 of Section 9.1, C  12



2

0

dy 1 5  2x  2  1 when x  and y  . dx 2 4

  1

5 sin2  d 15.87. 9

y

Perpendicular line:



5 1  1 x  4 2

4x  4y  7  0 21. (a) V   abLength  12 16  192 ft 3





3

(b) F  262.4

8 4 3  y 9  y 2 dy  62.4 3 3 3 3





3

3

8 3 9 3 9 62.4   3 2 2 2 2

 



3



y9  y 2 dy



y 1 3 8 y 9  y 2  9 arcsin  9  y 2 32  62.4 3 2 3 3 



3

9  y 2 dy  3 3

  38 62.4272 7057.274

3

(c) You want 4 of the total area of 12 covered. Find h so that

  h

2

x=

4 9  y 2 dy  3 3

0

h

9  y 2 dy 

0

 



y 1 y 9  y 2  9 arcsin 2 3

h 0

y 4 3

9−

y2

4

h

9 8

Area of filled tank above x-axis is 3π.

2 x

−2

2 −2

9  8

−4

Area of filled tank below x-axis is 6π.

h3  94.

h9  h 2  9 arcsin

By Newton’s Method, h 1.212. Therefore, the total height of the water is 1.212  3  4.212 ft. (d) Area of ends  212  24 Area of sides  PerimeterLength  16

  2

1

0

256

167  sin   d 16 from Example 5 of Section 9.1 2

122 1  167  sin 0  41  167  sin 8   21  167  sin 4  2

2

2

1  167  sin 38  1  167  sin 2  353.65

4

Total area  24  353.65 429.05

2

2



216

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

23. x  1  4t, y  2  3t t

y

x1 x1 ⇒ y23 4 4



4



2 1

11 3 y x 4 4

−1

4y  3x  11  0

x −1

1

2

3

5

−2

Line 25. x  6 cos , y  6 sin 

6x   6y  2

x2



y2

2

27. x  2  sec , y  3  tan 

y

1

x  22  sec2   1  tan2   1   y  32

4

x  22   y  32  1

2

 36

−4 −2

Circle

y

x −2

2

4

8

Hyperbola

−4

4 2

x

−4

−2

2

4

8

−4

29. x  3  3  2t  3  5t

31.

x  3 2  y  4 2  1 16 9

y  2  2  6t  2  4t Let

(other answers possible)

x  3 2  y  4 2  cos 2  and  sin 2 . 16 9

Then x  3  4 cos  and y  4  3 sin . 35. (a) x  2 cot , y  4 sin  cos , 0 <  < 

33. x  cos 3  5 cos  y  sin 3  5 sin 

4

5

−12 −7

12

8

−4

(b) 4  x2y  4  4 cot2 4 sin  cos 

−5

 16 csc2   16

 sin   cos 

cos  sin 

 82 cot   8x 37. x  1  4t y  2  3t (a)

dy 3  dx 4

(b) t 

x1 4

y

(c) 5

No horizontal tangents

3 3x  11 y  2  x  1  4 4

4

2 1 x

1

2

3

5

Review Exercises for Chapter 9

217

39. x  1 t y  2t  3 (a)

dy 2  2t 2  dx 1t 2

(b) t 

No horizontal tangents t  0

1 x

y

(c)

y

6

2 3 x

4 2 x

4

41. x 

1 2t  1

y

1 t  2t

2

y  2  5 sin  (a)

 2t  2 dy t 2  2t 2 t  12t  1 2    0 when t  1. (a) dx 2 t 2t  2 2 2t  1 2 Point of horizontal tangency: (b) 2t  1 



 13 , 1

1 1 1 1 ⇒ t x 2 x

dy 5 cos   3   2.5 cot   0 when   , . dx 2 sin  2 2 Points of horizontal tangency: 3, 7, 3, 3

(b)

x  3 2  y  2 2  1 4 25 y

(c)



8

4

1 1 1x 2 x



 12 1 x x  2

x

4

4x 2 4x 2  2 1  x  4x1  x 5x  1x  1

 (c)

y 3 2

−2

x

−1

2

3

−1 −2

45. x  cos 3  y  4 sin 3  (a)

dy 12 sin 2  cos  4 sin     4 tan   0 when   0, . dx 3 cos 2 sin  cos  But,

dy dx   0 at   0, . Hence no points of horizontal tangency. dt dt

(b) x 23 

4y 

23

1

y

(c) 4

x

4

4

43. x  3  2 cos 

2

y

2

2

2

4

4

8 4

218

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

47. x  cot 

x  r cos    sin 

49.

y  rsin    cos 

y  sin 2  2 sin  cos  (a), (c)

dx  r cos  d

2

−3

3

dy  r sin  d

−2

sr

 dx 1 dy dy (b) At   ,   4,  1, and 6 d d dx 4

 



 2 cos 2    2 sin 2  d

0

r



 d 

0

51. x, y  4, 4



1 2 r 2

x −1

1

2

3

4

5

−2



r,   42,

7 , 4

 

42,

3 4

−3



−4 −5

r  3 cos  r2

(4, − 4)

r 2  2r 1  cos 

 3r cos 

x 2  y 2  2 ± x 2  y 2   2x

x 2  y 2  2x 2  4x 2  y 2

x 2  y 2  3x  0 r 2  cos 2  cos 2   sin 2  

r  21  cos 

55.

x 2  y 2  3x

r4

0

1

 7 4

57.



y

r  4 2  4 2  42

53.



r 2  2

r2

cos 2 



59.

r 2 sin 2 

r  4 cos 2 sec   4 2 cos 2   1

x 2  y 2 2  x 2  y 2

cos1 

r cos   8 cos 2   4 x8

x

2



x2 4  y2

x 3  xy 2  4x 2  4y 2 y2  x2



61. x 2  y 2 2  ax 2y

63. x 2  y 2  a 2 arctan

r 4  a r 2 cos 2 r sin  ra

cos 2 

y x



2

r2  a22

sin 

65. r  4

67. r  sec  

π 2

Circle of radius 4

1 cos 

π 2

r cos   1, x  1

Centered at the pole Symmetric to polar axis,

  2, and pole

44  xx

0 2

6

Vertical line

0 1

Review Exercises for Chapter 9 69. r  21  cos 

71. r  4  3 cos 

Cardioid

Limaçon

Symmetric to polar axis

Symmetric to polar axis

π 2

π 2

0

0

1

2



0

 3

 2

2 3





0

r

4

3

2

1

0

r

1

73. r  3 cos 2

4

 3 5 2

 2

2 3 11 2

4

π 2

Rose curve with four petals Symmetric to polar axis,  

 , and pole 2

0 4

3  Relative extrema: 3, 0, 3, , 3, , 3, 2 2

 

Tangents at the pole:  





 3 , 4 4

75. r 2  4 sin 2 2

π 2

r  ± 2 sin 2 Rose curve with four petals

 , and pole 2  3 Relative extrema: ± 2, , ± 2, 4 4  Tangents at the pole:   0, 2

0

Symmetric to the polar axis,  



77. r 





3 cos   4

79. r  4 cos 2 sec 

Graph of r  3 sec  rotated through an angle of 4 5

−1

2

Strophoid Symmetric to the polar axis  r ⇒  as  ⇒ 2  r ⇒  as  ⇒ 2

8

4

−1

−6

6

−4

 7

219

220

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

81. r  1  2 cos  (a) The graph has polar symmetry and the tangents at the pole are

   , . 3 3 (b)

2 sin 2   1  2 cos  cos  dy  dx 2 sin  cos   1  2 cos  sin  Horizontal tangents: 4 cos 2   cos   2  0, cos   When cos  

3  4

3  4

3  4

3  4



1 ± 33 1  33 ,r12 8 8

1 ± 1  32 1 ± 33  8 8

  3 4 33, 

1  8 33  0.686, 0.568 33 1  33 , arccos  0.686, 0.568 8 33 1  33 , arccos  2.186, 2.206 8 33 1  33 , arccos  2.186, 2.206. 8

33



, arccos













Vertical tangents: 1 sin  4 cos   1  0, sin   0, cos   , 4

  0, ,   ± arccos

14, 1, 0, 3, 

12, ± arccos 41 0.5, ± 1.318 (c)

2.5

−5

1

−2.5

83. Circle: r  3 sin  sin 2 dy 3 cos  sin   3 sin  cos   dy    tan 2 at   ,  3 dx 3 cos  cos   3 sin  sin  cos 2   sin 2  6 dx Limaçon: r  4  5 sin  dy 5 cos  sin   4  5 sin  cos   dy 3   at   , dx 5 cos  cos   4  5 sin  sin  6 dx 9 Let be the angle between the curves: tan 



  23.

3  39

1  13

Therefore,  arctan

3

2 3 3  49.1 . 

Review Exercises for Chapter 9 85. r  1  cos , r  1  cos  The points 1, 2 and 1, 32 are the two points of intersection (other than the pole). The slope of the graph of r  1  cos  is m1 

r sin   r cos  dy sin 2   cos  1  cos    . dx r cos   r sin  sin  cos   sin 1  cos 

At 1, 2, m1  11  1 and at 1, 32, m1  11  1. The slope of the graph of r  1  cos  is m2 

sin 2   cos 1  cos  dy  . dx sin  cos   sin  1  cos 

At 1, 2, m2  11  1 and at 1, 32, m 2  11  1. In both cases, m 1  1m 2 and we conclude that the graphs are orthogonal at 1, 2 and 1, 32. 87. r  2  cos  A2





1 2

89. r  sin 



2  cos  2 d 14.14

0

9 2

 

A2

3

 1 2

0.10

−3

 cos 2  2

sin  cos 2  2 d

0



32 

6

0.5

−3 − 0.5

0.5 − 0.1

91. r 2  4 sin 2 A2

93. r  4 cos , r  2

12 

2



4 sin 2 d  4

0

A2

12 

−3

3

2

3

 22 a

−3





1  cos  d  22 a

0





0

2 ,e1 1  sin 

Parabola

sin  d  42 a1  cos  12 1  cos 





99. r 

 0

 8a

6 2 2  ,e 3  2 cos  1  23cos  3

Ellipse π 2

π 2

0

2

0

2

4 6

8



4 cos  2 d 4.91

a 21  cos  2  a 2 sin 2  d

0

97. r 



6

−2



1 2

3

−3



4 d 

0

2

95. s  2

3

221

214

Chapter 9

63. r1 

Conics, Parametric Equations, and Polar Coordinates

ed ed and r2  1  sin  1  sin 

Points of intersection: ed, 0, ed,  ed ed cos  cos   sin  dy 1  sin  1  sin 2 r1:  dx ed ed cos  sin   cos  1  sin  1  sin  2

 

 

At ed, 0,

 

 

dy dy  1. At ed, ,  1. dx dx

ed ed cos  cos   sin  dy 1  sin  1  sin 2 r2:  dx ed ed cos  sin   cos  1  sin  1  sin  2

 

 

At ed, 0,

 

 

dy dy  1. At ed, ,  1. dx dx

Therefore, at ed, 0 we have m1m2  11  1, and at ed,  we have m1m2  11  1. The curves intersect at right angles.

Review Exercises for Chapter 9 1. Matches (d) - ellipse

3. Matches (a) - parabola

16x 2  16y 2  16x  24y  3  0

5.

x

2

x

 

y



1 3 9 3 1 9    y2  y   4 2 16 16 4 16

1 x



1 x 2

  2

3  y 4

 1 2

1

2

1 , 2

2

Circle Center:

1

3 4

12,  43

Radius: 1 3x 2  2y 2  24x  12y  24  0

7.

3x 2  2y 2  12x  12y  29  0

9.

3x 2  8x  16  2 y 2  6y  9  24  48  18

3x 2  4x  4  2 y 2  6y  9  29  12  18

x  4 2  y  3 2  1 2 3

x  2 2  y  3 2  1 13 12

Hyperbola

Ellipse

Center: 4, 3

Center: 2, 3

Vertices:  4 ± 2, 3 Asymptotes: y  3 ±

Vertices:

32 x  4

2, 3

±

2

2

y

x

1

y

1

2

1 6

2

4

3 4

2 x

6

4

2

(2, − 3)

3



Review Exercises for Chapter 9 13. Vertices: 3, 0, 7, 0

11. Vertex: 0, 2

15. Vertices: ± 4, 0

Directrix: x  3

Foci: 0, 0, 4, 0

Foci: ± 6, 0

Parabola opens to the right

Horizontal major axis

Center: 0, 0

p3

Center: 2, 0

Horizontal transverse axis

 y  2  4 3x  0

a  5, c  2, b  21

a  4, c  6, b  36  16  25

y 2  4y  12x  4  0

x  22 y 2  1 25 21

x2 y2  1 16 20

2

17.

215

5 x2 y2   1, a  3, b  2, c  5, e  9 4 3

19. y  x  2 has a slope of 1. The perpendicular slope is 1. y  x 2  2x  2

By Example 5 of Section 9.1, C  12



2

0

dy 1 5  2x  2  1 when x  and y  . dx 2 4

  1

5 sin2  d 15.87. 9

y

Perpendicular line:



5 1  1 x  4 2

4x  4y  7  0 21. (a) V   abLength  12 16  192 ft 3





3

(b) F  262.4

8 4 3  y 9  y 2 dy  62.4 3 3 3 3





3

3

8 3 9 3 9 62.4   3 2 2 2 2

 



3



y9  y 2 dy



y 1 3 8 y 9  y 2  9 arcsin  9  y 2 32  62.4 3 2 3 3 



3

9  y 2 dy  3 3

  38 62.4272 7057.274

3

(c) You want 4 of the total area of 12 covered. Find h so that

  h

2

x=

4 9  y 2 dy  3 3

0

h

9  y 2 dy 

0

 



y 1 y 9  y 2  9 arcsin 2 3

h 0

y 4 3

9−

y2

4

h

9 8

Area of filled tank above x-axis is 3π.

2 x

−2

2 −2

9  8

−4

Area of filled tank below x-axis is 6π.

h3  94.

h9  h 2  9 arcsin

By Newton’s Method, h 1.212. Therefore, the total height of the water is 1.212  3  4.212 ft. (d) Area of ends  212  24 Area of sides  PerimeterLength  16

  2

1

0

256

167  sin   d 16 from Example 5 of Section 9.1 2

122 1  167  sin 0  41  167  sin 8   21  167  sin 4  2

2

2

1  167  sin 38  1  167  sin 2  353.65

4

Total area  24  353.65 429.05

2

2



216

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

23. x  1  4t, y  2  3t t

y

x1 x1 ⇒ y23 4 4



4



2 1

11 3 y x 4 4

−1

4y  3x  11  0

x −1

1

2

3

5

−2

Line 25. x  6 cos , y  6 sin 

6x   6y  2

x2



y2

2

27. x  2  sec , y  3  tan 

y

1

x  22  sec2   1  tan2   1   y  32

4

x  22   y  32  1

2

 36

−4 −2

Circle

y

x −2

2

4

8

Hyperbola

−4

4 2

x

−4

−2

2

4

8

−4

29. x  3  3  2t  3  5t

31.

x  3 2  y  4 2  1 16 9

y  2  2  6t  2  4t Let

(other answers possible)

x  3 2  y  4 2  cos 2  and  sin 2 . 16 9

Then x  3  4 cos  and y  4  3 sin . 35. (a) x  2 cot , y  4 sin  cos , 0 <  < 

33. x  cos 3  5 cos  y  sin 3  5 sin 

4

5

−12 −7

12

8

−4

(b) 4  x2y  4  4 cot2 4 sin  cos 

−5

 16 csc2   16

 sin   cos 

cos  sin 

 82 cot   8x 37. x  1  4t y  2  3t (a)

dy 3  dx 4

(b) t 

x1 4

y

(c) 5

No horizontal tangents

3 3x  11 y  2  x  1  4 4

4

2 1 x

1

2

3

5

Review Exercises for Chapter 9

217

39. x  1 t y  2t  3 (a)

dy 2  2t 2  dx 1t 2

(b) t 

No horizontal tangents t  0

1 x

y

(c)

y

6

2 3 x

4 2 x

4

41. x 

1 2t  1

y

1 t  2t

2

y  2  5 sin  (a)

 2t  2 dy t 2  2t 2 t  12t  1 2    0 when t  1. (a) dx 2 t 2t  2 2 2t  1 2 Point of horizontal tangency: (b) 2t  1 



 13 , 1

1 1 1 1 ⇒ t x 2 x

dy 5 cos   3   2.5 cot   0 when   , . dx 2 sin  2 2 Points of horizontal tangency: 3, 7, 3, 3

(b)

x  3 2  y  2 2  1 4 25 y

(c)



8

4

1 1 1x 2 x



 12 1 x x  2

x

4

4x 2 4x 2  2 1  x  4x1  x 5x  1x  1

 (c)

y 3 2

−2

x

−1

2

3

−1 −2

45. x  cos 3  y  4 sin 3  (a)

dy 12 sin 2  cos  4 sin     4 tan   0 when   0, . dx 3 cos 2 sin  cos  But,

dy dx   0 at   0, . Hence no points of horizontal tangency. dt dt

(b) x 23 

4y 

23

1

y

(c) 4

x

4

4

43. x  3  2 cos 

2

y

2

2

2

4

4

8 4

218

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

47. x  cot 

x  r cos    sin 

49.

y  rsin    cos 

y  sin 2  2 sin  cos  (a), (c)

dx  r cos  d

2

−3

3

dy  r sin  d

−2

sr

 dx 1 dy dy (b) At   ,   4,  1, and 6 d d dx 4

 



 2 cos 2    2 sin 2  d

0

r



 d 

0

51. x, y  4, 4



1 2 r 2

x −1

1

2

3

4

5

−2



r,   42,

7 , 4

 

42,

3 4

−3



−4 −5

r  3 cos  r2

(4, − 4)

r 2  2r 1  cos 

 3r cos 

x 2  y 2  2 ± x 2  y 2   2x

x 2  y 2  2x 2  4x 2  y 2

x 2  y 2  3x  0 r 2  cos 2  cos 2   sin 2  

r  21  cos 

55.

x 2  y 2  3x

r4

0

1

 7 4

57.



y

r  4 2  4 2  42

53.



r 2  2

r2

cos 2 



59.

r 2 sin 2 

r  4 cos 2 sec   4 2 cos 2   1

x 2  y 2 2  x 2  y 2

cos1 

r cos   8 cos 2   4 x8

x

2



x2 4  y2

x 3  xy 2  4x 2  4y 2 y2  x2



61. x 2  y 2 2  ax 2y

63. x 2  y 2  a 2 arctan

r 4  a r 2 cos 2 r sin  ra

cos 2 

y x



2

r2  a22

sin 

65. r  4

67. r  sec  

π 2

Circle of radius 4

1 cos 

π 2

r cos   1, x  1

Centered at the pole Symmetric to polar axis,

  2, and pole

44  xx

0 2

6

Vertical line

0 1

Review Exercises for Chapter 9 69. r  21  cos 

71. r  4  3 cos 

Cardioid

Limaçon

Symmetric to polar axis

Symmetric to polar axis

π 2

π 2

0

0

1

2



0

 3

 2

2 3





0

r

4

3

2

1

0

r

1

73. r  3 cos 2

4

 3 5 2

 2

2 3 11 2

4

π 2

Rose curve with four petals Symmetric to polar axis,  

 , and pole 2

0 4

3  Relative extrema: 3, 0, 3, , 3, , 3, 2 2

 

Tangents at the pole:  





 3 , 4 4

75. r 2  4 sin 2 2

π 2

r  ± 2 sin 2 Rose curve with four petals

 , and pole 2  3 Relative extrema: ± 2, , ± 2, 4 4  Tangents at the pole:   0, 2

0

Symmetric to the polar axis,  



77. r 





3 cos   4

79. r  4 cos 2 sec 

Graph of r  3 sec  rotated through an angle of 4 5

−1

2

Strophoid Symmetric to the polar axis  r ⇒  as  ⇒ 2  r ⇒  as  ⇒ 2

8

4

−1

−6

6

−4

 7

219

220

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

81. r  1  2 cos  (a) The graph has polar symmetry and the tangents at the pole are

   , . 3 3 (b)

2 sin 2   1  2 cos  cos  dy  dx 2 sin  cos   1  2 cos  sin  Horizontal tangents: 4 cos 2   cos   2  0, cos   When cos  

3  4

3  4

3  4

3  4



1 ± 33 1  33 ,r12 8 8

1 ± 1  32 1 ± 33  8 8

  3 4 33, 

1  8 33  0.686, 0.568 33 1  33 , arccos  0.686, 0.568 8 33 1  33 , arccos  2.186, 2.206 8 33 1  33 , arccos  2.186, 2.206. 8

33



, arccos













Vertical tangents: 1 sin  4 cos   1  0, sin   0, cos   , 4

  0, ,   ± arccos

14, 1, 0, 3, 

12, ± arccos 41 0.5, ± 1.318 (c)

2.5

−5

1

−2.5

83. Circle: r  3 sin  sin 2 dy 3 cos  sin   3 sin  cos   dy    tan 2 at   ,  3 dx 3 cos  cos   3 sin  sin  cos 2   sin 2  6 dx Limaçon: r  4  5 sin  dy 5 cos  sin   4  5 sin  cos   dy 3   at   , dx 5 cos  cos   4  5 sin  sin  6 dx 9 Let be the angle between the curves: tan 



  23.

3  39

1  13

Therefore,  arctan

3

2 3 3  49.1 . 

Review Exercises for Chapter 9 85. r  1  cos , r  1  cos  The points 1, 2 and 1, 32 are the two points of intersection (other than the pole). The slope of the graph of r  1  cos  is m1 

r sin   r cos  dy sin 2   cos  1  cos    . dx r cos   r sin  sin  cos   sin 1  cos 

At 1, 2, m1  11  1 and at 1, 32, m1  11  1. The slope of the graph of r  1  cos  is m2 

sin 2   cos 1  cos  dy  . dx sin  cos   sin  1  cos 

At 1, 2, m2  11  1 and at 1, 32, m 2  11  1. In both cases, m 1  1m 2 and we conclude that the graphs are orthogonal at 1, 2 and 1, 32. 87. r  2  cos  A2





1 2

89. r  sin 



2  cos  2 d 14.14

0

9 2

 

A2

3

 1 2

0.10

−3

 cos 2  2

sin  cos 2  2 d

0



32 

6

0.5

−3 − 0.5

0.5 − 0.1

91. r 2  4 sin 2 A2

93. r  4 cos , r  2

12 

2



4 sin 2 d  4

0

A2

12 

−3

3

2

3

 22 a

−3





1  cos  d  22 a

0





0

2 ,e1 1  sin 

Parabola

sin  d  42 a1  cos  12 1  cos 





99. r 

 0

 8a

6 2 2  ,e 3  2 cos  1  23cos  3

Ellipse π 2

π 2

0

2

0

2

4 6

8



4 cos  2 d 4.91

a 21  cos  2  a 2 sin 2  d

0

97. r 



6

−2



1 2

3

−3



4 d 

0

2

95. s  2

3

221

222

Chapter 9

101. r 

Conics, Parametric Equations, and Polar Coordinates

4 2 3  ,e 2  3 sin  1  32sin  2

103. Circle Center:

Hyperbola

5, 2   0, 5 in rectangular coordinates

Solution point: 0, 0

π 2

x 2   y  5 5  25 x 2  y 2  10y  0

0

2

3

4

r 2  10r sin   0 r  10 sin 

105. Parabola

107. Ellipse

Vertex: 2, 

Vertices: 5, 0, 1, 

Focus: 0, 0

Focus: 0, 0

e  1, d  4

2 5 a  3, c  2, e  , d  3 2

4 r 1  cos 

2352 5 r  2 3  2 cos  1    cos  3

Problem Solving for Chapter 9 y

1. (a) 10 8 6 4

(− 1, 14 )

(4, 4)

2

−6 −4 −2

x 2

−2

4

6

(b) x2  4y 2x  4y 1 y  x 2 ⇒ y  2x  4

y  4  2x  4

1 1 1 1 y    x  1 ⇒ y   x  4 2 2 4

Tangent line at 4, 4



Tangent line at 1,

Tangent lines have slopes of 2 and 12 ⇒ perpendicular. (c) Intersection: 1 1 2x  4   x  2 4 8x  16  2x  1 10x  15 x

3 ⇒ 2

32, 1

Point of intersection, 32, 1, is on directrix y  1.

1 4



Problem Solving for Chapter 9 3. Consider x2  4py with focus 0, p.

y

A

B

Let pa, b be point on parabola. zx  4py ⇒ y  yb

F

x 2p

P(a, b) x

Q

a x  a Tangent line 2p

For x  0, y  b 

a 4pb a2 b  b. a  b  2p 2p 2p

Thus, Q  0, b. FQP is isosceles because

FQ  p  b FP  a  02  b  p2  a2  b2  2bp  p2  4pb  b2  2bp  p2  b  p2  b  p. Thus, FQP  BPA  FPQ.

5. (a) In OCB, cos  

2a ⇒ OB  2a sec . OB

r  2a tan  sin 

(c)

r cos   2a sin2 

OA In OAC, cos   ⇒ OA  2a cos . 2a

r 3 cos   2a r 2 sin2 

x2  y2x  2ay2

r  OP  AB  OB  OA  2asec   cos   2a

cos1   cos 

 2a

y2 

x3 2a  x

sin2  cos 

 2a tan  sin  (b) x  r cos   2a tan  sin cos   2a sin2  y  r sin   2a tan  sin sin   2a tan 



sin2 ,  2

 2

<  <

1 + t2

θ

Let t  tan ,   < t < . t2 t2 t3 Then sin2   and x  2a , y  2a . 2 2 1t 1t 1  t2

7. y  a1  cos  ⇒ cos  

  arccos

t

1

ay a

a a y a

x  a  sin 



a a y  sinarccosa a y



a a y 

 a arccos

 a arccos

x  a arccos

2ay  y2

a



a a y  2ay  y , 0 ≤ y ≤ 2a 2

θ

a−y

2ay − y 2

223

224

Chapter 9

Conics, Parametric Equations, and Polar Coordinates

 3 5 7 , , , ,. . . 2 2 2 2

9. For t  y

11. (a) Area 



0

2 2 2 2 , , , ,. . .  3 5 7



Hence, the curve has length greater that

(b) tan 

2 2 2 2 S    . . .  3 5 7 











2 1 1 1 1   . . .  3 5 7

2 1 1 1 1 . . .     >  2 4 6 8

1 2

1 2 r d 2

x=1 r = sec θ

α

sec2  d

1

0

h 1 ⇒ Area  1tan

1 2 ⇒ tan 





sec2  d

0

(c) Differentiating,

d tan   sec2 . d

 .



13. If a dog is located at r, , then its neighbor is at r,  

 : 2



x, y  r cos , r sin  and x, y  r sin , r cos . The slope joining these points is r cos   r sin  sin   cos    slope of tangent line at r, . r sin   r cos  sin   cos  dr sin   r cos  sin   cos  d  dr sin   cos  cos   r sin  d dr  r d



dr  d r ln r     C1 r  e C1 r  Ce r

4   d2 ⇒ r  Ce

4

Finally, r 

d 2



d 2

⇒ C

d 2

e4

e4  .

15. (a) The first plane makes an angle of 70 with the positive x-axis, and is 150 miles from P:

(c)

280

x1  cos 70 150  375t y1  sin 70 150  375t

0

1 0

Similarly for the second plane, x2  cos 135 190  450t

The minimum distance is 7.59 miles when t  0.4145.

 cos 45 190  450t y2  sin 135 190  450t  sin 45 190  450t (b) d  x2  x12   y2  y12 

cos 45190  450t  cos 70150  375t 2  sin 45190  450t  sin 70150  375t 2 12

Problem Solving for Chapter 9 17.

4

−6

4

6

−6

4

4

6

−6

6

−6

6

−4

−4

−4

−4

4

4

4

4

−6

6

−6

6

−6

6

−4

−4

−4

4

4

4

−6

6

−4

−6

6

−4

−6

n  1, 2, 3, 4, 5 produce “bells”; n  1, 2, 3, 4, 5 produce “hearts”.

6

−4

6

−4

−6

225

PA R T

I C H A P T E R P Preparation for Calculus Section P.1

Graphs and Models . . . . . . . . . . . . . . . . . . . . . . 2

Section P.2

Linear Models and Rates of Change . . . . . . . . . . . . . 7

Section P.3

Functions and Their Graphs . . . . . . . . . . . . . . . . . 14

Section P.4

Fitting Models to Data . . . . . . . . . . . . . . . . . . . . 18

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

C H A P T E R P Preparation for Calculus Section P.1

Graphs and Models

Solutions to Odd-Numbered Exercises

1 1. y   2 x  2

3. y  4  x2

x-intercept: 4, 0

x-intercepts: 2, 0, 2, 0

y-intercept: 0, 2

y-intercept: 0, 4

Matches graph (b)

Matches graph (a) 7. y  4  x2

5. y  32x  1 x

4

2

0

2

4

x

3

2

0

2

3

y

5

2

1

4

7

y

5

0

4

0

5

y

y 8

(4, 7)

6

2

(−2, 0)

(0, 1)

−8 −6 −4

2 −4

(0, 4)

(2, 4)

4

(−4, − 5)

6

x

4

6

−6

8

4

(− 3, − 5)

(3, − 5)

−4 −6



11. y  x  4

9. y  x  2 x

5

4

3

2

1

0

1

x

0

1

4

9

16

y

3

2

1

0

1

2

3

y

4

3

2

1

0

y

y 10 8 6 4 2

6 4

(−5, 3)

(−4, 2) 2 −6

−4

(1, 3) (0, 2)

−2

(−1, 1)

(−3, 1)

x

(− 2, 0) −2

2

6

−2

−8



(2, 0) x

−4

(− 2, −2)

−6

2

2

−4 −6 −8 − 10

(4, − 2)

(16, 0) x

2

(1, − 3) (0, − 4)

12 14 16 18

(9, − 1)

Section P.1 13.

15.

Xmin = -3 Xmax = 5 Xscl = 1 Ymin = -3 Ymax = 5 Yscl = 1

3

5

(− 4.00, 3) (2, 1.73) −6

6

−3

(a) 2, y  2, 1.73

Note that y  4 when x  0.

(b) x, 3  4, 3

y  02  0  2

y-intercept:

y  0225  02

y-intercept:

y  0; 0, 0

y  2; 0, 2 0  x2  x  2

x-intercepts:

 y  5  2  3  1.73  3  5  4 

19. y  x225  x2

17. y  x2  x  2

21. y 

Graphs and Models

x-intercepts:

0  x225  x2

0  x  2x  1

0  x25  x5  x

x  2, 1; 2, 0, 1, 0

x  0, ± 5; 0, 0; ± 5, 0

32  x  x

23. x2y  x2  4y  0

y-intercept:

None. x cannot equal 0.

x-intercepts:

32  x 0 x

y-intercept: 02y  02  4y  0 y  0; 0, 0

0  2  x

x-intercept:

x  4; 4, 0

x20  x2  40  0 x  0; 0, 0

25. Symmetric with respect to the y-axis since

27. Symmetric with respect to the x-axis since

y  x  2  x  2. 2

y2  y2  x3  4x.

2

31. y  4  x  3

29. Symmetric with respect to the origin since

xy  xy  4.

No symmetry with respect to either axis or the origin.



x y  x2  1 y



35. y  x3  x is symmetric with respect to the y-axis

33. Symmetric with respect to the origin since



 

 



since y  x3  x   x3  x  x3  x .

x . x2  1

37. y  3x  2

y

Intercepts:

 23 , 0, 0, 2

2

(0, 2)

1

2 3,

Symmetry: none

0 x

1

2 1

3

4

Chapter P

39. y 

Preparation for Calculus

x 4 2

43. y  x  32

41. y  1  x2

Intercepts:

Intercepts:

Intercepts:

1, 0, 1, 0, 0, 1

8, 0, 0, 4

3, 0, 0, 9

Symmetry: y-axis

Symmetry: none

Symmetry: none

y y

y 12

2

2

(8, 0)

2

2

8

4

10

( 1, 0)

2

(0,

10

(0, 1)

x

x

−2

4)

2

6

1

8

2

2 − 10 − 8 − 6

10

47. y  xx  2

45. y  x3  2 3 2, 0 , 0, 2   

−2

Symmetry: origin

Symmetry: none

y 4

Domain: x ≥ 2

y

3 2

5 y

4

2, 0)

(0, 2)

2

1

2

1

(− 2, 0) −4 −3

−1

3

4

−4

2

3

2

−3

3

1

1

−2

4

x

x

−4 −3 −2 −1

5

1 3

(0, 0)

6

3 3

4

Intercepts: 0, 0

0, 0, 2, 0

Symmetry: none

x 2

(− 3, 0)

49. x  y3

Intercepts:

Intercepts:

(

(0, 9)

8

(1, 0)

(0, 0) x 1

2

3

4

−2

1 x Intercepts: none

51. y 



53. y  6  x

y 3

y 8

Intercepts:

6

2

0, 6, 6, 0, 6, 0

1

Symmetry: origin

x 1

2

Symmetry: y-axis

3

(0, 6)

4 2

(− 6, 0) −8

−4 −2 −2

(6, 0) x 2

4

6

8

−4 −6 −8

57. x  3y2  6

55. y2  x  9 y2  x  9

3y2  6  x

y  ± x  9

4

Intercepts:

0, 3, 0, 3, 9, 0 Symmetry: x-axis

y±

(0, 3) (−9, 0) − 11

1

(0, − 3) −4

2  3x

Intercepts:

3

(0, 2 ) (6, 0)

−1

8

6, 0, 0, 2, 0,  2 Symmetry: x-axis

(0, − 2 ) −3

Section P.1 59. y  x  2x  4x  6 (other answers possible)

Graphs and Models

61. Some possible equations: yx y  x3 y  3x3  x 3 x y 

63.

xy2⇒y2x

xy7⇒y7x

65.

2x  y  1 ⇒ y  2x  1

3x  2y  11 ⇒ y 

2  x  2x  1 7x

3  3x 1x

3x  11 2

3x  11 2

14  2x  3x  11

The corresponding y-value is y  1.

5x  25

Point of intersection: 1, 1

x5 The corresponding y-value is y  2. Point of intersection: 5, 2

67. x2  y  6 ⇒ y  6  x2

69. x2  y 2  5 ⇒ y 2  5  x 2 xy1⇒yx1

xy4⇒y4x

5  x2  x  12

6  x2  4  x 0  x2  x  2

5  x2  x2  2x  1

0  x  2x  1

0  2x2  2x  4  2x  1x  2

x  2, 1

x  1 or x  2 The corresponding y-values are y  2 and y  1.

The corresponding y-values are y  2 (for x  2) and y  5 (for x  1).

Points of intersection: 1, 2, 2, 1

Points of intersection: 2, 2, 1, 5 71.

y  x3

y  x3  2x2  x  1

73.

yx

y  x2  3x  1

x3  x

x3  2x2  x  1  x2  3x  1

x3  x  0 xx  1x  1  0

x3  x2  2x  0 xx  2x  1  0 x  1, 0, 2

x  0, x  1, or x  1 The corresponding y-values are y  0, y  1, and y  1.

1, 5, 0, 1, 2, 1 4

Points of intersection: 0, 0, 1, 1, 1, 1 −4

y = x 3 − 2x 2 + x − 1 (2, 1)

(0, −1)

6

(−1, −5) −8

y = −x 2 + 3 x − 1

5

6

Chapter P

Preparation for Calculus

75. 5.5x  10,000  3.29x

 5.5x  2  3.29x  10,0002 30.25x  10.8241x2  65,800x  100,000,000 0  10.8241x2  65,830.25x  100,000,000

Use the Quadratic Formula.

x  3133 units The other root, x  2949, does not satisfy the equation R  C. This problem can also be solved by using a graphing utility and finding the intersection of the graphs of C and R. 77. (a) Using a graphing utility, you obtain

(b)

250

y  0.0153t2  4.9971t  34.9405 (c) For the year 2004, t  34 and y  187.2 CPI.

−5

35 − 50

79.

400

0

100 0

If the diameter is doubled, the resistance is changed by approximately a factor of 14. For instance, y20  26.555 and y40  6.36125. 81. False; x-axis symmetry means that if 1, 2 is on the graph, then 1, 2 is also on the graph. 83. True; the x-intercepts are

b

± b2  4ac

2a



,0 .

85. Distance to the origin  K  Distance to 2, 0 x2  y2  Kx  22  y2, K  1

x2  y 2  K 2x2  4x  4  y2

1  K 2 x 2  1  K 2y 2  4K 2x  4K 2  0 Note: This is the equation of a circle!

Section P.2

Section P.2

Linear Models and Rates of Change

1. m  1

3. m  0

7.

9. m 

y

m=1

5 4

2

1

5. m  12

2  4 53

11. m 

6 3 2



y

m = − 32

m is undefined

1

−1



(2, 3)

3

Linear Models and Rates of Change

51 22 4 0

undefined

3

x 3

4

2

5

y

(5, 2)

1

m = −2 −1

6 x 1

2

3

5

6

4

−2

3

−3 −4

(2, 5)

5

7

2

(3, − 4)

(2, 1)

1

−5

−2 −1 −1

x 1

3

4

5

6

−2

13. m 

23  16 12  34

y 3 2

12  2 14

(− 12 , 23 ) −3

−2

(− 34 , 16 ) x 1

2

3

−1 −2 −3

15. Since the slope is 0, the line is horizontal and its equation is y  1. Therefore, three additional points are 0, 1, 1, 1, and 3, 1. 17. The equation of this line is y  7  3x  1 y  3x  10 . Therefore, three additional points are 0, 10, 2, 4, and 3, 1. 19. Given a line L, you can use any two distinct points to calculate its slope. Since a line is straight, the ratio of the change in y-values to the change in x-values will always be the same. See Section P.2 Exercise 93 for a proof.

7

8

Chapter P

Population (in millions)

21. (a)

Preparation for Calculus (b) The slopes of the line segments are

270

255.0  252.1  2.9 21

260

257.7  255.0  2.7 32

250

260.3  257.7  2.6 43

1 2 3 4 5 6 7 8 9

Year (0 ↔ 1990)

262.8  260.3  2.5 54 265.2  262.8  2.4 65 267.7  265.2  2.5 76 270.3  267.7  2.6 87 The population increased most rapidly from 1991 to 1992.

m  2.9 23. x  5y  20 y

25. x  4

 15 x

4

Therefore, the slope is m  0, 4. 27.

y  34 x  3

1 5

The line is vertical. Therefore, the slope is undefined and there is no y-intercept.

and the y-intercept is

y  23 x

29.

4y  3x  12

y  2  3x  3

31.

y  2  3x  9

3y  2x

0  3x  4y  12

2x  3y  0

y  3x  11 y  3x  11  0

y

y 5

4

4

3

y 3

(0, 3) 2

2

2

1

1

(0, 0) x

x

−4 −3 −2 −1

1

1

2

3

4

−2 −1 −1

x 1

2

4

5

6

(3, − 2)

−2

−1

3

−3 −4 −5

33. m 

60 3 20

35. m 

y  0  3x  0

1  3 2 20

y  1  2x  4

8

3y  8x  40  0

y

6

(2, 6)

4

2

y

(2, 1)

1

(0, 0) x 2

4

6

8

−2 −1 −1

x 2

−2

−8

40 8 y x 3 3

0  2x  y  3

y

−8 −6 −4 −2

80 8  25 3 8 y  0   x  5 3

y  1  2x  2

y  3x

2

37. m 

−3

−5

(0, −3)

3

4

5

9 8 7 6 5 4 3 2 1 −1 −2

(2, 8)

(5, 0) x 1 2 3 4

6 7 8 9

Section P.2 81 55

39. m 

Undefined.

Vertical line x  5

41. m 

Linear Models and Rates of Change

72  34 114 11   12  0 12 2 y

x3

43.

x30

3 11  x  0 4 2

y

y 9 8 7 6 5 4 3 2 1 −1

y

(5, 8)

11 3 x 2 4

2 1

22x  4y  3  0 −1

y

(5, 1) x 1 2 3 4

(3, 0) 1

4

6 7 8 9

3

−2

−2

( 12 , 72 )

2 1 −4 −3 −2 −1

y x  1 2 3

45.

( 0, 34 ) x 1

2

3

4

47.

3x  2y  6  0

y x  1 a a 1 2  1 a a 3 1 a a3⇒xy3 xy30

49.

51. y  2x  1

y  3 y30

y 3

y 2 1 x

−3 −2 −1

1

2

3

4

5

−2

−2

x

−1

1

2

−1

−4 −5 −6

y  2  32x  1

53.

y

3 2x



55. 2x  y  3  0 y  2x  3

1 2

2y  3x  1  0

y 1

y

x

4

2

3

1

2 1

2

2

1 x

−4 −3 −2

1 −2 −3 −4

2

3

4

3

3

2

4

x

9

10

Chapter P

57.

Preparation for Calculus

10

10

− 10

− 15

10

− 10

15

− 10

The lines do not appear perpendicular.

The lines appear perpendicular.

The lines are perpendicular because their slopes 1 and 1 are negative reciprocals of each other. You must use a square setting in order for perpendicular lines to appear perpendicular. 61. 5x  3y  0

59. 4x  2y  3 y  2x  2

y  53x

m2

m  53

3

y  1  2x  2

(a)

(a)

24y  21  40x  30

y  1  2x  4

24y  40x  9  0

2x  y  3  0 y1

(b)

y  78  53x  34 

1  2 x

 2

(b)

y  78   35x  34  40y  35  24x  18

2y  2  x  2

40y  24x  53  0

x  2y  4  0 63. (a) x  2 ⇒ x  2  0 (b) y  5 ⇒ y  5  0 65. The slope is 125. Hence, V  125t  1  2540  125t  2415 67. The slope is 2000. Hence, V  2000t  1  20,400  2000t  22,400 69.

5

(2, 4)

−3

(0, 0)

6

−1

You can use the graphing utility to determine that the points of intersection are 0, 0 and 2, 4. Analytically, x2  4x  x2 2x2  4x  0 2xx  2  0 x  0 ⇒ y  0 ⇒ 0, 0 x  2 ⇒ y  4 ⇒ 2, 4. The slope of the line joining 0, 0 and 2, 4 is m  4  02  0  2. Hence, an equation of the line is y  0  2x  0 y  2x.

Section P.2

71. m1  m2 

Linear Models and Rates of Change

10  1 2  1 2  0 2  2  1 3

m1  m2 The points are not collinear. y

73. Equations of perpendicular bisectors: y y

c ab ab x  2 c 2



c ba ab x  2 c 2







Letting x  0 in either equation gives the point of intersection:

0, a

2

(b, c)

( b −2 a , 2c )

( a +2 b , 2c )

(− a, 0)

x

(a, 0)

 b2  c2 . 2c



This point lies on the third perpendicular bisector, x  0. 75. Equations of altitudes: y

y

ab x  a c (b, c)

xb y

ab x  a c

(a, 0) x

(− a, 0)

Solving simultaneously, the point of intersection is

b, a

2

 b2 . c



77. Find the equation of the line through the points 0, 32 and 100, 212. 9 m  180 100  5 9 F  32  5 C  0

F  95 C  32 5F  9C  160  0 For F  72, C  22.2. 79. (a) W1  0.75x  12.50

(b)

50

W2  1.30x  9.20 (c) Both jobs pay $17 per hour if 6 units are produced. For someone who can produce more than 6 units per hour, the second offer would pay more. For a worker who produces less than 6 units per hour, the first offer pays more.

(6, 17) 0

30 0

Using a graphing utility, the point of intersection is approximately 6, 17. Analytically, 0.75x  12.50  1.30x  9.20 3.3  0.55x ⇒ x  6 y  0.756  12.50  17.

11

12

Chapter P

Preparation for Calculus

81. (a) Two points are 50, 580 and 47, 625. The slope is m

(b)

50

625  580  15. 47  50

p  580  15x  50

0

p  15x  750  580  15x  1330

1 If p  655, x  15 1330  655  45 units.

1 or x  15 1330  p

83. 4x  3y  10  0 ⇒ d 

85. x  y  2  0 ⇒ d 

1500 0

1 (c) If p  595, x  15 1330  595  49 units.

40  30  10  10  2 42  32

5

12  11  2  1  1 2

2

5 5 2  2 2

87. A point on the line x  y  1 is 0, 1. The distance from the point 0, 1 to x  y  5  0 is d

10  11  5  1  5  12  12

2

4 2

 2 2.

89. If A  0, then By  C  0 is the horizontal line y  CB. The distance to x1, y1 is



By  C  Ax  By  C.  C B  A  B B



Ax  C  Ax  By  C.  C A  A  B A

d  y1 



1

1

1

2

2

If B  0, then Ax  C  0 is the vertical line x  CA. The distance to x1, y1 is d  x1 



1

1

1

2

2

(Note that A and B cannot both be zero.) The slope of the line Ax  By  C  0 is AB. The equation of the line through x1, y1 perpendicular to Ax  By  C  0 is: y  y1 

B x  x1 A

Ay  Ay1  Bx  Bx1 Bx1  Ay1  Bx  Ay The point of intersection of these two lines is: Ax  By  C



Bx  Ay  Bx1  Ay1 ⇒

A2x  ABy  AC B

2x

 ABy 

B2x

1

(1)  ABy1 (2)

A2  B2x  AC  B2x1  ABy1 (By adding equations (1) and (2)) x Ax  By  C



AC  B2x1  ABy1 A2  B2

ABx  B2y  BC

Bx  Ay  Bx1  Ay1⇒ ABx 

A2 y

 ABx1 

(3) A2 y1

(4)

A2  B2y  BC  ABx1  A2y1 (By adding equations (3) and (4)) y

—CONTINUED—

BC  ABx1  A2y1 A2  B2

Section P.2

Linear Models and Rates of Change

89. —CONTINUED— Ay AC A Bx B ABy , BC A ABx  point of intersection B 2

1

2

1

2

1

2

2

1

2

The distance between x1, y1 and this point gives us the distance between x1, y1 and the line Ax  By  C  0. Ay AC A Bx B ABy  x  BC A ABx B AC  ABy  A x By 

 BC A ABx A B B 2

d

1

2

1

2

2

1

2

1

2

1

1

2

2

2

2

1

2

2

2

1

1

2

2

2

2



1

2

1

2

2

1 2 2

1



 y1

2

2

2

AC A ByB Ax   BC A AxB By  A  B C  Ax  By   A  B  

1

1

2

2

2

Ax1  By1  C A2  B2

91. For simplicity, let the vertices of the rhombus be 0, 0, a, 0, b, c, and a  b, c, as shown in the figure. The slopes of the diagonals are then m1 

y

(b, c)

(a + b , c )

c c . and m2  ab ba

x

(0, 0)

Since the sides of the Rhombus are equal, a2  b2  c2, and we have m1m2 

c ab

c

c2

(a, 0)

c2

 b  a  b2  a2  c2  1.

Therefore, the diagonals are perpendicular.

93. Consider the figure below in which the four points are collinear. Since the triangles are similar, the result immediately follows. y2  y1 y2  y1  x2  x1 x2  x1

95. True. a c a ax  by  c1 ⇒ y   x  1 ⇒ m1   b b b b c bx  ay  c2 ⇒ y  x  2 a a

y

m2   (x 2 , y2 )

(x *2 , y*2 )

(x1, y1 ) (x *1, y*1 )

x

1 m1

⇒ m2 

b a

13

14

Chapter P

Preparation for Calculus

Section P.3

Functions and Their Graphs 3. (a) g0  3  02  3

1. (a) f 0  20  3  3 (b) f 3  23  3  9

(b) g3  3  3  3  3  0

(c) f b  2b  3

(c) g2  3  22  3  4  1

(d) f x  1  2x  1  3  2x  5

(d) gt  1  3  t  12  t2  2t  2

5. (a) f 0  cos20  cos 0  1 (c) f

2

 4   cos2 4   cos 2   0

(b) f 

3   cos23   cos23   12

7.

f x  x  f x x  x3  x3 x3  3x2x  3xx2  x3  x3    3x2  3xx  x2, x  0 x x x

9.

f x  f 2 1x  1  1  x2 x2 

1  x  1 1  x  1 2x 1   ,x2  x  2x  1 1  x  1 x  2x  11  x  1 x  11  x  1

11. hx   x  3

13. f t  sec

Domain: x  3 ≥ 0 ⇒ 3,  Range:  , 0

t 4

t 2k  1  ⇒ t  4k  2 4 2 Domain: all t  4k  2, k an integer Range:  , 1, 1, 

15. f x 

1 x

Domain:  , 0, 0,  Range:  , 0, 0, 

17. f x 

2x2x  1,2, xx ≤ 11 2

20. f x 

2

x x54,, xx >≤ 55 

2

(a) f 2  22  2  6

(a) f 3  3  4  1  1

(b) f 0  02  2  2

(b) f 0  0  4  2 (c) f 5  5  4  3

(c) f 1  12  2  3 (d) f 

s2

 2  2

s2

 2  2

2s4



(d) f 10  10  52  25

 10

8s2

(Note: s2  2 > 1 for all s)

Domain: 4, 

Domain:  , 

Range: 0, 

Range: 2,  22. gx 

4 x

1 24. f x  2 x3  2

y

Domain:  , 

6

Domain:  , 0, 0, 

4

8 6

Range:  , 

2

Range:  , 0, 0, 

y

4

x 2

4

6

x

−6 −4

26. f x  x  4  x2 4

Domain: 2, 2 Range:

2, 22 2, 2.83

28. h   5 cos

y

(0, 2) 2, 0(

−4 −3 −2

y-intercept: 0, 2 x-intercept:   2, 0

x −1

1

2

3

6

5 4 3 2 1

Range: 5, 5 −2 π

4

4

y

Domain:  , 

3

(−

2

2



θ

−2 −3 −4

30. x2  4  y  0 ⇒ y  x2  4 y is a function of x. Vertical lines intersect the graph at most once.

34. x2  y  4 ⇒ y  4  x2 y is a function of x since there is one value of y for each x.

−5

32. x2  y2  4 y  ± 4  x2 y is not a function of x. Some vertical lines intersect the graph twice. x2 4 y is a function of x since there is one value of y for each x.

36. x2y  x2  4y  0 ⇒ y 

x2

294

Chapter P

Preparation for Calculus

38. p1x  x3  x  1 has one zero. p2x  x3  x has three zeros. Every cubic polynomial has at least one zero. Given px  Ax3  Bx2  Cx  D, we have p →   as x →   and p →  as x →  if A > 0. Furthermore, p →  as x →   and p →   as x →  if A < 0. Since the graph has no breaks, the graph must cross the x-axis at least one time.

2

P1 −3

−2



40. The function is f x  cx. Since 1, 1 4 satisfies the equation, c  14. Thus, f x  14x.

3

P2

42. The function is hx  c x . Since 1, 3 satisfies the equation, c  3. Thus, hx  3 x .

20 1  mimin during the first 40 2 4 minutes. The student is stationary for the following 62 2 minutes. Finally, the student travels  1 mimin 10  6 during the final 4 minutes.

44. The student travels

46. (a)



A 500 400 300 200 100 t 10

20

30

40

50

(b) A15 345 acresfarm 48. (a) gx  f x  4

y 4

4

g6  f 2  1

Shift f left 2 units

3

3 2

2

g0  f 4  3 Shift f right 4 units

(b) gx  f x  2

y

(6, 1)

1

x

−1

1

2

3

5

6

−7 −6 −5 −4 −3

7

(0, 1) x

−1

1

−2

−2

−3

(− 6, −3)

(0, −3)

−4

−4

(c) gx  f x  4

(d) gx  f x  1

y 6

Vertical shift upwards 4 units

y 2

(2, 5)

Vertical shift down 1 unit

5 4

1

(2, 0) x

−5 −4 −3 −2 −1

2

3

2

(− 4, 1)

−3

1

x

−5 −4 −3 −2 −1

1

2

(− 4, − 4)

3

(e) gx  2f x

1 (f) gx  2 f x

y

(2, 2) 2

g2  2 f 2  2 −5 −4 −3 −2 −1

−3

y 2

g2  12 f 2  12

1

(2, 12 )

1

x 1

2

3

g4  12 f 4   32

−5 −4 −3

(− 4, − 32 )

−4

(− 4, − 6 )

−5 −6

−2

g4  2f 4  6

−4

−5 −6

x −1 −2 −3 −4 −5 −6

50. (a) hx  sinx  2  1 is a horizontal shift 2 units to the left, followed by a vertical shift 1 unit upwards. (b) hx  sinx  1 is a horizontal shift 1 unit to the right followed by a reflection about the x-axis.

1

2

3

Section P.3 52. (a) f g1  f 0  0

Functions and Their Graphs

54. f x  x2  1, gx  cos x

(b) g f 1  g1  0

 f gx  f gx  f cos x  cos2 x  1

(c) g f 0  g0  1

Domain:  , 

(d) f g4  f 15  15

g f x  gx 2  1  cosx 2  1

(e) f gx  f x2  1  x2  1

Domain:  , 

(f) g f x  g x    x   1  x  1 x ≥ 0

No, f g  g f.

2

56.  f gx  f  x  2  

1 x  2

Domain: 2, 

g f x  g

1x   1x  2  1 x 2x

You can find the domain of g f by determining the intervals where 1  2x and x are both positive, or both negative. + −2

+

+ − − +

−1 − 1 2

0

+

+ 1

+

x 2

Domain:   ,  12 , 0, 

58. (a)

3 x    3 x  f x 60. f x  

25

Odd

100

0 0

(b) H1.6x  0.0021.6x2  0.0051.6x  0.029  0.00512x 2  0.008x  0.029 62. f x  sin2x  sinx sinx  sin xsin x  sin2x Even 64. (a) If f is even, then 4, 9 is on the graph. 66. f x  a2nx2n  a2n2x2n2  . . .  a2x2  a0  a2nx2n  a2n2x2n2  . . .  a2x2  a0  f x Even 68. Let F x  f xgx where f is even and g is odd. Then F x  f xgx  f x gx  f xgx  F x. Thus, F x is odd.

(b) If f is odd, then 4, 9 is on the graph.

295

296

Chapter P

Preparation for Calculus

70. (a) Let F x  f x ± gx where f and g are even. Then, F x  f x ± gx  f x ± gx  F x. Thus, F x is even. (b) Let F x  f x ± gx where f and g are odd. Then, F x  f x ± gx  f x  gx  F x. Thus, F x is odd. (c) Let F x  f x ± gx where f is odd and g is even. Then, F x  f x ± gx  f x ± gx. Thus, F x is neither odd nor even.

72. By equating slopes,

02 y2  03 x3 y2 y

L  x2  y2 

74. True

6 x3 6 2x 2 x3 x  3,

x  x 2x 3 . 2

2

76. False; let f x  x2. Then f 3x  3x2  9x2 and 3f x  3x2. Thus, 3f x  f 3x.

Section P.4

Fitting Models to Data

2. Trigonometric function

4. No relationship

6. (a)

8. (a) s  9.7t  0.4

20

(b)

0

5

20 0 −1

No, the relationship does not appear to be linear. (b) Quiz scores are dependent on several variables such as study time, class attendance, etc. These variables may change from one quiz to the next. 10. (a) Linear model: H  0.3323t  612.9333 (b)

The model fits well. (c) If t  2.5, s  24.65 meterssecond. 12. (a) S  180.89x 2  205.79x  272 (b)

600

0

1300 0

45 −1

25000

14

0 0

The fit is very good. (c) When t  500, H  0.3323500  612.9333  446.78.

(c) When x  2, S  583.98 pounds.

Review Exercises for Chapter P 14. (a) t  0.00271s2  0.0529s  2.671 (b)

16. (a) T  2.9856  104 p3  0.0641 p2  5.2826p  143.1 (b)

21

100

20

350

0 150

0

110

(c) The curve levels off for s < 20.

(c) For T  300F, p  68.29 pounds per square inch.

(d) t  0.002s2  0.0346s  0.183

(d) The model is based on data up to 100 pounds per square inch.

21

100

0 0

The model is better for low speeds.

18. (a) Ht  84.4  4.28 sin

6t  3.86

(c)

100

One model is Ct  58  27 sin (b)

6t  4.1.

13

0 0

100

(d) The average in Honolulu is 84.4. The average in Chicago is 58. 0

(e) The period is 12 months (1 year).

13 0

(f) Chicago has greater variability 27 > 4.28.

20. Answers will vary.

Review Exercises for Chapter P 2. y  x  1x  3 x  0 ⇒ y  0  10  3  3 ⇒ 0, 3

297

y-intercept

y  0 ⇒ 0  x  1x  3 ⇒ x  1, 3 ⇒ 1, 0, 3, 0 4. xy  4 x  0 and y  0 are both impossible. No intercepts.

x-intercepts 6. Symmetric with respect to y-axis since y  x4  x2  3 y  x4  x2  3.

298

Chapter P

Preparation for Calculus

8. 4x  2y  6 y  2x  3

2x  15y  25

y

2 y   15 x  53

Slope: 2

10 8

2 Slope:  15

y-intercept: 3

y-intercept:

y

6

5 3

4 2

1 −2

12. y  x6  x

10. 0.02x  0.15y  0.25

y x

−1

2

−2

3

x 2

4

8

3

−1 −2

1

−3

x

−4

4

8

12

−1 −2





14. y  x  4  4

3 x  6 16. y  8 

18.

x  1  x2  7

y

Xmin = -40 Xmax = 40 Xscl = 10 Ymin = -40 Ymax = 40 Yscl = 10

x

−1 −1

2

3

4

5

6

−2 −3 −4

yx1 0  x2  x  6 No real solution No points of intersection The graphs of y  x  1 and y  x2  7 do not intersect.

−5 −6

20. y  kx3 (a) 4  k13 ⇒ k  4 and y  4x3

(b) 1  k23 ⇒ k   18 and y   18 x3

(c) 0  k03 ⇒ any k will do!

(d) 1  k13 ⇒ k  1 ⇒ y  x3

22.

24.

y 14

3 4  3  t 11

(7, 12)

12 10 8 6

44  9  3t

4 2 −2

36 3  1  3  t 3  8

1

2

3

4

5

6

(7, −1)

x

53  3t t

The line is vertical and has no slope.

53 3

Review Exercises for Chapter P 26. y  6  0x  2

28. m is undefined. Line is vertical. x5

y  6 Horizontal line

y

y 6

8

(−2, 6)

4

2 −4

−2

(5, 4)

2

4

−6

299

−4 x 2

−2

4

6

−2

x 2

4

6

8

−2 −4 −6

−4

2 y  3   x  1 3

30. (a)

32. (a) C  9.25t  13.50t  36,500  22.75t  36,500

3y  9  2x  2

(b) R  30t

2x  3y  11  0 (b) Slope of perpendicular line is 1.

(c)

30t  22.75t  36,500 7.25t  36,000

y  3  1x  1

t  5034.48 hours to break even.

yx2 0xy2 m

(c)

43 1 21

y  3  1x  1 yx2 0xy2 y3

(d)

y30 34. x2  y  0

36. x  9  y2

Function of x since there is one value for y for each x. y

Not a function of x since there are two values of y for some x. y

6 4

5 4

2

3

1

2

−12 −9 −6 −3 −1

1 −3

−2

−1

x 3

6

12

−2

x 1

2

3 −4

38. (a) f 4  42  2  18

  f 1  1  2  1

(because 4 < 0)

40. f x  1  x2 and gx  2x  1

(b) f 0  0  2  2

(a) f x  gx  1  x2  2x  1  x2  2x

(c)

(b) f xgx  1  x22x  1  2x3  x2  2x  1 (c) g f x  g1  x2  21  x2  1  3  2x2

Review Exercises for Chapter P 15. (a) y  1.81x3  14.58x2  16.39x  10 (b)

17. (a) Yes, y is a function of t. At each time t, there is one and only one displacement y.

300

(b) The amplitude is approximately

2.35  1.652  0.35. 0

The period is approximately

7 0

20.375  0.125  0.5.

(c) If x  4.5, y  214 horsepower.

(c) One model is y  0.35 sin4 t  2. (d)

4

0.9

0 0

19. Answers will vary.

Review Exercises for Chapter P 1. y  2x  3 x  0 ⇒ y  20  3  3 ⇒ 0, 3 3 3 y  0 ⇒ 0  2x  3 ⇒ x  2 ⇒  2 , 0

3. y 

y-intercept x-intercept

x1 x2

5. Symmetric with respect to y-axis since

01 1 1  ⇒ 0, x0⇒y 02 2 2

 

y0⇒0

x2y  x2  4y  0 y-intercept

x1 ⇒ x  1 ⇒ 1, 0 x2

7. y   12 x  32

x2y  x2  4y  0.

x-intercept

11. y  7  6x  x2

1 5 9.  3 x  6 y  1

 25 x  y  65

y

y

y  25 x  65

3 2

2 5

Slope:

1

y-intercept:

6 5

5

x 1

2

3

y x

1

10 3

2

2

x 3

2

1

1 1

5

5

19

20

Chapter P

Preparation for Calculus 17. 3x  4y  8

15. y  4x2  25

13. y  5  x

4x  4y  20

Domain:  , 5

Xmin = -5 Xmax = 5 Xscl = 1 Ymin = -30 Ymax = 10 Yscl = 5

y 5 4 3

 28

7x

x 4 y 1 Point: 4, 1

2 1

x 1

2

3

4

5

19. You need factors x  2 and x  2. Multiply by x to obtain origin symmetry y  xx  2x  2.  x3  4x.

21.

23.

y

15 1t  1  0 1  2

5

1t

4 5 2

( 5, )

3 2

t

1

( 32 , 1)

4 3

7 3

x 1

2

Slope 

3

4

5

52  1 32 3   5  32 72 7

y  5  32x  0

25.

y  0   23x  3

27.

y  32x  5 2y  3x  10  0

y   23x  2 3y  2x  6  0 y

y 4

4

2

2 −4

−2

(−3, 0) x

−2 −4

−8

2

(0, −5)

4

6

8

−8

−6

−4

x −2 −4 −6 −8

2

4

Review Exercises for Chapter P

y4

29. (a)

7 x  2 16

5 (b) Slope of line is . 3

16y  64  7x  14

5 y  4  x  2 3

0  7x  16y  78

3y  12  5x  10

40  2 2  0

m

(c)

y  2x

0  5x  3y  22 x  2

(d)

2x  y  0

21

x20

31. The slope is 850. V  850t  12,500. V3  8503  12,500  $9950 33. x  y2  0

35. y  x2  2x

y  ± x

Function of x since there is one value of y for each x.

Not a function of x since there are two values of y for some x.

y 4 3

y 3 2

x −1

x

−2 −1

1 1

2

3

4

5

3

4

−2

6

−2 −3

37. f x 

1 x

39. (a) Domain: 36  x2 ≥ 0 ⇒ 6 ≤ x ≤ 6 Range: 0, 6

(a) f 0 does not exist. 1 1  1  x 1 1  1  x f 1  x  f 1   (b) x x 1  xx 1 , x  1, 0  1  x 41. (a) f x  x3  c, c  2, 0, 2 y

c

Range: all y  0

or  , 0, 0, 

 , 

(c) Domain: all x or Range: all y or

 , 

(b) f x  x  c3, c  2, 0, 2 y

c

c

or  , 5, 5, 

(b) Domain: all x  5

0

3

1

c

0

2

1

2 x

3

2

2

3

x 2

2 2

c

2

—CONTINUED—

or 6, 6

3

c

2

3

22

Chapter P

Preparation for Calculus

41. —CONTINUED— (c) f x  x  23  c, c  2, 0, 2

(d) f x  cx3, c  2, 0, 2 y

y

2

c

3

2

c

2

2

c

1

0

1

c x 2

3

4

2

1

1

0 2

x 3

1 2

c

c

2

43. (a) Odd powers: f x  x, gx  x3, hx  x5

Even powers: f x  x2, gx  x4, hx  x6

g

2

2

g

4

h

h

−3

f

3

f −3 −2

3 0

The graphs of f, g, and h all rise to the left and to the right. As the degree increases, the graph rises more steeply. All three graphs pass through the points 0, 0, 1, 1, and 1, 1.

The graphs of f, g, and h all rise to the right and fall to the left. As the degree increases, the graph rises and falls more steeply. All three graphs pass through the points 0, 0, 1, 1, and 1, 1. (b) y  x7 will look like hx  x5, but rise and fall even more steeply. y  x8 will look like hx  x6, but rise even more steeply. 45. (a)

(b) Domain: 0 < x < 12

y

x

40

x

y

2x  2y  24

0

12 0

y  12  x A  xy  x12  x  12x  x2

47. (a) 3 (cubic), negative leading coefficient (b) 4 (quartic), positive leading coefficient (c) 2 (quadratic), negative leading coefficient

(c) Maximum area is A  36. In general, the maximum area is attained when the rectangle is a square. In this case, x  6. 49. (a) Yes, y is a function of t. At each time t, there is one and only one displacement y. (b) The amplitude is approximately

0.25  0.252  0.25.

(d) 5, positive leading coefficient

The period is approximately 1.1. (c) One model is y  (d)

1 2 1 cos t  cos5.7t 4 1.1 4

 

0.5

0

−0.5

2.2

Problem Solving for Chapter P

23

Problem Solving for Chapter P x2  6x  y2  8y  0

1. (a)

4 (b) Slope of line from 0, 0 to 3, 4 is Slope of tangent line 3 3 is  Hence, 4

x2  6x  9  y2  8y  16  9  16 x  32  y  42  25 Center: 3, 4

3 3 y  0   x  0 ⇒ y   x 4 4

Radius: 5

(c) Slope of line from 6, 0 to 3, 4 is

40 4  . 36 3

3 Slope of tangent line is . Hence, 4

3 3 9 (d)  x  x  4 4 2 3 9 x 2 2

3 9 3 y  0  x  6 ⇒ y  x  4 4 2

Tangent line

x3 Intersection:

3. Hx 

10

x ≥ 0 x < 0

Tangent line

3,  49

y 4 3 2 1 x

−4 −3 −2 −1 −1

1

2

3

4

−2 −3 −4

(a) Hx  2

(b) Hx  2

y

y

4

4

3

3

2

2

1

1 x

−4 −3 −2 −1 −1

1

2

3

x

−4 −3 −2 −1 −1

4

1

2

3

4

1

2

3

4

1

2

3

4

−2 −3

−3

−4

−4

(c) Hx

(d) Hx

y

y

4

4

3

3

2

2

1 x

−4 −3 −2 −1 −1

1

2

3

−2

−2

−3

−3

−4

−4

1 (e) 2Hx

(f ) Hx  2  2

y

x

−4 −3 −2 −1 −1

4

y

4

4

3

3

2 1 −4 −3 −2 −1 −1

1 x 1

2

3

4

−4 −3 −2 −1 −1

−2

−2

−3

−3

−4

−4

x

24

Chapter P

Preparation for Calculus

5. (a) x  2y  100 ⇒ y  Ax  xy  x

100  x 2

7. The length of the trip in the water is 22  x2, and the length of the trip over land is 1  3  x2. Hence, the total time is

1002 x   x2  50x 2

T

Domain: 0 < x < 100 (b)

4  x2

2



1  3  x2

1600

0

110 0

Maximum of 1250 m 2 at x  50 m, y  25 m. 1 (c) Ax   x2  100x 2 1   x2  100x  2500  1250 2 1   x  502  1250 2 A50  1250 m 2 is the maximum. x  50 m, y  25 m. 9. (a) Slope 

94  5. Slope of tangent line is less than 5. 32

(b) Slope 

41  3. Slope of tangent line is greater than 3. 21

(c) Slope 

4.41  4  4.1. Slope of tangent line is less than 4.1. 2.1  2

(d) Slope 

f 2  h  f 2 2  h  2



2  h2  4 h



4h  h2 h

 4  h, h  0 (e) Letting h get closer and closer to 0, the slope approaches 4. Hence, the slope at 2, 4 is 4. 11. (a) At x  1 and x  3 the sounds are equal. (b)

I x2  y2



3

2I x  32  y2

−6

3

x  32  y2  4x2  y2 3x2  3y2  6x  9 x2  2x  y2  3

x  12  y2  4 Circle of radius 2 centered at 1, 0

−3

4

hours.

Problem Solving for Chapter P d1d2  1

13.

y

x  12  y2 x  12  y2  1 x  12x  12  y2x  12  x  12  y4  1 x2  12  y22x2  2  y4  1 x4  2x2  1  2x2y2  2y2  y4  1

x4  2x2y2  y4  2x2  2y2  0 x2  y22  2x2  y2 Let y  0. Then x4  2x2 ⇒ x  0

or

x2  2.

Thus, 0, 0, 2, 0 and  2, 0 are on the curve.

2

(− 2 , 0)

1

( 2 , 0) x

−2

2 −1 −2

(0, 0)

25

Review Exercises for Chapter P 14. (a) t  0.00271s2  0.0529s  2.671 (b)

16. (a) T  2.9856  104 p3  0.0641 p2  5.2826p  143.1 (b)

21

100

20

350

0 150

0

110

(c) The curve levels off for s < 20.

(c) For T  300F, p  68.29 pounds per square inch.

(d) t  0.002s2  0.0346s  0.183

(d) The model is based on data up to 100 pounds per square inch.

21

100

0 0

The model is better for low speeds.

18. (a) Ht  84.4  4.28 sin

6t  3.86

(c)

100

One model is Ct  58  27 sin (b)

6t  4.1.

13

0 0

100

(d) The average in Honolulu is 84.4. The average in Chicago is 58. 0

(e) The period is 12 months (1 year).

13 0

(f) Chicago has greater variability 27 > 4.28.

20. Answers will vary.

Review Exercises for Chapter P 2. y  x  1x  3 x  0 ⇒ y  0  10  3  3 ⇒ 0, 3

297

y-intercept

y  0 ⇒ 0  x  1x  3 ⇒ x  1, 3 ⇒ 1, 0, 3, 0 4. xy  4 x  0 and y  0 are both impossible. No intercepts.

x-intercepts 6. Symmetric with respect to y-axis since y  x4  x2  3 y  x4  x2  3.

298

Chapter P

Preparation for Calculus

8. 4x  2y  6 y  2x  3

2x  15y  25

y

2 y   15 x  53

Slope: 2

10 8

2 Slope:  15

y-intercept: 3

y-intercept:

y

6

5 3

4 2

1 −2

12. y  x6  x

10. 0.02x  0.15y  0.25

y x

−1

2

−2

3

x 2

4

8

3

−1 −2

1

−3

x

−4

4

8

12

−1 −2





14. y  x  4  4

3 x  6 16. y  8 

18.

x  1  x2  7

y

Xmin = -40 Xmax = 40 Xscl = 10 Ymin = -40 Ymax = 40 Yscl = 10

x

−1 −1

2

3

4

5

6

−2 −3 −4

yx1 0  x2  x  6 No real solution No points of intersection The graphs of y  x  1 and y  x2  7 do not intersect.

−5 −6

20. y  kx3 (a) 4  k13 ⇒ k  4 and y  4x3

(b) 1  k23 ⇒ k   18 and y   18 x3

(c) 0  k03 ⇒ any k will do!

(d) 1  k13 ⇒ k  1 ⇒ y  x3

22.

24.

y 14

3 4  3  t 11

(7, 12)

12 10 8 6

44  9  3t

4 2 −2

36 3  1  3  t 3  8

1

2

3

4

5

6

(7, −1)

x

53  3t t

The line is vertical and has no slope.

53 3

Review Exercises for Chapter P 26. y  6  0x  2

28. m is undefined. Line is vertical. x5

y  6 Horizontal line

y

y 6

8

(−2, 6)

4

2 −4

−2

(5, 4)

2

4

−6

299

−4 x 2

−2

4

6

−2

x 2

4

6

8

−2 −4 −6

−4

2 y  3   x  1 3

30. (a)

32. (a) C  9.25t  13.50t  36,500  22.75t  36,500

3y  9  2x  2

(b) R  30t

2x  3y  11  0 (b) Slope of perpendicular line is 1.

(c)

30t  22.75t  36,500 7.25t  36,000

y  3  1x  1

t  5034.48 hours to break even.

yx2 0xy2 m

(c)

43 1 21

y  3  1x  1 yx2 0xy2 y3

(d)

y30 34. x2  y  0

36. x  9  y2

Function of x since there is one value for y for each x. y

Not a function of x since there are two values of y for some x. y

6 4

5 4

2

3

1

2

−12 −9 −6 −3 −1

1 −3

−2

−1

x 3

6

12

−2

x 1

2

3 −4

38. (a) f 4  42  2  18

  f 1  1  2  1

(because 4 < 0)

40. f x  1  x2 and gx  2x  1

(b) f 0  0  2  2

(a) f x  gx  1  x2  2x  1  x2  2x

(c)

(b) f xgx  1  x22x  1  2x3  x2  2x  1 (c) g f x  g1  x2  21  x2  1  3  2x2

300

Chapter P

Preparation for Calculus

42. f x  x3  3x2

44. (a) f x  x2x  62

6

−6

100

(0, 0) 6 −4

(2, − 4)

10

−6

−25

(a) The graph of g is obtained from f by a vertical shift down 1 unit, followed by a reflection in the x-axis:

(b) gx  x3x  62 300

gx    f x  1  x3  3x2  1 −2

(b) The graph of g is obtained from f by a vertical shift upwards of 1 and a horizontal shift of 2 to the right. gx  f x  2  1

10 −100

(c) hx  x3x  63

 x  2  3x  2  1 3

2

200 −4

10

− 800

46. For company (a) the profit rose rapidly for the first year, and then leveled off. For the second company (b), the profit dropped, and then rose again later.

48. (a) y  1.204x  64.2667 (b)

70

0

33 0

(c) The data point 27, 44 is probably an error. Without this point, the new model is y  1.4344x  66.4387.

Problem Solving for Chapter P 2. Let y  mx  1 be a tangent line to the circle from the point 0, 1. Then x2   y  12  1 x2  mx  1  12  1

m2  1x2  4mx  3  0 Setting the discriminant b2  4ac equal to zero, 16m2  4m2  13  0 16m2  12m2  12 4m2  12 m  ± 3 Tangent lines: y  3x  1 and y   3x  1.

Problem Solving for Chapter P 4. (a) f x  1

(b) f x  1

y

y

4

−3

4

x

−1

1

x

−4

3

4

−2

−2

−4

−4

(c) 2f x

(d) f x

y

y

4

4 2

−4

x

−2

2

−4

4

−2

−2

−4

−4

(e) f x





(f) f x

y 4



4

2

4

y

2 x

−2

2

−4

4

x

−2

−2

−2

−4

−4

(g) f  x 

2

4

2

−4

x

−2

y 4 2

−4

x

−2

2

4

−2 −4

6. (a) 4y  3x  300 ⇒ y 

300  3x 4

3x2  300x 300  3x Ax  x2y  x  2 2





y

(b) 4000 3500 3000 2500 2000

Domain: 0 < x < 100

1500 1000 500 x 25

50

75

100

Maximum of 3750 ft 2 at x  50 ft, y  37.5 ft. 3 (c) Ax   x2  100x 2 3   x2  100x  2500  3750 2 3   x  502  3750 2 A50  3750 square feet is the maximum area, where x  50 ft and y  37.5 ft.

301

302

Chapter P

Preparation for Calculus

8. Let d be the distance from the starting point to the beach. Average velocity 

distance time



2d d d  120 60



2 1 1  120 60

 80 km hr y

10. 4 3 2

(4, 2)

1 x 1

2

3

4

5

−1

(a) Slope 

1 32 1  . Slope of tangent line is greater than . 94 5 5

(b) Slope 

21 1 1  . Slope of tangent line is less than . 41 3 3

(c) Slope 

10 2.1  2 10  . Slope of tangent line is greater than . 41 4.1  4 41

(d) Slope 

f 4  h  f 4 4  h  4

 (e)

4  h  2

4  h  2

h

h   

4  h  2

h



4  h  2 4  h  2

4  h  4 h4  h  2 1 4  h  2

,h0

1 1 As h gets closer to 0, the slope gets closer to . The slope is at the point 4, 2. 4 4

Problem Solving for Chapter P I

12. (a)

kI



x2  y2

x  42  y2

x  42  y2 k2x2  y2 k2  1x2  k2  1y2  8x  16 If k  1, then x  2 is a vertical line. So, assume k2  1  0. Then x2  y2 

8x 16  k2  1 k2  1

x  k

4 1



2

x  k

4 1



2

2

2



 y2 

16 16  k2  1 k2  12

 y2 

k 4k 1 , Circle

1 2

(b) If k  3, x 



2

2

2

 y2 

32

2

(c) For large k, the center of the circle is near 0, 0, and the radius becomes smaller. y 2 1 x −2

(− 12 , 0)

1

2

−2

14. f x  y 

1 1x

(a) Domain: all x  1 Range: all y  0 (b) f  f x  f

1 1 x 

1



1 1 1x





1 1x x1   1x1 x x 1x

Domain: all x  0, 1 (c) f  f  f x  f

x x 1 

1 1  x x1 1 1 x x





Domain: all x  0, 1 (d) The graph is not a line. It has holes at 0, 0 and 1, 1. y 2 1 x −2

1

−2

2

303
Calculo 1, Solucionario (solo Pares) - Ron Larson - 9na Edición

Related documents

1,068 Pages • 400,302 Words • PDF • 10.9 MB

1,290 Pages • 682,999 Words • PDF • 49.5 MB

4 Pages • 585 Words • PDF • 412.2 KB

2 Pages • 351 Words • PDF • 383.8 KB

15 Pages • 729 Words • PDF • 403.9 KB

156 Pages • 66,330 Words • PDF • 823.1 KB

61 Pages • 20,914 Words • PDF • 6.2 MB

16 Pages • 201 Words • PDF • 2.6 MB

33 Pages • 1,487 Words • PDF • 819.6 KB

539 Pages • 183,684 Words • PDF • 2.2 MB

12 Pages • 3,716 Words • PDF • 141.5 KB